adasalai.org POWERS OF IMAGINARY UNIT = i i 2001 Division algorithm : n = 4(q) + r

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Standardized Test Practice

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Chapter 1: Review Exercises

Hard-Margin Support Vector Machines

n [2, 11] 1.5 ( G. Pick 1899).

OpenPoland.net API Documentation

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

Convolution semigroups with linear Jacobi parameters

Zarządzanie sieciami telekomunikacyjnymi

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień

Matematyczne Metody Fizyki I

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

GAL 80 zadań z liczb zespolonych

Rozdział 2. Liczby zespolone

harmonic functions and the chromatic polynomial

7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.

Rachunek lambda, zima

CS 6170: Computational Topology, Spring 2019 Lecture 09

Aerodynamics I Compressible flow past an airfoil

Extraclass. Football Men. Season 2009/10 - Autumn round

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Some Linear Algebra. Vectors operations = =(,, ) =( 1 + 2, 1 + 2, ) λ =(λ,λ,λ ) Addition. Scalar multiplication.

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Assignment 3.1 (SA and LA)

Knovel Math: Jakość produktu

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Midterm Review (2) Trigonometry L R2V0C1K9U XKhuptOaT GSUoefUtowraqrleQ aldlscv.a X VA[ltlB LrmizgNhStesM krgeoseefrzvte_di.

Revenue Maximization. Sept. 25, 2018

Kolorowa płaszczyzna zespolona

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Lecture 18 Review for Exam 1

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Factor each completely.

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature


Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Title: On the curl of singular completely continous vector fields in Banach spaces

Lecture 20. Fraunhofer Diffraction - Transforms

Unitary representations of SL(2, R)

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Few-fermion thermometry

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Previously on CSCI 4622

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4

deep learning for NLP (5 lectures)

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

Wykład 2 Układ współrzędnych, system i układ odniesienia

Cracow University of Economics Poland


Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

H γ0 - the standard enthalpy of g phase. H β γ - the transition enthalpy of b to g

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zadania o liczbach zespolonych

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Counting quadrant walks via Tutte s invariant method

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Maths - matematyka calculator kalkulator

Tychy, plan miasta: Skala 1: (Polish Edition)

Praca domowa - seria 2

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

ZASADY ZALICZANIA PRZEDMIOTU:

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Camspot 4.4 Camspot 4.5

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH!

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Country fact sheet. Noise in Europe overview of policy-related data. Poland

KINEMATYKA (punkt materialny)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Mixed-integer Convex Representability

Ciało liczb zespolonych

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Sargent Opens Sonairte Farmers' Market

How to translate Polygons

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Date Period Find the area of each regular polygon. Round your answer to the nearest tenth if necessary. 1) 10.3 yd. 6 m 11.2 m -1-

Transkrypt:

.COMPLEX NUMBERS Pai POWERS OF IMAGINARY UNIT i =, i = i, i 4 = Division algorithm : n = 4(q) + r i n = (i) 4q+r = (i) 4q (i) r = (i 4 ) q (i) r if r = 0, i n = ; if r =, i n = i; if r =, i n = ; if r =, i n = i ab = a b is valid onl if at least one of a, b is non-negative. For R, > 0 EXERCISE. Simplif the following:.i 947 + i 950 947 4 = 4(486) + ; 950 = 4(487) + i 947 + i 950 = (i 4 ) 486 (i) + (i 4 ) 487 (i) = i = i.i 948 i 869 948 4 = 4(487) + 0 ; 869 4 = 4(467) + i 948 i 869 = i 948 = i 869 (i4 ) 487 (i) 0 = = (i 4 ) 467 i i ( i ) i i = ( i i ) = + i ( i = ). n= i n n= i n = i + i + i + i 4 + i 5 + i 6 + i 7 + +i 8 + i 9 + i 0 + i + i = i + i + i + i 4 + i 4 i + (i ) + (i ) i + (i ) 4 + (i ) + (i ) 5 + (i ) 5 i + (i ) 6 = i i + + i i + + i i + = 0 4.i 59 + i 59 59 4 = 4(4) + i 59 + = i 59 (i4 ) 4 i + (i 4 ) 4 i = i + = i + i i i i = i + i = i i = 0 5.i. i. i. i 4.. i 000 = i (++..+000) ai.org ai.org ai.org ai.org ai.org ai.org ai.org ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p = i 000 00 TrbTnpsc = i 000 00 = i 000. i 00 = (i 4 ) 50 (i 4 ) 500 i ( 00 4 = 4(500) + ) =.. i = i 6. 0 n= i n+50 0 n= i n+50 = i 5 + i 5 + i 5 + + i 60 = i 50 (i + i + i + i 4 + i 5 + i 6 + i 7 + i 8 + i 9 + i 0 ) = (i 4 ) i (i i + + i i + + i ) = (i ) = i EXAMPLE. Simplif the following: (i) i 7 (ii)i 79 (iii)i 94 + i 08 (iv) 0 n= i n (v)i. i. i. i 4.. i 40 COMPLEX NUMBERS Rectangular Form Of a Comple Number: A comple number is of the form z = + i,, R. is called the real part and is called the imaginar part of the comple number. Two comple numbers z = a + ib, z = c + id are said to be equal if and onl if Re(z ) = Re(z ) and Im(z ) = Im(z ). ie. a = c and b = d Scalar multiplication of comple numbers: If z = + i and k R then kz = k( + i) = k + ki Addition of comple numbers: If z = a + ib, z = c + id, then z + z = (a + c) + i(b + d) Subtraction of comple numbers: If z = a + ib, z = c + id, then z z = (a c) + i(b d) Multiplication of comple numbers: If z = a + ib, z = c + id, then z z = (ac bd) + i(ad + bc) Multiplication of a comple z b i successivel gives a 90 0 counter clockwise rotation successivel about the origin. EXERCISE.. Evaluate the following if z = 5 i and w = + i (i)z + w (ii)z iw (iii)z + w (iv)zw (v)z + zw + w (vi)(z + w).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page

(i)z + w = 5 i + i = 4 + i Pai (ii)z iw = 5 i i( + i) = 5 i + i i = 5 i + i + = 8 i i = (iii)z + w = (5 i ) + ( + i) = 0 4i + 9i = 7 + 5i (iv) z z = (ac bd) + i(ad + bc); a = 5, b =, c =, d = zw = (5 i)( + i) = [(5)( ) ( )()] + i[(5)() + ( )( )] = [ 5 + 6] + i[5 + ] = + 7i (v)z = (5 i) = 5 0i + 4i = 5 0i 4 = 0i zw = (5 i )( + i) = [ + 7i] from (iv) zw = + 4i w = ( + i) = 6i + 9i = 6i 9 = 8 6i z + zw + w = 0i + + 4i 8 6i = 5 + 8i (vi)(z + w) = (4 + i) from(i) = 6 + 8i + i = 6 + 8i = 5 + 8i. Given the comple number z = + i, represent the comple numbers in Argand diagram. (i)z, iz and z + iz (ii)z, iz and z iz (i)z = + i = (,) iz = i( + i) = i + i = + i = (,) z + iz = + i + i( + i) = + i + i = + 5i = (,5) ai.org ai.org ai.org ai.org ai.org ai.org ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p (i)z = + i = (,) iz = i( + i) = i i = i = (, ) z iz = + i i( + i) = + i + i = 5 + i = (5,) ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org. Find the values of the real numbers and, if the comple numbers ( i) ( i) + i + 5 and + ( + i) + + i are equal. z = ( i) ( i) + i + 5 = i + i + i + 5 = ( + 5) + i( + + ) z = + ( + i) + + i = + i + + i = ( + ) + i( + ) Given : z = z ( + 5) + i( + + ) = ( + ) + i( + ) Equating the real and imaginar parts on both sides,.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org + 5 = + + 5 + = 0 = () () + () = =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P + + = + + + = 0 = 0 ().Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org Sub. = in () = = EXAMPLE. Find the values of the real numbers and, if the comple numbers ( + i) + ( i) + i and + ( + i) + + i are equal. [Ans: = and = ] PROPERTIES OF COMPLEX NUMBERS Properties of comple numbers under addition: I. Closure propert: z, z C, (z + z ) C II. Commutative propert: z, z C, z + z = z + z III. Associative propert: z, z, z C, (z + z ) + z = z + (z + z ) IV. Additive identit: z C, z + 0 = 0 + z = z 0 = 0 + 0i is an additive.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org TrbTnpsc.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page

identit. Pai V. Additive inverse: z C, z C z + ( z) = ( z) + z = 0 C, so z is an additive identit. Properties of comple numbers under multiplication: I. Closure propert: z, z C, (z. z ) C II. Commutative propert: z, z C, z. z = z. z III. Associative propert: z, z, z C, (z. z ). z = z. (z. z ) IV. Multiplicative identit: z C, z. =. z = z = + 0i is a multiplicative identit. ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org V. Multiplicative inverse: z C z z C z. z = z. z = + i0 C, so z is ai.org multiplicative identit..pai.org.pai.org If z = + i then its multiplicative inverse is z = ( + ) + i ( Distributive propert: z, z, z C, (z + z ). z = z z + z z o z, z, z C, z. (z + z ) = z z + z z Comple numbers obe the laws of indices: ai.org.pai.org.pai.org (i)z m z n = z m+n (ii) zm.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z n = zm n.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (iii)(z m ) n = z m z n (iv)(z z ) m = z m m z EXERCISE..If z = i, z = 4i and z = 5, show that (i)(z + z ) + z = z + (z + z ) (ii)(z z )z = z (z z ) (i)(z + z ) + z = ( i 4i) + 5 = 7i + 5 = 6 7i () z + (z + z ) = i + ( 4i + 5) = i 4i + 5 = 6 7i () From () & (), (z + z ) + z = z + (z + z ) (ii)(z z )z = [( i)( 4i)]5 = ( 4i + i )5 = ( 4i )5 = 60 0i () z (z z ) = ( i)[( 4i)(5)] = ( i)[ 0i] = 0i + 60i = 60 0i () From () & (), (z z )z = z (z z ).If z =, z = 7i and z = 5 + 4i, show that (i)z. (z + z ) = z z + z z (ii)(z + z ). z = z z + z z (i)z. (z + z ) = ( 7i + 5 + 4i) = (5 i) = 5 9i () z z + z z = ()( 7i) + ()(5 + 4i) = i + 5 + i = 5 9i () ai.org ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org + ) (or).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p From () & (), TrbTnpsc z. (z + z ) = z z + z z (ii)(z + z ). z = ( 7i)(5 + 4i) = 5 + i 5i 8i = 5 + i 5i + 8 = 4 i () z z + z z = ()(5 + 4i) + ( 7i)(5 + 4i) = 5 + i 5i 8i = 5 + i 5i + 8 = 4 i () From () & (), (z + z ). z = z z + z z.if z = + 5i, z = 4i and z = + i, find the additive and multiplicative inverse of z, z and z Additive inverse of z is z. So, Additive inverse of z = + 5i is z = 5i, Additive inverse of z = 4i is- z = + 4i Additive inverse of z = + i is z = i.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Multiplicative inverse of z = + i is z = ( +) + i ( + ) Multiplicative inverse of z = + 5i is z = ( 5 +5) + i ( +5 ) = 5 i 9 9 Multiplicative inverse of z = 4i isz 4 = ( ) + i (.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page ( ) +( 4) = 5 + 4 5 i ( ) +( 4) ) Multiplicative inverse of z = + i is z = ( +) + i ( + ) = i CONJUGATE OF A COMPLEX NUMBER The conjugate of the comple number z = + i is z = i. zz = + The conjugate is useful in division of comple numbers. PROPERTIES OF COMPLEX CONJUGATES: z + z = z + z Im(z) = z z i z z = z z (z z. z = z. z n ) = (z ) n z is real if and onl if z = z ( z z ) =, z z z 0 z is purel imaginar if and onl if z = z Re(z) = z+z z = z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org EXERCISE.4.Write the following in the rectangular form:.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

(i)(5 + 9i) + ( 4i) (ii) 0 5i (iii)i + Pai 6+i i (i)(5 + 9i) + ( 4i) = 5 + 9i + 4i = 5 9i + + 4i = 7 5i (ii) 0 5i = 0 5i 6 i = 60 0i 0i+0i 6+i 6+i 6 i 6 + = 60 50i 0 = 50 50i 40 40 (iii)i + = i + +i i i +i ai.org ai.org = 5 4 5 4 i = i + +i + = i + 5 + 5 i.if z = + i, find the following in rectangular form: = + 5i+i = 4 i 5 5 5 (i)re ( ) (ii)re(iz ) (iii)im(z + 4z 4i) z (i) = z ai.org i = i = i +i i + + + i ) = + + + Re ( z ) = Re (.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org (ii)iz = i( ) + i = i( i) = i i = + i Re(iz ) = Re( + i) = (iii)z + 4z 4i = ( + i) + 4 + i 4i = + i + 4( i) 4i = + i + 4 4i 4i = 7 i 4i = 7 + i( 4) Im(z + 4z 4i) = Im(7 + i( 4)) = 4. If z = i and z = 4 + i, find the inverse of z z and z ai.org ai.org.pai.org.pai.org.pai.org.pai.org z z = ( i )( 4 + i) = 8 + 6i + 4i i = 8 + 0i + = 5 + 0i Inverse of z z = ( +) + i ( + ) = ( 5 ( 5) +0 ) + i ( 0 ( 5) +0 ) = 5 0 i = i 5 5 5 5 ai.org.pai.org.pai.org z = i = i 4 i = 8 6i+4i+i = 8 i z 4+i 4+i 4 i ( 4) + 5 Inverse of z = ( z +) + i ( + ) ai.org ai.org.pai.org.pai.org = ( 5 ( 5) +( 5 + 5 5 5 5 65 65 =.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org ) ) + i ( i = 5 + 5 i 5 5 ( 5) +( 5.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z.pai.org.pai.org = 5 5 i.pai.org.pai.org ) ).Pai.Org.Pai.Org 4. The comple numbers u, v and w are related b = +. If v = 4i and u v w ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p w = 4 + i, find TrbTnpsc u in the rectangular form. = + = + u v w u 4i 4+i = ( +4i ) + ( 4i +4i.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P = +4i + 4 i +4 4 + = 5.Pai.Org.Pai.Org u = 7+i ( + 4i + 4 i) 4 i ) 4+i 4 i 5 = 5 7 i = 5(7 i) = 5(7 i) = 7 i 7+i 7+i 7 i 7 + 50.Pai.Org.Pai.Org u = 5 = 7 i 5.Prove the following properties: (i)z is real if and onl if z = z (ii)re(z) = z+z (iii)im(z) = z z.pai.org.pai.org.pai.org.pai.org (i)z is real z = + 0i z = + 0i = 0i = z is real if and onl if z = z (ii) Let z = + i ; Re(z) = () z = i z + z = + i + i = z+z = ().Pai.Org.Pai.Org.Pai.Org.Pai.Org From () & (), Re(z) = z+z (iii) Let z = + i ; Im(z) = () z = i z z = + i + i = i z z = ().Pai.Org.Pai.Org.Pai.Org.Pai.Org From () & (), Im(z) = z z.pai.org.pai.org.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 4 i 6.Find the least value of the positive integer n for which ( + i) n (i)real (ii)purel imaginar ( + i) = + 9i i = 8i.Pai.Org.Pai.Org.Pai.Org.Pai.Org ( + i) 6 = (( + i) ) = (8i) = 64 (i)when n = 6, ( + i) n is real.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org (ii)when n =, ( + i) n is purel imaginar 7.Show that (i)( + i ) 0 ( i ) 0 is purel imaginar..pai.org.pai.org.pai.org.pai.org i.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org i.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

(ii) ( 9 7i 9+i ) + ( 0 5i Pai 7 6i ) is real. (i) z = ( + i ) 0 ( i ) 0 z = ( + i ) 0 ( i ) 0 = ( + i ) 0 ( i ) 0 ai.org )0 = ( + i ( )0 0 0 i = ( i ) ( + i ) = {( + i ) 0 ( i ) 0 } = z ai.org ( + i ) 0 ( i ) 0 is purel imaginar. (ii) 9 7i = 9 7i 9+i 9+i 0 5i = 0 5i 7+6i = 40+0i 5i 0i = 70+85i 7 6i 7 6i 7+6i 7 +6 85 ai.org 9 i = 7 9i 6i+7i = 64 8i = 8( i) = i 9 i 9 + 8 8 = + i z = ( 9 7i 9+i ) + ( 0 5i 7 6i ) = ( i) ( + i) z = ( i) ( + i) = ( i) ( + i) = ( + i) ( i) = z ai.org ( 9 7i 9+i ) + ( 0 5i 7 6i ) is real. EXAMPLE. 8 Show that (i)( + i ) 0 + ( i ) 0 is real and ai.org (ii) ( 9+9ii 5 i )5 ( 8+i +i )5 is purel imaginar. EXAMPLE. Write +4i in the + i form, hence find its real and imaginar 5 i parts. +4i = ai.org = +4i 5+i = 5+6i+0i 48 = +56i 5 i 5 i 5+i 5 + 69 Real part = 69 ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org EXAMPLE. 4 Simplif ( +i 56 and imaginar part= 69 i ) ( i +i ).Pai.Org.Pai.Org +i = +i +i = +i+i+i = +i = i i i +i + i = +i (+i i ) = i ( +i ai.org.pai.org.pai.org = i + 56 i 69 69 i ) ( i +i ) = (i) ( i) = i i = i z+ EXAMPLE. 5 If, find the comple number z. ai.org = +4i z 5i.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z+ = +4i z 5i.P.P (z + ) = ( + 4i)(z 5i) z + 6 = z 5i + 4zi 0i z z 4zi = 5i + 0 6.Pai.Org.Pai.Org z 4zi = 4 5i z( 4i) = 4 5i z = 4 5i 4i.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org = 4 5i +4i = 4+56i 5i 0i = 4+5i+0 = 4+5i = 7(+i) 4i +4i +4 7 7 7 EXAMPLE. 6 If z = i and z = 6 + 4i, find z z. z = i = i 6 4i = 8 i i 8 = 0 4i = (5 i) = 5 i z 6+4i 6+4i 6 4i 6 +4 5 5 6.Pai.Org.Pai.Org.Pai.Org.Pai.Org EXAMPLE. 7 Find z, if z = ( + i)( i). z = ( + i)( i) = i + i i = + i + = 5 + i z = ( +) + i ( + ) = ( 5 5 +) + i ( 5 + ) = 5 i 6 6 MODULUS OF A COMPLEX NUMBER.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org TrbTnpsc = + i V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 5.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org If z = + i, then the modulus of z is z = + zz = z PROPERTIES OF MODULUS OF A COMPLEX NUMBER: Z = Z z + z z + z ( Triangle inequalit ) z z z z z z = z z z = z, z z z 0 z n = z n, n is an integer. Re(z) z Im(z) z z z z + z z + z The distance between the two points z and z in the comple plane is z z (or) ( ) + ( ) Formula for finding the square root of the comple number z = a + ib is.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

a + ib = ± ( z +a + i b ai.org If b is negative b If b is positive b b b b z a ), =, and have different signs. =, and have same signs. Eercise.5.Find the modulus of the following comple numbers: (ii) i (iii)( i) 0 (iv)i( 4i)(4 i) ai.org (i) i +4i ai.org (i) i = +4i + i +i i i = 0 + = 4 = +4i +4 5 5 z = + (ii) i + i = +i i ( i)( i)+(+i)( i) = i i+i + i+i i (+i)( i) + = i i + i+ = 4 4i = i = + = 8 = (iii) ( i) 0 = i 0 = ( + ) 0 = 0 = 5 = ai.org (iv) i( 4i)(4 i) = i 4i 4 i = 0 + + 4 4 + = 4 5 5 =.5.5 = 50 EXAMPLE. 9 If z = + 4i, z = 5 i and z = 6 + 8i, find z, z, z, z + z, z z and z + z. EXAMPLE. 0 Find the following : (i) +i (ii) ( ( + i) + i)(4i ) ai.org ai.org +i (iii) i(+i) (+i).for ant two comple numbers z and z, such that z = z = and z z then show that z +z is a real number. +z z Given z = z = z = z = z z = z = z ai.org ai.org lll l z = z ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P TrbTnpsc Let w = z +z w = ( z +z z ) = +z z +z z.p +z = +z = z + z +z z +z z + zz.p V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 6 = z+z zz = z +z +zz zz +z z = w Since w = w, w is purel real..which one of the points 0 8i, + 6i is closest to + i. Distance between the two points z and z = ( ) + ( ) z = + i, z = 0 8i Distance between the two points z and z = ( 0) + ( + 8) = 8 + 8 = 6 = 8 = 9 z = + i, z = + 6i Distance between the two points z and z = ( ) + ( 6) = 00 + 5 = 5 = 5 5 = 5 5 5 5 < 9, + 6i is the closest point to + i EXAMPLE. Which one of the points i, + i and is farthest from the origin? 4.If z =, show that 7 z + 6 8i. Let z = z and z = 6 8i W.K.T, z z z + z z + z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org 6 + 8 z + 6 8i + 6 + 8 00 z + 6 8i + 00 0 z + 6 8i + 0 7 z + 6 8i 7 z + 6 8i EXAMPLE. If z =, show that z + + 4i 7. 5. If z =, show that z 4. Let z = z and z = W.K.T, z z z + z z + z z z z + z + z 4 z 4.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org

6.If z =, show that the greatest and least value of Pai z are + and z respectivel..p z z = = z z z z ai.org.pai.org.pai.org z z z z a r r a r z z z z z () z z From () z z z z z + z 0 z + z z + z 0 [ z ( + )][ z ( )] 0 z ( + ) ; z ( ) ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org z ( ) ().Pai.Org.Pai.Org From () z z z z 0 [ z ( + )][ z ( )] 0 ( ) z ( + ) ai.org.pai.org.pai.org z ( + ) () From () & (), z + Hence the greatest and least value of z are + and respectivel. 7.If z, z and z are three comple numbers such that z =, z =, z = and z + z + z =, show that 9z z + 4z z + z z = 6. z = z = z z = z = zz = z z z = z = 4 z z = 4 z = 4 z z = z = 9 z z = 9 z = 9 z z + z + z = + 4 + 9 z z z z + z + z = z +4z z +9z z ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z z z.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p TrbTnpsc z + z + z = z +4z z +9z z z + z + z = z z z z z +4z z +9z z z z z z + z + z = 9z z +4z z +z z.pai.org.pai.org z z z z + z + z = 9z z +4z z +z z z z z = 9z z +4z z +z z.pai.org.pai.org.. z = z z z = z z 9z z + 4z z + z z = 6 EXAMPLE. If z, z and z are three comple numbers such that z = z = z = z + z + z =, find the value of z + z + z..pai.org.pai.org EXAMPLE. 5 If z, z and z are three comple numbers such that z = z = z = r > 0 and z + z + z 0. Prove that z z +z z +z z = r z +z +z z = r z = r z z = r z = r zz = z.pai.org.pai.org z = r z = r z z = r z = r V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 7 z z = r z = r z z = r z = r.pai.org.pai.org z + z + z = r.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z + z + z = r z.pai.org.pai.org z z + r + r = z z z r ( z +z z +z z ) z z z z +z z +z z = r z z +z z +z z z z z z.pai.org.pai.org.pai.org.pai.org z + z + z = r z z +z z +z z r.r.r.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = r z z +z z +z z z z z z + z + z = z z +z z +z z r z z +z z +z z = r z +z +z.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org 8.If the area of the triangle formed b the vertices z, iz and z + iz is 50 square units, find the value of z. Let z = a + ib = (a, b) z = a + b Vertices : z = (a, b) iz = i(a + ib) = ia + i b = b + ia = ( b, a) z + iz = a + ib b + ia = (a b) + i(a + b) = (a b, a + b).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

Area of the triangle = 50 sq. units Pai b a b a a b a a + b b = 50 (a ab b + ab b ) ( b + a ab + a + ab) = 50 a b + b a = 00 a b = 00 (a + b ) = ±00 a + b = 00 a + b = 0 z = 0 ( a + b is not negative) NOTE: This can also done b using distance formula, find the length of base and ai.org ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org height and use Area of the = bh.pai.org.pai.org EXAMPLE. 4 Show that the points, of an equilateral triangle. ai.org Let z =, z = + i and z = i The length of the sides of the triangle are ai.org.pai.org.pai.org + i and z z = ( + i ) = i = ( ) + (.Pai.Org.Pai.Org z z = ( + i ) ( ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org i ) = ).Pai.Org.Pai.Org + i +.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org i are the vertices.pai.org.pai.org = 9 4 + 4 = 4 =.Pai.Org.Pai.Org + i = ( ) = z z = ( i ) = i = ( ) + ( = 9 + = 4 4 Since all the three sides are equal, the given points form an equilateral triangle. EXAMPLE. 8 Given the comple number = + i, represent the comple numbers z, iz and z + iz in one Argand diagram. Show that these comple numbers form the vertices of an isosceles right triangle. Given : z = + i = A(,) iz = i( + i) = + i = B(,) z + iz = + i + i = + 5i = C(,5) The length of the sides of the triangle are ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org AB = ( ) + ( ) = ( + ) + ( ) = 5 + = 6 ai.org.pai.org.pai.org.pai.org.pai.org ).Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P BC = ( TrbTnpsc ) + ( ) = ( ) + ( 5) = 9 + 4 = CA = ( ) + ( ) = ( ) + (5 ) = 4 + 9 = AB = 6, BC =, CA = Since (i)bc = CA = and (ii)bc + CA = + = 6 = AB, So the given vertices form an isosceles right triangle. 9.Show that the equation z + z = 0 has five solutions. z + z = 0 z = z z = z z = z z z = 0 z = 0 z = 0 is one of the solution z ( z ) = 0 { z = 0 zz = 0 z = z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Put z = in z z + z = 0 z + ( ) = 0 z z4 + 4 = 0, which provides four solution. Hence z + z = 0 has five solutions. EXAMPLE. 6 Show that the equation z = z has four solutions. 0.Find the square root of (i)4 + i (ii) 6 + 8i (iii) 5 i..pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z + a a + ib = ± ( + i b a z ) b (i)4 + i a = 4, b =, z = 4 + = 5 = 5 4 + i = ± ( 5+4 + i 5 4) = ± ( + i ).Pai.Org.Pai.Org (ii) 6 + 8i a = 6, b = 8, z = 6 + 8 = 00 = 0.Pai.Org.Pai.Org 6 + 8i (iii) 5 i 4.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org = ± ( 0 6 + i 8 8 0+6 ) = ±( + i 8) = ±( + i ) V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 8.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org

a = 5, b =, z = 5 + = 69 = 5 i ai.org = ± ( 5 + i +5 ) = ±( 4 i 9) = ±( i) EXAMPLE. 7 Find the square root of 6 + 8i GEOMETRY AND LOCUS OF COMPLEX NUMBERS A circle is defined as the locus of a point which moves in a plane such that its distance from a fied point in that plane is alwas a constant. The fied point is the centre and the constant distant is the radius of the circle. Equation of comple form of a circle is z z 0 = r. z z 0 < r represents the points interior of the circle. z z 0 > r represents the points eterior of the circle. + = r represents a circle with centre at the origin and the radius r units. r = + If z = a+ib ac+bd then Re(Z) = ai.org ai.org ai.org c+id c +d If z = a+ib bc ad then Im(Z) = c+id c +d EXERCISE.6.If z = + i is a comple number such that z 4i =. Show that the locus of z is ai.org real ais. Given: z = + i ai.org z 4i z+4i.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = z 4i = z + 4i.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z+4i.pai.org.pai.org + i 4i = + i + 4i + i( 4) = + i( + 4) + ( 4) = + ( 4) Squaring on both sides, + ( 4) = + ( 4) + 8 + 6 = + + 8 + 6 8 = 0 = 0 The locus of z is real ais. ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P. If z = + i is TrbTnpsc a comple number such that Im ( z+ ) = 0, show that the locus.p of z is + + = 0. Given: z = + i z+ = (+i)+ = (+)+i iz+ i(+i)+ ( )+i.pai.org.pai.org.pai.org.pai.org Here a = +, b =, c =, d = Im ( z+ ) = 0 ( ) (+) iz+ + + = 0.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 9 iz+ ( ) + = 0 = 0.Pai.Org.Pai.Org Im(Z) = bc ad c +d.obtain the Cartesian form of the locus of z = + i in each of the following cases: (i)[re(iz)] = (ii)im[( i)z + ] = 0 (iii) z + i = z (iv)z = z.pai.org.pai.org.pai.org.pai.org Given: z = + i (i)iz = i( + i) = i [Re(iz)] = [Re( i )] =.Pai.Org.Pai.Org.Pai.Org.Pai.Org = (ii)( i)z + = ( i)( + i) + = + i i + + = ( + + ) + i( ) Im[( i)z + ] = 0.Pai.Org.Pai.Org.Pai.Org.Pai.Org Im[( + + ) + i( )] = 0 = 0 (or) = 0.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org (iii) z + i = z + i + i = + i + i( + ) = ( ) + i () + ( + ) = ( ) + () Squaring on both sides,.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org () + ( + ) = ( ) + () + + + = + + + = 0 + = 0.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org (iv)z = z z = z zz = ( + i)( i) = + = 4.Show that the following equations represent a circle, and find its centre and.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

radius: (i) z i = (ii) z + 4i = (iii) zpai 6 + i = 8 Equation of the circle is z z 0 = r (i) z i = z ( + i) = Centre = + i = (,) ; Radius = units (ii) z + 4i = z + i = z ( + i) = Centre = + i = (,) ; Radius = unit (iii) z 6 + i = 8 z + 4i = 8 z ( 4i) = 8 Centre = 4i = (, 4) ; Radius = 8 units ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org EXAMPLE. 9 Show that z 5 + i = 4 represent a circle, and find its centre and radius. 5. Obtain the Cartesian form of the locus of z = + i in each of the following cases: (i) z 4 = 6 (ii) z 4 z = 6 Given: z = + i (i) z 4 = 6 + i 4 = 6 ( 4) + i = 6 ( 4) + = 6 Squaring on both sides, ( 4) + = 6 8 + 6 + = 56 + 8 40 = 0 is the locus of z. (ii) z 4 z = 6 + i 4 + i = 6 ( 4) + i ( ) + i = 6 ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org ( ( 4) + ) ( ) + = 6 ( 4) + [( ) + ] = 6 8 + 6 + + = 6 6 = 0 6 + = 0 is the locus of z. EXAMPLE. Obtain the Cartesian form of the locus of z in each of the following cases: (i) z = z i (ii) z i = EXAMPLE. 0 Show that z + i < represents interior points of a circle. Find its centre and radius. ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p Consider z + TrbTnpsc i = z ( + i) =. Centre = + i = (,) ; Radius = units z + i < represents all points inside the circle. POLAR AND EULER FORM OF A COMPLEX NUMBER Polar form of z = + i is z = r(cos θ + i sin θ) (or) z = rcisθ Modulus r = +.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org α = tan ( ) θ = α ; if(+, +) θ lies in the Ist quadrant θ = π α ; if(, +) θ lies in the nd quadrant arg z = θ ; θ = π + α ; if(, ) θ lies in the rd quadrant { θ = α ; if(+, ) θ lies in the 4th quadrant In general arg z = Arg z + nπ, n z. Properties of arguments: arg(z z ) = arg(z ) + arg(z ).Pai.Org.Pai.Org.Pai.Org.Pai.Org arg ( z ) = arg(z z ) arg(z ) arg(z n ) = n argz Some of the principal argument and argument: z i i.pai.org.pai.org.pai.org.pai.org Arg z 0 π.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org argz nπ nπ + π nπ + π nπ π Euler s form of the comple number: z = re iθ ; e iθ = cos θ + i sin θ Properties of polar form: z = r(cos θ + i sin θ) z = (cos θ i sin θ) r If z = r (cos θ + i sin θ ), z = r (cos θ + i sin θ ) then z z = r r [cos(θ + θ ) + i sin(θ + θ )] If z = r (cos θ + i sin θ ), z = r (cos θ + i sin θ ) then z = r [cos(θ z r θ ) + i sin(θ θ )].Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 0 π.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org π.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

Some of the useful polar forms : = cis(0) ; = cis(π) ; i = cis ( π ) ; i = cis ( π ) EXAMPLE. Find the modulus and principal argument of the following comple numbers: (i) + i (ii) + i (iii) i (iv) i (i) + i ai.org Modulus r = + = + = 4 = ai.org α = tan = tan = π 6 Since the comple number + i lies in the first quadrant, principal argument θ = α θ = π 6 ai.org (ii) + i Modulus r = + = ( ) + = 4 = ai.org α = tan ( ) = tan = π 6 Since the comple number + i lies in the second quadrant, principal argument θ = π α θ = π π 6 = 5π 6 ai.org (iii) i Modulus r = + = ( ) + ( ) = 4 = ai.org α = tan ( ) = tan = π 6 Since the comple number i lies in the third quadrant, principal argument θ = π + α θ = π + π 6 = 5π 6 ai.org (iv) i.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Modulus r = + = + ( ) = 4 = ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org α = tan ( ) = tan = π 6 Since the comple number i lies in the fourth quadrant, principal argument θ = α θ = π 6 ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P EXAMPLE. 4 TrbTnpsc Find the principal argument Arg z, when z =.P argz = arg ( ) = arg( ) arg( + i ) () +i arg( ) = tan = tan 0 = 0.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page +i Since the comple number lies in the second quadrant, principal argument θ = π α θ = π 0 = π arg( + i ) = tan = tan = π Since the comple number + i lies in the first quadrant, principal argument θ = α θ = π () arg ( ) = π π = π +i EXERCISE.7.Write in polar form of the following comple numbers:.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (i) + i (ii) i (iii) i (iv).pai.org.pai.org.pai.org.pai.org (i) + i = rcis(θ) () i cos π +i sinπ r = + = () + ( ) = 4 + = 6 = 4.Pai.Org.Pai.Org.Pai.Org.Pai.Org α = tan = tan = π.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Principal argument lies in the first quadrant θ = α = π () + i = 4cis ( π ) = 4cis (kπ + π ), k z (ii) i = rcis(θ) ().Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org r = + = () + ( ) = 9 + = 4 =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org α = tan = tan = tan = π 6 Principal argument lies in the 4th quadrant θ = α = π 6 () i = cis ( π ) = cis (kπ π ), k z 6 6 (iii) i = rcis(θ) ().Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org r = + = ( ) + ( ) = 4 + 4 = 4 =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org

α = tan = tan = π 4 Principal argument lies in the rd quadrant θ = π + α = π + π = π 4 4 () i = cis ( π ) = cis (kπ π ), k z 4 4 ai.org (iv) i cos π +i sinπ i = + i = rcis(θ) () r = + = ( ) + () = ai.org α = tan = tan = π 4 Principal argument lies in the nd quadrant θ = π α θ = π π 4 = π 4 ai.org () i = cis ( π 4 ) i cos π +i sinπ ai.org = cis(π 4 ) = cis ( π π 5π ) = cis cis( π ) (5π) = cis (kπ + ), k z 4 EXAMPLE. Represent the comple number (i) i (ii) + i in polar form..find the rectangular form of the comple numbers: ai.org (i) (cos π 6 + i sin π 6 ) (cos π + i sin π ) (ii) cos π 6 i sinπ 6 (i) (cos π 6 + i sin π 6 ) (cos π + i sin π ) ai.org (ii) = cis ( π 6 + π ) = cis ( π ) = cis (π) 4 = cos π + i sin π 4 4 ai.org = + i cos π 6 i sinπ 6 (cos π +i sinπ ) ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (cos π +i sinπ ) = cis ( π 6 π ) = cis ( π 6 ) = cis ( π ) = [cos ( π ) + i sin ( π )] = (cos π i sin π ) ai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org =.P = i (0 i) TrbTnpsc EXAMPLE. 5 Find the product (cos π + i sin π ). 6 (cos 5π 6 rectangular form..pai.org.pai.org EXAMPLE. 6 Find the quotient (cos 9π 4 +i sin9π 4 ) 4(cos( π )+i sin( π + i sin 5π 6 ) in )) in rectangular form..if ( + i )( + i ).. ( n + i n ) = a + ib, show that (i) ( + )( +.Pai.Org.Pai.Org ).. ( n + n ) = a + b (ii) tan ( b r V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page n r= (i)( + i )( + i ).. ( n + i n ) = a + ib Taking modulus on both sides, ( + i )( + i ).. ( n + i n ) = a + ib + i + i.. n + i n = a + ib.pai.org.pai.org.pai.org.pai.org ar ) ( + ) ( + ).. ( n + n ) = a + b = tan ( b ) + kπ, kεz6 a Squaring on both sides, ( + )( + ).. ( n + n ) = a + b (i)( + i )( + i ).. ( n + i n ) = a + ib Taking argument on both sides, arg[( + i )( + i ).. ( n + i n )] = arg(a + ib).pai.org.pai.org tan ( ) + tan ( ) +. +tan ( n n ) = tan ( b a ) 4.If +z z n r=.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org tan ( b r ar ) = tan ( b ) + kπ, kεz6 a.pai.org.pai.org = cos θ + i sin θ, show that z = i tan θ. +z z = cos θ + i sin θ Add on both sides, +z + = ( + cos θ) + i sin θ.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z +z+ z z z.pai.org.pai.org b = cos θ + i sin θ cos θ = cos θ [cos θ + i sin θ] z.p = cos θ [cos θ + i sin θ] cos θ[cos θ+i sin θ] = z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

ai.org z = z = [ z =.P z = cos θ[cos θ+i sin θ] cos θ[cos θ+i sin θ] cos θ i sin θ cos θ(cos θ+sin θ) cos θ sin θ i ] cos θ cos θ.pai.org.pai.org cos θ i sin θ cos θ i sin θ z = + i tan θ z = i tan θ 5.If cosα + cosβ + cosγ = sinα + sinβ + sinγ = 0, then show that (i) cosα + cosβ + cosγ = cos(α + β + γ) (ii)sinα + sinβ + sinγ = sin (α + β + γ) Let a = cisα, b = cisβ, c = cisγ W.K.T, If a + b + c = 0 then a + b + c = abc a + b + c = (cosα + cosβ + cosγ) + i(sinα + sinβ + sinγ) = 0 a + b + c = abc ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org (cisα) + (cisβ) + (cisγ) = cisα. cisβ. cisγ cis(α) + cis(β) + cis(γ) = cis(α + β + γ) (cosα + cosβ + cosγ) + i(sinα + sinβ + sinγ) = (cos(α + β +.Pai.Org.Pai.Org γ)) + i(sin (α + β + γ)) Equating the real and imaginar parts on both sides, cosα + cosβ + cosγ = cos(α + β + γ) sinα + sinβ + sinγ = sin (α + β + γ) 6.If z = + i and arg ( z i ) = π, then show that z+ 4 + + + = 0. Given: Z = + i arg ( z i ) = π z+ 4 ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org arg(z i) arg(z + ) = π 4.Pai.Org.Pai.Org.P arg( + i i) arg( + i + ) = π 4 ai.org arg( + i( )) arg( + + i) = π 4 tan tan + = π 4 ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org TrbTnpsc tan + π + ( = + ) 4 (( ))( + ) ( + ) = tan π + 4 ( + ) + ( + ) + + ( + ) = + + + = + + + + = 0 + + + = 0 EXAMPLE. 7 If z = + i and arg ( z z+ + =. De MOIVRE S THEOREM AND ITS APPLICATIONS De Moivre s theorem: Given an comple number cos θ + i sin θ and an integer n, (cos θ + i sin θ) n = cos nθ + i sin nθ Some results: (cos θ i sin θ) n = cos nθ i sin nθ (cos θ + i sin θ) n = cos nθ i sin nθ (cos θ i sin θ) n = cos nθ + i sin nθ sin θ + i cos θ = i(cos θ i sin θ) Formula for finding n th root of a comple number: z n = r ncis ( θ+kπ ), k = 0,,., (n ).P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page n.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org ω = + ω + ω = 0 The sum of all the n th roots of unit is 0.(ie., + ω + ω +. +ω n = 0) The product of all the n th roots of unit is ( ) n. (ie., + ω + ω +. +ω n = ( ) n ) All the n roots of n th roots of unit are in geometrical progression. All the n roots of n th roots of unit lie on the circumference of a circle whose.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

centre is at the origin and radius equal to and these Pai roots divide the circle into n equal parts and form a polgon of n sides. ai.org EXERCISE.8.If ω is a cube root of unit, then show that a+bω+cω a+bω+cω + a+bω+cω b+cω+aω c+aω+bω ai.org b+cω+aω + a+bω+cω c+aω+bω =. = ( a+bω+cω ω ) + b+cω+aω ω (a+bω+cω ω c+aω+bω ω ) = ω(a+bω+cω ) + ω (a+bω+cω ) aω +cω +bω aω +bω 4 +cω ω = ; + ω + ω = 0 ai.org = ω(a+bω+cω ) + ω (a+bω+cω ) a+bω+cω a+bω+cω = ω + ω =.Show that ( + i 5 ) + ( i 5 ) = ai.org + i.p = rcis(θ) () r = + = ( ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org ).Pai.Org.Pai.Org α = tan = tan = π 6 + ( ) = 4 + 4 = =.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org Principal argument lies in the first quadrant θ = α = π 6 () + i = cis (π) 6 ( + i 5 ) = [cis ( π 6 )]5 = cis ( 5π ) = cos 6 (5π) + i sin 6 (5π) 6 Similarl, ( i 5 ) = cos ( 5π ) i sin 6 (5π) 6 ( + i 5 ) + ( i 5 ) = cos ( 5π ) + i sin 6 (5π) + cos 6 (5π) i sin 6 (5π) 6 ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = cos ( 5π ) = cos (5 80) = cos 50 = cos 0 = = 6 6 EXAMPLE. Simplif (i)( + i) 8 (ii)( + i) ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p TrbTnpsc.Find the value of ( +sin π 0 +i cos π 0 +sin π 0 i cos π 0 V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 4 0 ) Let z = sin π 0 + i cos π 0 z = sin π 0 i cos π 0 ( +sin π 0 +i cos π 0 0 +sin π 0 i cos π ) 0.Pai.Org.Pai.Org = ( +z + z 0 ) = ( +z +z z)0 = z 0 z 0 = (sin π 0 + i cos π 0 )0 = [i (cos π 0 i sin π 0 )]0.Pai.Org.Pai.Org.Pai.Org.Pai.Org = i 0 [cos (0 π 0 ) i sin (0 π 0 )] = [cos π i sin π] = ( 0) = EXAMPLE. 9 Simplif (sin π 6 + i cos π 6 )8 +cos θ+i sin θ EXAMPLE. 0 Simplif (.Pai.Org.Pai.Org +cos θ i sin θ )0 4.If cos α = + and cos β = +, show that (i) + = cos(α β) (ii) = i sin(α + β) (iii) m n n = i sin(mα nβ) (iv) m n + = cos(mα + nβ) m m n + = cos α = = cos α + i sin α + = cos β = cos β + i sin β (i) cos α+i sin α = = cos(α β) + i sin(α β) cos β+i sin β.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = ( ) = cos(α β) i sin(α β) = cos(α β) + (ii) = (cos α + i sin α)(cos β + i sin β) = cos(α + β) + i sin(α + β) = () = cos(α + β) i sin(α + β) = i sin(α + β).pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (iii) m = (cos α + i sin α) m = cos mα + i sin mα.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org

n = (cos β + i sin β) n = cos nβ + i sin nβ m cos mα+i sin mα = n cos nβ+i sin nβ n = ( m m m n ai.org = cos(mα nβ) + i sin(mα nβ) n) = cos(mα nβ) i sin(mα nβ) n = i sin(mα nβ) m (iv) m = (cos α + i sin α) m = cos mα + i sin mα n = (cos β + i sin β) n = cos nβ + i sin nβ m n = (cos mα + i sin mα)(cos nβ + i sin nβ) = cos(mα + nβ) + i sin(mα + nβ) = cos(mα + nβ) i sin(mα + nβ) n ai.org ai.org m m n + m n = cos(mα + nβ) EXAMPLE. 8 If z = cos θ + i sin θ, show that z n + = cos nθ and zn z n = sin nθ. zn 5.Solve the equation z + 7 = 0 ai.org z + 7 = 0 z = 7 z = ( 7) = (7 ) z = ( ) = [cis(π)] = [cis(kπ + π)], k = 0,, = cis(k + ) π, k = 0,, = cis ( π ), cis(π), cis (5π) ai.org ai.org 6. If ω is a cube root of unit, show that the roots of the equation (z ) + 8 = 0 are, ω, ω. (z ) + 8 = 0 (z ) = 8 (z ) = ( ) (z ) = ( ) ai.org ( z ) = ai.org z.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = () z = () z = [ (or) ω (or) ω ] ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P z = () TrbTnpsc z = z = { z = ω z = ω z = ω z = ω Thus the roots of the equation (z ) + 8 = 0 are, ω, ω. EXAMPLE. 4 Solve the equation z + 8i = 0, where z C..Pai.Org.Pai.Org Note: z + 8i = 0 z = (8i) z = (i) find polar form for i and use de Moivre theorem EXAMPLE. 5 Find all cube roots of + i. Note: ( + i) ; find polar form for + i and use de Moivre theorem 8 7.Find the value of (cos kπ kπ + i sin.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 5 k= 9 Let = () 9 = [cis(0)] 9 = [cis(kπ + 0)] 9, k = 0,,,,8 = cis ( kπ ), k = 0,,,,8 9 Thus the roots are cis(0), cis ( π ), cis 9 (4π), cis 9 (6π), cis 9 (8π ), cis (0π ), 9 9 cis ( π ), cis (4π), cis (6π ). 9 9 9 W.K.T, sum of all the roots Is equal to zero..pai.org.pai.org.pai.org.pai.org 9 ) cis(0) + cis ( π ) + cis 9 (4π) + cis 9 (6π) + cis 9 (8π ) + cis (0π ) + 9 9 cis ( π ) + cis (4π) + cis (6π 9 9 9 ) = 0 + cis ( π ) + cis 9 (4π) + cis 9 (6π) + cis 9 (8π ) + cis (0π ) + 9 9 cis ( π ) + cis (4π) + cis (6π 9 9 9 ) = 0 cis ( π ) + cis 9 (4π) + cis 9 (6π) + cis 9 (8π ) + cis (0π ) + 9 9 cis ( π ) + cis (4π) + cis (6π 9 9 9 ) = 8 cis ( kπ =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org k= 8 k=.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org 9 ) (cos kπ kπ + i sin 9 9 ) =.Pai.Org.Pai.Org.P 8. If ω is a cube root of unit, show that (i)( ω + ω ) 6 + ( + ω ω ) 6 = 8.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org

(ii)( + ω)( + ω )( + ω 4 )( + ω 8 ). ( + ω ) = Pai.P W.K.T, ω = ; + ω + ω = 0 (i)( ω + ω ) 6 + ( + ω ω ) 6 = ( ω ω) 6 + ( ω ω ) 6 = ( ω) 6 + ( ω ) 6 = 6 ω 6 + 6 ω = 64(ω ) + 64(ω ) 4 = 64 + 64 = 8 (ii)( + ω)( + ω )( + ω 4 )( + ω 8 ). ( + ω ) = ( + ω)( + ω )( + ω )( + ω ). ( + ω ) Clearl the above epression contains terms, = ( + ω)( + ω )( + ω 4 )( + ω 8 ).. terms = [( + ω)( + ω )][( + ω)( + ω )].6 terms = [( + ω)( + ω )] 6 = ( + ω + ω + ω ) 6 = (0 + ) 6 = 9.If z = i, find the rotation of z b θ radians in the counter clockwise direction about the origin when (i)θ = π (ii)θ = π (iii)θ = π z = i = rcis(θ) () r = + = () + ( ) = 4 + 4 = 4 = α = tan = tan = π 4 Principal argument lies in the 4th quadrant θ = α = π 4 ai.org ai.org ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org () z = i = cis ( π 4 ).Pai.Org.Pai.Org (i)when θ = π z = cis ( π 4 ) cis (π ) ai.org ai.org = cis ( π 4 + π ).Pai.Org.Pai.Org = cis ( π+4π ) = cis ( π ) (ii)when θ = π z = cis ( π 4 ) cis (π ) ai.org.pai.org.pai.org = cis ( π 4 + π ).Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P TrbTnpsc = cis ( π+8π ) = cis ( 5π ) (ii)when θ = π z = cis ( π ) cis 4 (π).pai.org.pai.org.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 6 = cis ( π 4 + π ) = cis ( π+6π ) 4 = cis ( 5π ) 4 EXAMPLE. 6 Suppose z, z and z are the vertices of an equilateral triangle inscribed in the circle z =. If z = + i, then find z and z. z = represents the circle with centre (0,0) and radius. Let A, B and C be the vertices of the given triangle. Since the vertices z, z and z form an equilateral triangle inscribed in the circle z =, the sides of this triangle.pai.org.pai.org AB, BC and CA subtend π radian at the origin. We obtain z and z b the rotation of z b π and 4π respectivel..pai.org.pai.org Given: z = + i z = z cis ( π ) = ( + i ) [cos (π ) + i sin (π )].Pai.Org.Pai.Org.Pai.Org.Pai.Org = ( + i )[cos(80 60) + i sin(80 60)] = ( + i )( cos 60 + i sin 60) = ( + i ) ( + i = ) z = z cis ( π ) = [cos (π ) + i sin (π )].Pai.Org.Pai.Org = [cos(80 60) + i sin(80 60)] = ( cos 60 + i sin 60) = ( + i ) = i 4 0.Prove that the values of are ± ( ± i).pai.org.pai.org 4 Let =.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org

= ( ) 4 4 = 4 + = 0 ( 4 + + ) () = 0 ( + ) ( ) = 0 ( + + )( + ) = 0 ( + + ) = 0 ; ( + ) = 0 ai.org ai.org = ± ( ) 4()() ai.org () = ± 4 = ± = ± i ai.org = ± i = ai.org.p.pai.org.pai.org.pai.org.pai.org = b ± b 4ac a ; ( )± ( ) 4()() () ; ± 4 ; ± ; ± i ; ± i.pai.org.pai.org.pai.org.pai.org ( ± i) ; ( ± i) = ± ( ± i) EXAMPLE. Find the cube roots of unit..pai.org.pai.org Let z = z = () = [cis(0)] ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z = [cis(kπ + 0)], k = 0,, z = cis ( kπ ), k = 0,, z = cis(0), cis ( π ), cis (4π).Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z = cis(0), cis (π π ), cis (π + π ) z = cos 0 + i sin 0, cos (π π ) + i sin (π π ), cos (π + π ) + i sin (π + π ) ai.org z =, cos π + i sin π, cos π i sin π z =, + i, +i + i z =, ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org, i.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P TrbTnpsc The cube roots of unit, ω, ω are, +i EXAMPLE. Find the fourth roots of unit. Let z 4 = z = () 4 = [cis(0)] 4.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT 94874 4870, 8489 56766 Page 7, i z = [cis(kπ + 0)] 4, k = 0,,, z = cis ( kπ ), k = 0,,, 4 z = cis(0), cis ( π ), cis 4 (4π), cis 4 (6π) 4 z = cis(0), cis ( π ), cis(π), cis (π ) z = cos 0 + i sin 0, cos ( π ) + i sin (π ), cos(π) + i sin(π), cos (π ) + i sin (π ) z =, i,, i The fourth roots of unit, ω, ω, ω are, i,, i..prove that the multiplicative inverse of a non- zero comple number z = + i.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org is z = ( +) + i ( + ) PROOF: Let z = u + iv be the inverse of z = + i W.K.T, zz = ( + i)(u + iv) = (u v) + i(v + u) = + i0 Equating the Real and Imaginar parts on both sides, u v = () ; v + u = 0 () = = + ; u = 0 = ; v= 0 = u = u = ; v = v = + +.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z = u + iv z = ( +) + i ( + ).For an two comple numbers z and z prove that z + = z + z PROOF: Let z = a + ib and z = c + id, a, b, c, d R z + z = (a + ib) + (c + id) = (a + c) + i(b + d) = (a + c) i(b + d) = (a ib) + (c id).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org