Możliwości wykorzystania metod elektromagnetycznych do badania obszarów zlikwidowanych kopalń

Podobne dokumenty
Detection inhomogeneities in. Electromagnetic Method. structure of flood. measurements. resistivity, GPR and Freqency. embankments by means of D.C.

Protokół z pomiarów pól elektromagnetycznych w środowisku. Nr: LWiMP/056/2017. zakresu częstotliwości: poniżej 300 MHz

PL B BUP 12/13. ANDRZEJ ŚWIERCZ, Warszawa, PL JAN HOLNICKI-SZULC, Warszawa, PL PRZEMYSŁAW KOŁAKOWSKI, Nieporęt, PL

Rozmieszczanie i głębokość punktów badawczych

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

Metody oceny stanu zagrożenia tąpaniami wyrobisk górniczych w kopalniach węgla kamiennego. Praca zbiorowa pod redakcją Józefa Kabiesza

Zagrożenia pogórnicze na terenach dawnych podziemnych kopalń węgla brunatnego w rejonie Piły-Młyna (woj. Kujawsko-Pomorskie)

Badanie rozkładu pola magnetycznego przewodników z prądem

Ćwiczenie nr 31: Modelowanie pola elektrycznego

( F ) I. Zagadnienia. II. Zadania

Przydatność metody georadarowej w rozwiązywaniu zagadnień geologiczno inżynierskich w górnictwie odkrywkowym

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Metoda pomiarowo-obliczeniowa skuteczności ochrony akustycznej obudów dźwiękoizolacyjnych źródeł w zakresie częstotliwości khz

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WYBÓR PUNKTÓW POMIAROWYCH

Uwagi na temat stosowania gazów obojętnych (azotu, dwutlenku węgla) do gaszenia pożaru w otamowanym polu rejony wydobywczego

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

BADANIE WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE

Funkcjonalność urządzeń pomiarowych w PyroSim. Jakich danych nam dostarczają?

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

KOOF Szczecin:

KSZTAŁTOWANIE KLIMATU AKUSTYCZNEGO PROJEKTOWANYCH STANOWISK PRACY Z WYKORZYSTANIEM NARZĘDZI WSPOMAGAJĄCYCH

( L ) I. Zagadnienia. II. Zadania

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

WPŁYW ZAKŁÓCEŃ PROCESU WZBOGACANIA WĘGLA W OSADZARCE NA ZMIANY GĘSTOŚCI ROZDZIAŁU BADANIA LABORATORYJNE

VLF (Very Low Frequency) 15 khz do 30 khz

WARSZTATY 2006 z cyklu: Zagrożenia naturalne w górnictwie

Ćwiczenie nr 43: HALOTRON

Próba określenia rozkładu współczynnika tłumienia na wybiegu ściany 306b/507 w KWK Bielszowice metodą pasywnej tłumieniowej tomografii sejsmicznej

Dr hab. inż. Piotr Bańka, prof. nzw. w Pol. Śl Gliwice, r. Wydział Górnictwa i Geologii Politechnika Śląska

ELEMENTY GEOFIZYKI. Geofizyka środowiskowa i poszukiwawcza W. D. ebski

Pomiar rezystancji metodą techniczną

AiSD zadanie trzecie

Rozpoznanie strefy osuwiskowej w oparciu o zmiany oporności na terenie miejscowości Ujsoły

Temat ćwiczenia. Wyznaczanie mocy akustycznej

Wzmacniacze operacyjne

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

DETEKCJA OBIEKTU FERROMAGNETYCZNEGO Z ZASTOSOWANIEM MAGNETOMETRÓW SKALARNYCH

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

Tolerancje kształtu i położenia

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Źródła zasilania i parametry przebiegu zmiennego

WYKORZYSTANIE TOMOGRAFII ELEKTROOPOROWEJ DO LOKALIZACJI PŁYTKICH PUSTEK W GÓROTWORZE

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

Zastosowanie metody MASW do wyznaczania profilu prędkościowego warstw przypowierzchniowych

ANALIZA ZALEŻNOŚCI MIĘDZY GEOMECHANICZNYMI PARAMETRAMI SKAŁ ZŁOŻOWYCH I OTACZAJĄCYCH NA PRZYKŁADZIE WYBRANYCH REJONÓW GÓRNICZYCH KOPALŃ LGOM. 1.

Badania geofizyczne dróg i autostrad

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

Ćwiczenie Nr 2. Pomiar przewodzonych zakłóceń radioelektrycznych za pomocą sieci sztucznej

Wykład 5. Metoda eliminacji Gaussa

NARZĘDZIA BADAWCZE W QGIS LOSOWANIE PUNKTÓW NA WARSTWIE LINIOWEJ

dr hab. inż. LESŁAW ZABUSKI ***

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

RAPORT z badań tłumienia pola elektrycznego 50 Hz powłok ekranujących NoEM Electro Protektor (zastępuje raport z dnia

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

Algebra z geometrią analityczną zadania z odpowiedziami

S P R A W O Z D A N I E

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

STANDARYZACJA METODYK POMIARÓW PÓL ELEKTROMAGNETYCZNYCH ZWIĄZANYCH Z EKSPOZYCJĄ CZŁOWIEKA I JEJ WPŁYW NA JAKOŚCI BADAŃ

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ

Badanie rozkładu pola elektrycznego

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH

Laboratorium metrologii

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

Programowanie celowe #1

Zwój nad przewodzącą płytą

NUMERYCZNA ANALIZA MOŻLIWOŚCI UTRATY STATECZNOŚCI WYROBISK ZLOKALIZOWANYCH NA NIEWIELKIEJ GŁĘBOKOŚCI

Katedra Elektrotechniki Teoretycznej i Informatyki

3.5 Wyznaczanie stosunku e/m(e22)

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

E107. Bezpromieniste sprzężenie obwodów RLC

KADD Minimalizacja funkcji

ZAGROŻENIA NATURALNE W OTWOROWYCH ZAKŁADACH GÓRNICZYCH

ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI POJAZDÓW FERROMAGNETYCZNYCH

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

SPRAWOZDANIE Z REALIZACJI XXXIX BADAŃ BIEGŁOŚCI I BADAŃ PORÓWNAWCZYCH (PT/ILC) HAŁASU W ŚRODOWISKU Warszawa 9-10 października 2014r.

ZASTOSOWANIE METOD GEOELEKTRYCZNYCH W ROZPOZNAWANIU BUDOWY PODŁOŻA CZWARTORZĘDOWEGO.

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

BADANIA STANU TECHNICZNEGO WAŁÓW PRZECIWPOWODZIOWYCH I ZAPÓR

BADANIA WYBRANYCH CZUJNIKÓW TEMPERATURY WSPÓŁPRACUJĄCYCH Z KARTAMI POMIAROWYMI W LabVIEW

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Maciej Piotr Jankowski

Badanie rozkładu pola elektrycznego

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

5. Rozwiązywanie układów równań liniowych

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

BADANIA STANU TECHNICZNEGO WAŁÓW PRZECIWPOWODZIOWYCH BADANIA GEOFIZYCZNE

Transkrypt:

Mat. Symp. str. 377 383 Andrzej PRAŁAT, Rafał ZDUNEK Politechnika Wrocławska, Wrocław Możliwości wykorzystania metod elektromagnetycznych do badania obszarów zlikwidowanych kopalń Streszczenie Dla zbadania obszarów, zwłaszcza tych, w których ze względu na ich nowe przeznaczenie nie powinny wystąpić deformacje nieciągłe powierzchni, autorzy proponują, niezależnie od dotychczas stosowanych działań, zastosowanie dwóch metod elektromagnetycznych. Jedna z nich polega na prześwietlaniu górotworu zawartego między dwoma odwiertami w celu zbadania, czy w przestrzeni tej nie występują pustki lub rozluźnienia skalne. Druga umożliwia zbadanie jednorodności skał wzdłuż otworu mierzy oporność elektryczną skał w sposób bezkontaktowy. W badaniach tych można wykorzystać otwory wiercone dla podsadzania. 1. Wstęp Restrukturyzacja górnictwa wiąże się z likwidacją niektórych nierentownych kopalń. Często są to kopalnie, w których blisko 200 lat temu rozpoczęto eksploatację płytko zalegających warstw, budując wyrobiska mające połączenia z powierzchnią. W miarę upływu czasu wydobywano węgiel z coraz głębiej położonych pokładów. Obecnie w większości przypadków, brak jest dokumentacji o lokalizacji płytkich wyrobisk oraz o sposobie ich likwidacji. W rezultacie występuje potencjalne zagrożenie powierzchni, w postaci wystąpienia deformacji nieciągłych na powierzchni w postaci szczelin, progów czy zapadlisk. Chociaż deformacje te występują głównie po kilkudziesięciu latach od płytkiej eksploatacji, jednakże okazuje się, że głębsza eksploatacja prowadzona w pewnych warunkach (np. z bardzo dużą prędkością), również może powodować wystąpienia deformacji nieciągłych na powierzchni. Obecnie postęp nauki umożliwia np. analityczne wyznaczenie wielkości strefy zawału i wysokości strefy spękań, czy wyznaczenie prawdopodobieństwa wystąpienia deformacji nieciągłych (Chudek i Olaszewski 1976; Duży i in. 2000), jednakże danymi wejściowymi do tych rozważań są głównie wymiary pustki i parametry wytrzymałościowe skał w jej otoczeniu. Tymczasem najczęściej brak jest danych o możliwej lokalizacji pustki, jej wymiarach, wreszcie o jej stanie (bowiem słabe skały mogły ją już całkowicie zacisnąć). Jeśli pokopalniany obszar ma być obecnie wykorzystywany w inny sposób a zwłaszcza gdy ma być przeznaczony pod budownictwo wielokondygnacyjne, czy pod szlaki komunikacyjne jak autostrady, to jest oczywiste, że prawdopodobieństwo wystąpienia na tym obszarze deformacji nieciągłych powierzchni powinno być zbliżone do zera. W tym celu prowadzi się szczegółowe rozpoznanie takiego obszaru z wykorzystaniem różnych powierzchniowych metod geofizycznych, wykonuje się otwory kontrolne, wreszcie dla podsadzania pustek i szczelin zatłacza się do otworów zawiesiny pyłowo-cementowe. 377

A. PRAŁAT, R. ZDUNEK Możliwości wykorzystania metod elektromagnetycznych do badania... Jednakże powierzchniowe badania geofizyczne mogą nie wykryć, znajdujących się na większej głębokości, lub/i częściowo zaciśniętych pustek. Podobnie wykonując odwiert też można nie trafić nim w taką pustkę. Dla zbadania obszarów zwłaszcza tych, w których ze względu na ich przeznaczenie deformacje nieciągłe powierzchni nie mogą wystąpić, autorzy proponują, niezależnie od dotychczas stosowanych badań, zastosowanie dwóch metod elektromagnetycznych. Jedna z nich polega na prześwietlaniu górotworu zawartego między dwoma odwiertami w celu zbadania, czy w przestrzeni tej nie występują pustki lub rozluźnienia skalne. Druga umożliwia zbadanie jednorodności skał wzdłuż otworu mierzy oporność elektryczną skał w sposób bezkontaktowy. Podkreślić należy, że w przypadku zastosowania tych metod nie ma potrzeby odwiercania dodatkowych otworów bowiem mogą być wykorzystane otwory, które dotychczas są wiercone dla podsadzania. Dla obu metod systemy pomiarowe oraz zasady interpretacji zostały opracowane w Instytucie Telekomunikacji i Akustyki Politechniki Wrocławskiej, natomiast pomiary wykonano w kilku miejscowościach Górnego Śląska: Świętochłowicach, Siemianowicach, Sosnowcu, Łędzinach, Szopienicach, Mysłowicach i na Zamku w Będziniu. Dla interpretacji rezultatów pomiarów wykorzystuje się metodę tomografii. Do jej stosowania konieczne jest wykonanie dużej liczby pomiarów. Metodę opisano w literaturze (Somerstein i in. 1984; Takasugi i in. 1996). Poniżej zostaną bliżej przedstawione, wymienione wcześniej metody elektromagnetyczne. 2. Profilowanie indukcyjne w otworach wiertniczych Profilowanie oporności elektrycznej jest podstawową metodą geofizyki wiertniczej. Sprowadza się ono do pomiaru oporności pozornej skał wzdłuż odwiertu i wnioskowania na tej podstawie o zmianach rodzaju lub stanu skał, otaczających otwór. To profilowanie w konwencjonalnym rozwiązaniu jest realizowane z wykorzystaniem elektrod, zapewniających kontakt ze skałą. Jednakże w otworach suchych (jakie w większości występują na obszarach górniczych) i przechodzących przez skały spękane, zapewnienie nieprzerwanego kontaktu elektrod ze skałą jest trudne do zrealizowania. Dlatego też profilowanie oporności elektrycznej proponuje się prowadzić sondą działającą na zasadzie indukcyjnej, w której skały znajdują się w polu magnetycznym, wytwarzanym przez sondę. W skałach o dużej oporności elektrycznej pomiar metodą indukcyjną musi się odbywać przy odpowiednio wielkiej częstotliwości, stąd nazwa zaproponowanej metody: profilowanie indukcyjne wielkiej częstotliwości (Prałat 1993). Na rysunku 2.1. przedstawiono przykładowe rezultaty profilowania indukcyjnego, wykonanego na obszarze występowania szkód górniczych. Na osi odciętych odłożono pozorną oporność (w jednostkach względnych) a na osi rzędnych głębokość, na której został wykonany pomiar. Z przedstawionych rezultatów pomiarów wynika, że wzdłuż badanego otworu skały nie są jednorodne a maksimum oporności elektrycznej występuje nieco poniżej 6 m. Długość elektryczna stosowanej sondy indukcyjnej wynosi 1 m, jej średnica 36 mm, natomiast pomiary były prowadzone po każdym przemieszczeniu sondy o 0,1 m. 3. Badanie obszaru zawartego pomiędzy dwoma otworami Obszar zawarty pomiędzy dwoma odwiertami może być zbadany z wykorzystaniem metody elektrooporowej, sejsmicznej lub elektromagnetycznej. Jeśli dwie pierwsze z wymienionych metod są ogólnie znane, to ostatnia metoda wymaga szczególnego przedstawienia, 378

bowiem nawet w podręcznikach geofizyki jest najczęściej przedstawiona bardzo skrótowo. Wynika to stąd, że sposób interpretacji w metodzie elektromagnetycznej jest bardzo skomplikowany, a system pomiarowy nie jest oferowany przez specjalistyczne firmy. 3.1. Zasada działania metody Rys. 2.1. Przykładowe rezultaty profilowania indukcyjnego w otworze Fig. 2.1. An exemple of induction logging results W jednym z otworów umieszczone jest źródło, wzbudzające w otaczających skałach ciągłą falę elektromagnetyczną wielkiej częstotliwości. W drugim otworze jest mierzone natężenie pola elektromagnetycznego, wywołanego przez tą falę. Fala elektromagnetyczna o określonej częstotliwości, rozchodząca się w ośrodku półprzewodzącym (jakim są skały), jest tłumiona a współczynnik tego tłumienia rośnie ze zmniejszeniem się wartości oporności elektrycznej skał. Jeśli na linii łączącej źródło z punktem pomiaru znajdzie się pustka, która dla fal elektromagnetycznych stanowi obszar o mniejszym tłumieniu, to natężenie pola elektromagnetycznego będzie w tym punkcie większe od spodziewanego (tj. gdyby nie było pustki). W rzeczywistych warunkach pustka nie będzie miała regularnych kształtów i będzie często jeszcze otoczona strefą skał spękanych, w rezultacie jej wpływ nie spowoduje wyraźnego kontrastu w rozkładzie natężenia pola elektromagnetycznego. W rezultacie wykrycie takiej pustki nie jest tak ewidentne i wymaga skomplikowanej interpretacji. 3.2. Rezultaty pomiarów Dla przeprowadzenia interpretacji konieczna jest duża liczba wyników pomiarów natężenia pola elektromagnetycznego. Dlatego też przy ustalonych położeniach źródła w jednym z otworów, pomiary wykonuje się sposób ciągły wzdłuż drugiego z otworów. Już z tych wyników pomiarów natężenia pola elektromagnetycznego można wstępnie ocenić stopień niejednorodności badanego górotworu. Dla ośrodka jednorodnego maksymalne natężenie pola elektromagnetycznego wystąpi bowiem na tej samej głębokości, na której umieszczono źródło. Wtedy odległość źródło punkt pomiaru jest najmniejsza. Dla innych głębokości następuje spadek natężenia pola spowodowany zwiększeniem odległości od źródła. Na rysunku 3.1. przedstawiono rezultaty pomiarów, wykonanych w Siemianowicach na obszarze, na którym występują szkody górnicze. Na głębokości 53 m (zaznaczono linią przerywaną), tj. na głębokości, na której umieszczono źródło pola, zmierzone natężenie pola elektromagnetycznego nie jest największe. Największą wartość tego pola zmierzono w innym miejscu, bardziej oddalonym od źródła, co oznacza, że na tym kierunku tłumienie jest mniejsze. Taki rezultat świadczy jednoznacznie, że na głębokości około 50 m występuje pustka. Dokła- 379

A. PRAŁAT, R. ZDUNEK Możliwości wykorzystania metod elektromagnetycznych do badania... dniejsza jej lokalizacja może być ustalona na podstawie szczegółowej interpretacji. W większości przypadków ocena niejednorodności badanego obszaru wymaga jednak bardziej skomplikowanej interpretacji. Rys. 3.1. Rozkład natężenia pola elektromagnetycznego wzdłuż otworu, zmierzony w obszarze, w którym występują pustki Fig. 3.1. Distribution of electromagnetic field intensity in the bore-hole, measured in the region with voids 3.3. Zasada interpretacji wyników pomiarów Dla interpretacji rezultatów pomiarów została wykorzystana metoda tomografii. Metoda ta rozwinęła się głównie dla potrzeb medycznych. Jednakże istnieje zasadnicza różnica pomiędzy możliwościami wykonania pomiarów w medycynie (gdzie mierzony obiekt morze być oświetlony przez źródło w zakresie kąta pełnego) a przedstawionymi powyżej pomiarami, w których źródło może być umieszczone jedynie z dwóch stron badanego obszaru. Ta różnica powoduje, że metody i algorytmy będące szczególnie efektywnymi dla zastosowań medycznych są często zupełnie nieprzydatne dla rekonstrukcji obrazu dla przedstawionej powyżej geometrii. Sposób interpretacji został szczegółowo przedstawiony we wcześniejszej pracy autorów (Prałat, Zdunek 1999), natomiast poniżej podane będą w skrócie jedynie ogólne zasady. Wynikiem interpretacji rezultatów pomiarów jest obraz będący rekonstrukcją rzeczywistego obrazu rozkładu współczynnika tłumienia fal elektromagnetycznych w obszarze w postaci prostokąta, którego dwa boki stanowią odwierty a pozostałe, powierzchnia i linia łącząca głębokości do których wykonano pomiary. Ten prostokątny obszar jest podzielony na N x M podobszarów, przy czym każdy z tych podobszarów stanowi już ośrodek jednorodny, o określonym współczynniku tłumienia. Dla każdej linii (promienia) łączącej źródło z punktem pomiaru całkowite tłumienie może być opisane zależnością: x j a j x 1 a j,1 x 2 a j,2 xi a j,i x I a j,i (3.1) gdzie: x i tłumienie, i podobszaru [db/m], a j,i długość j tego promienia w i tym podobszarze [m]. Zależność (3.1) może być zapisana w postaci: I a x y j i j i i 1, (3.2) 380

gdzie: y j jest równe różnicy natężeń pola elektromagnetycznego przy źródle i w punkcie pomiaru [db]. Dotychczas rozważany był umowny promień to jest, przy ustalonym źródle, jeden pomiar natężenia pola elektromagnetycznego. Jeśli każdy promień opisać zależnością (3.2) to powstanie układ równań liniowych, który w notacji macierzowej ma postać: A X Y (3.3) gdzie: Y jest wektorem projekcji (pomiarów), X jest wektorem obrazu, A jest macierzą dróg, zwaną również macierzą współczynników. Na podstawie znanej macierzy A i znanego wektora Y można wyznaczyć wektor X a więc znaleźć wartości tłumienia poszczególnych podobszarów x i, co z kolei umożliwia wykonanie rekonstrukcji obrazu rozkładu współczynnika tłumienia badanego obszaru. Układ równań (3.3) ma jednak wiele niekorzystnych właściwości: jest bardzo źle uwarunkowany, nie ma jednoznacznego rozwiązania, a macierz współczynników A jest bardzo rzadka i o bardzo dużych wymiarach. Z tego powodu wiele prostych metod rozwiązywania układów równań liniowych, jak metoda eliminacji Gaussa lub metoda Cramera, nie może być tutaj zastosowanych. Autorzy w pierwszym etapie prac zbadali przydatność do rekonstrukcji obrazu kilku wybranych metod rekonstrukcji obrazów (Prałat, Zdunek 1999): ART (Algebraic Reconstruction Technique); MART (Multiplicative Algebraic Reconstruction Technique); SART (Simultaneous Algebraic Reconstruction Technique); SIRT (Simultaneous Iterative Reconstruction Technique); EM (Expectation Maximization); SVD (Singular Values Decomposition). Efektywność rekonstrukcji obrazu powyższymi algorytmami została oceniana na podstawie symulacji. Dla założonej geometrii obszaru o zadanym a priori rozkładzie współczynnika tłumienia wygenerowano wektor projekcji Y oraz wyznaczono macierz A. Następnie dla zadanej macierzy A i wektora Y zrekonstruowano obraz X, który porównywano z rozkładem oryginalnym, czyli zadanym a priori. Na podstawie takiej symulacji przeprowadzono wstępną selekcję powyżej wymienionych metod, oceniając ich dokładność oraz szybkość rekonstrukcji. Dla algorytmów iteracyjnych dokładność rekonstrukcji obrazu z danych wolnych od zakłóceń, np. szumów, jest zależna i od danego algorytmu, i od liczby kroków iteracyjnych. W przypadku danych pomiarowych zawierających zakłócenia dokładność rekonstrukcji jest zależna od wielu czynników. Zakłócenia danych pomiarowych powodują, że układ równań (3.3) jest sprzeczny, a zatem nie można jednoznacznie określić rozwiązania dokładnego, do którego powinna być zbieżna każda z metod rekonstrukcji. Aby właściwie określić optymalne warunki pracy dla poszczególnych algorytmów zbadano skuteczność rekonstrukcji z danych zaszumionych (symulując w ten sposób błędy pomiaru i zakłócenia). Do wygenerowanego wektora projekcji Y dodano odpowiednio przeskalowany wektor zakłócający, zawierający liczby losowe o rozkładzie normalnym, multiplikatywnie zmieniające się z wartością danych Y. Stwierdzono, że do powyższego celu najodpowiedniejsze są algorytmy SIRT, SART i EM. Stosując te algorytmy można uzyskać z danych zaszumionych obraz zrekonstruowany o możli- 381

A. PRAŁAT, R. ZDUNEK Możliwości wykorzystania metod elektromagnetycznych do badania... wie najlepszej jakości, a ponadto czas rekonstrukcji powyższymi algorytmami jest znacznie krótszy niż w przypadku rekonstrukcji algorytmami algebraicznymi, tj. ART lub MART. Na podstawie wyników symulacji możliwe było dobranie odpowiedniej liczby kroków iteracyjnych dla poszczególnych algorytmów. W dalszych pracach (Zdunek 2001) badania optymalizacji zostały rozszerzone na około 100 metod, algorytmów lub ich odmian. 3.4. Rezultaty rekonstrukcji Prezentowaną metodą przeprowadzono badania w kilku, wymienionych we wstępie, miejscowościach Górnego Śląska. Do rekonstrukcji obrazu rozkładu współczynnika tłumienia zastosowano wybrane powyżej algorytmy. Na rysunku 3.2. przedstawiono przykładowy rozkład współczynnika tłumienia pomiędzy dwoma otworami na terenie Świętochłowic. Badania wykonano przy częstotliwości 4 MHz, a przy interpretacji zastosowano algorytm SIRT. Badany obszar wykazywał dużą niejednorodność: wartość współczynnika tłumienia zmieniała się od 0,1 do 0,7 N/m. Z rekonstrukcji wynika, że na większych głębokościach skały wykazywały mniejsze tłumienie. Jeśli wziąć pod uwagę, że pomiary wykonano na obszarze szkód górniczych, to te zmniejszone tłumienie było spowodowane spękaniem i tworzeniem się pustek, których obecność stwierdzono też podczas wiercenia otworów. Rys. 3.2. Rezultaty rekonstrukcji obrazu rozkładu współczynnika tłumienia fal elektromagnetycznych uzyskanej na terenie Świętochłowic Fig. 3.2. Image reconstruction of the distribution of the attenuation coefficient of electromagnetic waves obtained in Świetochłowice region 4. Podsumowanie Przedstawiono dwie metody elektromagnetyczne, które mogą stanowić uzupełnienie dotychczas stosowanych badań prowadzonych dla ochrony terenów górniczych, zwłaszcza tych, w których deformacje nieciągłe powierzchni nie mogą występować. 382

W obu metodach do badań wykorzystuje się otwory, które muszą być odwiercane dla podsadzania. Profilowanie indukcyjne otworów jest badaniem poprzedzającym zasadnicze badanie obszaru, jednak dostarcza informacji o zmianie oporności skał wzdłuż otworów. Prześwietlanie obszaru między otworami falami elektromagnetycznymi i zastosowanie do interpretacji wyników pomiarów metody tomografii (w literaturze zagranicznej przyjęto nazwę dla tej metody: geotomografia elektromagnetyczna) stwarza nową jakość w badaniach obszarów górniczych. Opracowanie systemu pomiarowego, jak i zasad interpretacji umożliwia wykorzystanie tej metody. Literatura [1] Prałat A. 1993: Zastosowanie pól elektromagnetycznych wielkiej częstotliwości do badania niejednorodności ośrodka skalnego. Prace Naukowe Instytutu Telekomunikacji i Akustyki PWr, s. Monografie Nr 38. [2] Prałat A., Zdunek R. 1999: The use electromagnetic geotomography for the investigation of mining damage areas. Publs. Inst. Geophysis. Pol. Acad. Sc. M-22 (31), 301 311. [3] Somerstein i inni 1984: Radio-frequency geotomography for remotely probing the interiors of operating mini- and commercial-sized oil-shale retorts. Geophysics Vol. 49, No. 8, 1288 1300. [4] Takasugi i inni 1996: Conceptual Design of an electromagnetic tomography system. Journal of Applied Geophysics Vol. 35, 199 207. [5] Zdunek R. 2001: Optymalizacja metod rekonstrukcji obrazu rozkładu współczynnika tłumienia fal elektromagnetycznych w ziemi, rozprawa doktorska. Prace Naukowe Instytutu Telekomunikacji i Akustyki PWr, Nr 21. Possibility of using electromagnetic methods for investigating area of liquidate mines To investigate areas, in which discontinuous deformations of surface should not occur because of their new destination, an application of two electromagnetic methods is proposed. One of them consists in electromagnetic probing of rock mass between two bore-holes in order to detect voids or cracked rocks. The second method makes it possible to investigate the rock homogeneity along the borehole by means of measuring electric resistance of rocks in a non-contact way. In the investigations bore-holes drilled for back-filling can be used. Przekazano: 20 marca 2002 383