ADAPTACYJNE STEROWANIE SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH

Podobne dokumenty
Adaptacyjne sterowanie neuronowym regulatorem prędkości dla napędu bezpośredniego z silnikiem PMSM

ROZMYTY REGULATOR PRĘDKOŚCI TYPU TSK UKŁADU NAPĘDOWEGO Z SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH

Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych

Serwomechanizmy sterowanie

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ

ROZMYTY REGULATOR PRĘDKOŚCI OBROTOWEJ ODPORNY NA ZMIANY BEZWŁADNOŚCI

ADAPTACYJNE WEKTOROWE STEROWANIE UKŁADEM NAPĘDOWYM Z POŁĄCZENIEM SPRĘŻYSTYM

KONCEPCJA NEURONOWEGO DETEKTORA USZKODZEŃ CZUJNIKA PRĘDKOŚCI DLA UKŁADÓW NAPĘDOWYCH Z SILNIKIEM INDUKCYJNYM STEROWANYCH METODĄ POLOWO ZORIENTOWANĄ

WPŁYW INFORMACJI O ZMIENNYCH STANU OBIEKTU NA JAKOŚĆ STEROWANIA PRZEZ NEUROSTEROWNIK

ZASTOSOWANIE SIECI NEURONOWYCH W BEZCZUJNIKOWYM UKŁADZIE NAPĘDOWYM Z POŁĄCZENIEM SPRĘŻYSTYM

ANALIZA WPŁYWU KONKURENCYJNYCH WARSTW PETRIEGO NA DZIAŁANIE REGULATORA NEURONOWO-ROZMYTEGO

WPŁYW TĘTNIEŃ MOMENTU WYTWARZANEGO PRZEZ SILNIK SYNCHRONICZNY O MAGNESACH TRWAŁYCH NA DOKŁADNOŚĆ PRACY NAPĘDU BEZPOŚREDNIEGO

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2

ANALIZA WPŁYWU METODY ADAPTACJI REGULTAORA PRĘDKOŚCI NA WŁAŚCIWOŚCI DYNAMICZNE NAPĘDU INDUKCYJNEGO

ZASTOSOWANIE SIECI NEURONOWYCH DO ESTYMACJI PRĘDKOŚCI NAPĘDU ELEKTRYCZNEGO Z SILNIKIEM SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI

Algorytmy sztucznej inteligencji

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

ANALIZA PORÓWNAWCZA WYBRANYCH NEUROREGULATORÓW DLA NAPĘDU Z POŁĄCZENIEM SPRĘŻYSTYM WYNIKI BADAŃ

PARAMETRYZACJA NEURONOWO-ROZMYTYCH REGULATORÓW TYPU TSK PRACUJĄCYCH W ADAPTACYJNEJ STRUKTURZE STEROWANIA PRĘDKOŚCIĄ UKŁADU NAPĘDOWEGO

ANALIZA ADAPTACYJNEGO NEURONOWO ROZMYTEGO REGULATORA Z WYKORZYSTANIEM KONKURENCYJNYCH WARSTW TYPU PETRIEGO W STEROWANIU SILNIKIEM PR DU STA EGO

WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ

DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

NAPĘD BEZCZUJNIKOWY Z SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH

ROZMYTE STEROWANIE ŚLIZGOWE UKŁADU NAPĘDOWEGO Z SILNIKIEM PRĄDU STAŁEGO

ANALIZA PORÓWNAWCZA WYBRANYCH NEUROREGULATORÓW DLA NAPĘDU Z POŁĄCZENIEM SPRĘŻYSTYM OPIS ZASTOSOWANYCH MODELI

ANALIZA WYBRANYCH DETEKTORÓW USZKODZEŃ CZUJNIKA PRĘDKOŚCI KĄTOWEJ W NAPĘDACH Z SILNIKAMI INDUKCYJNYMI

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

ANALIZA WYKORZYSTANIA REGULATORA NEURONOWO-ROZMYTEGO Z WARSTWĄ TRANZYCJI W STEROWANIU SILNIKIEM PRĄDU STAŁEGO W ZAKRESIE PRĘDKOŚCI ULTRA NISKICH

ANALIZA WPŁYWU USZKODZEŃ CZUJNIKÓW PRĄDU STOJANA NA PRACĘ WEKTOROWEGO UKŁADU NAPĘDOWEGO KONCEPCJA UKŁADU ODPORNEGO

ADAPTACYJNE STEROWANIE ROZMYTE ZE ZBIORAMI TYPU II ZŁOŻONEGO UKŁADU NAPĘDOWEGO PRACUJĄCEGO W ZAKRESIE PRĘDKOŚCI NISKIEJ

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

1. Regulatory ciągłe liniowe.

ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH DO WYZNACZANIA PARAMETRÓW ELEKTROMAGNETYCZNYCH SILNIKA PMSM

BADANIA SYMULACYJNE SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH PRZEZNACZONYCH DO NAPĘDU WYSOKOOBROTOWEGO

MODELOWANIE MASZYNY SRM JAKO UKŁADU O ZMIENNYCH INDUKCYJNOŚCIACH PRZY UŻYCIU PROGRAMU PSpice

MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym


Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

Zastosowanie sztucznej sieci neuronowej do regulacji prędkości kątowej silnika indukcyjnego w układzie sterowania typu IFOC

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

Przegląd koncepcji maszyn wzbudzanych hybrydowo do zastosowania w napędzie samochodów

STEROWANIE PRACĄ SILNIKA INDUKCYJNEGO W ASPEKCIE BEZCZUJNIKOWEJ REGULACJI PRĘDKOŚCI KĄTOWEJ ZA POMOCĄ SZTUCZNYCH SIECI NEURONOWYCH

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

REGULATOR NEURONOWO-ROZMYTY Z WARSTWĄ TRANZYCJI W STEROWANIU SILNIKIEM PRĄDU STAŁEGO W ZAKRESIE PRĘDKOŚCI ULTRA NISKICH WERYFIKACJA EKSPERYMENTALNA

ANALIZA POLOWA I OBWODOWA SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI STEROWANEGO REGULATOREM HISTEREZOWYM

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter)

Problemy optymalizacji układów napędowych w automatyce i robotyce

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e

ANALIZA PRACY SILNIKA ASYNCHRONICZNEGO W ASPEKCIE STEROWANIA WEKTOROWEGO

Napęd pojęcia podstawowe

WPŁYW OSADZENIA MAGNESU NA PARAMETRY SILNIKA MAGNETOELEKTRYCZNEGO O ROZRUCHU BEZPOŚREDNIM

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Rys.1. Zasada eliminacji drgań. Odpowiedź impulsowa obiektu na obiektu impuls A1 (niebieska), A2 (czerwona) i ich sumę (czarna ze znacznikiem).

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

IDENTYFIKACJA USZKODZEŃ W NAPĘDZIE Z PMSM ZA POMOCĄ SZTUCZNYCH SIECI NEURONOWYCH

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

Sreszczenie. Słowa kluczowe: sterowanie, poziom cieczy, regulator rozmyty

Kryteria optymalizacji w systemach sterowania rozmytego piecami odlewniczymi

Od prostego pozycjonowania po synchronizację. Rozwiązania Sterowania Ruchem. Napędy Elektryczne i Sterowania

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

STEROWANIE MAŁEJ ELEKTROWNI WIATROWEJ NA MAKSIMUM MOCY CZYNNEJ

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

NAPĘD PRĄDU STAŁEGO ZESTAW MATERIAŁÓW POMOCNICZYCH

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE

Prototypowanie systemów sterowania

Sterowanie Napędów Maszyn i Robotów

Badanie wpływu zakłóceń sygnałów wejściowych regulatorów typu PI w układzie sterowania polowo-zorientowanego z silnikiem indukcyjnym

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

ZASTOSOWANIE MODELI ADALINE W STRUKTURZE STEROWANIA PRĘDKOŚCIĄ SILNIKA INDUKCYJNEGO

UKŁAD HAMOWANIA ELEKTRYCZNEGO DO BADANIA NAPĘDÓW

BEZCZUJNIKOWY I ENERGOOSZCZĘDNY NAPĘD WENTYLATORA Z SILNIKIEM PMSM

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ

Struktury sterowania dwusilnikowych pojazdów elektrycznych

OPISY KURSÓW. Kod kursu: MCR5101 Nazwa kursu: NAPĘDY ELEKTRYCZNE Język wykładowy: polski, angielski

Wykład 2 Silniki indukcyjne asynchroniczne

Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie

Sterowanie Napędów Maszyn i Robotów

Sterowanie napędów maszyn i robotów

11. Dobór rodzaju, algorytmu i nastaw regulatora

Automatyka i robotyka

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

STEROWANIE ENERGOELEKTRONICZNYM ŹRÓDŁEM PRĄDU Z ZASTOSOWANIEM SIECI NEURONOWYCH

Kompensacja momentu zaczepowego w napędzie z silnikiem PMSM z wykorzystaniem sterowania z uczeniem iteracyjnym

Transkrypt:

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 3 Tomasz PAJCHROWSKI* ADAPTACYJNE STEROWANIE SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH W artykule przedstawiono wyniki symulacyjne adaptacyjnego regulatora prędkości z zastosowaniem sztucznej sieci neuronowej dla napędu z silnikiem synchronicznym o magnesach trwałych. Omówiona została struktura sztucznej sieci neuronowej oraz metoda uczenia regulatora prędkości w czasie rzeczywistym. Model układu został opracowany w języku Matlab. Parametry regulatora są optymalizowane on-line według algorytmu RPROP. Przedstawione wyniki badań symulacyjnych ilustrują poprawne działanie adaptacyjnej regulacji prędkości na zmianę parametrów układu napędowego, takich jak moment bezwładności.. WPROWADZENIE Współczesnym układom napędowym, zwłaszcza serwonapędom, stawia się coraz wyższe wymagania dynamiczne, co powoduje, że parametry regulatorów prędkości i położenia stosowane w tych układach są dobierane tak, aby uzyskać największą, możliwą dynamikę ruchu. Tak dobrane regulatory o wyśrubowanych nastawach są wrażliwe na niewielkie nawet zmiany parametrów transmitancji napędu i napędzanego mechanizmu. W takich układach napędowych jak: napędy ramion robota, napędy mechanizmu posuwu obrabiarek, napędy zwijarek czy maszyn papierniczych, parametrem najczęściej zmienianym jest moment bezwładności. Zmienne jest również opóźnienie występujące w układach przekształtników i sterowania, jak i również w stanach osłabiania strumienia magnetycznego zmienna jest stała momentu elektromagnetycznego silnika. Dlatego zachodzi potrzeba zaprojektowania układu regulacji niewrażliwego, lub mało wrażliwego na zmiany wyżej wymienionych parametrów. Na rys. przedstawiono strukturę kaskadowej regulacji serwonapędu z silnikiem synchronicznym o magnesach trwałych (ang. PMSM- Permanent Magnet Synchronous Magnet), składającą się z pętli regulacji momentu elektromagnetycznego, prędkości i położenia. Silnik ten, ze względu na mały moment bezwładności, dużą przeciążalność momentem i wysoką sprawność, jest bardzo chętnie stosowany w przemyśle i stawiany w rzędzie najlepszych pod względem dynamiki silników. Dla uzyskania małej wrażliwości na zmiany * Politechnika Poznańska.

8 Tomasz Pajchrowski parametrów całego układu regulacji, kluczowym staje się zaprojektowanie odpornego lub adaptacyjnego regulatora prędkości kątowej, przy założeniu, że nie zmieniają się parametry w pętli regulacji momentu, natomiast pętla regulacji położenia tych zmian może nie odczuwać przy prawidłowym zaprojektowaniu regulatora prędkości. Obecnie bardzo chętnie, przy projektowaniu takiego regulatora sięga się do metod inteligencji obliczeniowej. VAC/5Hz zad R R ω i dzad= ω zad i qzad SSN ω FDP PI PI u d dq u q i d dq i q abc abc FDP i a ib ic PMSM ω Rys.. Schemat układu regulacji położenia i prędkości dla serwonapędu z PMSM W pracach wcześniejszych [8, 9] autor brał udział w opracowaniu koncepcji odpornych regulatorów prędkości wykorzystujących logikę rozmytą, sztuczne sieci neuronowe i połączeniu obu tych technik w systemach neuronowo-rozmytych. Efektem działania regulatorów odpornych było uzyskanie jednakowej, niezależnej od zmian momentu bezwładności dynamiki regulacji prędkości. Alternatywną koncepcją dla sterowania odpornego jest regulacja adaptacyjna. W pracach [, 3, ] przedstawiono dwie różne koncepcje adaptacyjnego regulatora neuronowego. Regulator adaptacyjny z modelem referencyjnym przedstawiono w pracy [], w którym regulator neuronowy uczony jest na podstawie błędu, jaki powstaje pomiędzy wzorcowym sygnałem wyjściowym z modelu referencyjnego, a rzeczywistym sygnałem regulowanego obiektu. Inną ciekawą koncepcję, w której regulator neuronowy uczony jest na podstawie własnego błędu regulacji zaprezentowano w pracach [, 3]. W pracach tych autorzy zaprezentowali oryginalne rozwiązania tej metody, które nadal wydaje się wymagają dalszej pogłębionej analizy. W niniejszym artykule autor przedstawił wyniki badań symulacyjnych układu regulacji prędkości obrotowej na zmianę momentu bezwładności. Badania przeprowadzono dla serwonapędu bezpośredniego (bez przekładni mechanicznej) z wolnoobrotowym silnikiem PMSM, którego parametry podano w [6, 7, 8, 9].

Adaptacyjne sterowanie silnikiem synchronicznym o magnesach trwałych 9. STRUKTURA I ALGORYTM UCZENIA SIECI NEURONOWEJ.. Struktura sieci neuronowej Na rysunku przedstawiono przyjętą strukturę sztucznej sieci neuronowej, która w układzie regulacji prędkości pełni rolę regulatora adaptacyjnego. ω ref ω e 3 w w w w 3 w w 3 b b v v v 3 b i qref z - w 3 3 Rys.. Struktura sztucznej sieci neuronowej Sieć ta posiada trzy wejścia główne dla sygnałów prędkości zadanej (ω ref ), prędkości rzeczywistej (ω) i uchybu (e), oraz wejście dodatkowe sygnału uchybu opóźnionego o jeden okres próbkowania, który w modelu wynosił µs. Sieć posiada dwie warstwy o liniowych funkcjach aktywacji, gdzie sygnałem wyjściowym jest prąd zadany w osi q (i qref )... Algorytm uczenia sieci neuronowej Uczenie sztucznej sieci neuronowej odbywa się bez sygnału wzorcowego, na podstawie uchybu regulacji prędkości. Jako kryterium jakości uczenia przyjęto wyrażenie [5, ]: E = ( ω ω) () ref Ponieważ adaptacja wag regulatora neuronowego ma się odbywać w czasie rzeczywistym (ang. on-line), należy wybrać prosty i szybki algorytm modyfikacji parametrów sztucznej sieci neuronowej. Po analizie literatury i stosowanych rozwiązaniach wybrana została metoda RPROP (ang. Resilient backpropagation) [], która wymaga jedynie znaku składowej gradientu, bez określania ich wartości, a współczynniki uczenia są modyfikowane w każdym kroku uczenia. Zmiana współczynnika wagi w ij (k) dla j-tego wejścia i i-tego neuronu opisuje zależność []: E( w( k)) w = ij ( k) ηij ( k) sign () wij b 3

3 Tomasz Pajchrowski Współczynnik uczenia η ij (k) jest indywidualnie dobierany dla każdej wagi, i zwiększany, gdy znaki gradientów są takie same, natomiast zmniejszany, gdy są różne, według następującej zasady []: min (aηij(k ),ηmax ) dla Sij(k)Sij(k- ) > η = max (bη (k ),ηmin ) dla S (k)s (k- ) < (3) ij ij ij ij ηij(k ) dla innych przypadków gdzie η min, η max oznacza minimalną i maksymalną wartość współczynnika uczenia, a i b wartości stałe (najczęściej a =,, b =,5) a E( w( k) ) Sij ( k) = () w Zaletą tej metody uczenia jest znaczne przyspieszenie procesu modyfikacji wag, szczególnie w obszarach o niewielkim nachyleniu funkcji celu []. 3. METODYKA BADAŃ SYMULACYNYCH Badania symulacyjne przeprowadzono w środowisku Matlab Simulink, wykorzystując opracowany model układu napędowego z silnikiem PMSM, opisany w pracach [8, 9]. Sztuczną sieć neuronową zmodelowano wykorzystując program narzędziowy Neural Networks Toolbox. W pracy założono, że w układzie napędowym brak jest połączeń sprężystych i zmian energii potencjalnej dlatego można zapisać: d Jω m d ω = (5) dt a następnie po przekształceniach uzyskujemy wyrażenie: dω ω dj m d = J + (6) dt dt Po zbudowaniu modelu matematycznego przeprowadzono badania, które polegały na wymuszaniu procesów przejściowych wywołanych zmianą prędkości zadanej dla różnych wartości momentu bezwładności J, którego wartości zmieniały się w funkcji czasu.. WYNIKI BADAŃ SYMULACYNYCH Ważnym procesem jest pierwszy cykl uczenia sztucznej sieci neuronowej, startujący z przypadkowo dobranymi wagami (mogą to być również wagi zerowe). Jak wykazały wcześniejsze badania [6, 7], proces odpowiedzi na skok wartości zadanej prędkości przebiega w takiej sytuacji oscylacyjnie z dużym przeregulowaniem. Można temu przeciwdziałać, i tak, na początku dla prędkości zerowej wprowadzić do układu skok momentu wirtualnego [6, 7], lub użyć sygnału ij

Adaptacyjne sterowanie silnikiem synchronicznym o magnesach trwałych 3 prędkości zadanej z prefiltrem [6, 7]. W poprzednich pracach [6, 7] przedstawiono również wpływ stałej czasowej opóźnienia na uchyb prędkości obrotowej podczas skoku momentu oporowego oraz wpływu strefy histerezy błędu uczenia sieci neuronowej. W niniejszych badaniach przedstawiony zostanie wpływ zmian momentu bezwładności w funkcji czasu dla układu z prefiltrem i bez prefiltru. a) b) Waveform of angular speed Waveform of angular speed.5.5...5.5 ω [rad/s] ω [rad/s] -.5 -.5 -. -. -.5 -.5.5.5.5 3 3.5.5.5.5.5 3 3.5.5 Rys. 3. Przebieg prędkości obrotowej dla układu bez prefiltru (a) i z prefiltrem (b) podczas zmiany momentu bezwładności dla sieci wstępnie nauczonej a) b) 8 Waveform of current and moment of inertia 8 Waveform of current and moment of inertia 6 6 J [kgm], iq [A] - J [kgm], iq [A] - - - -6-6 -8.5.5.5 3 3.5.5-8.5.5.5 3 3.5.5 Rys.. Przebieg prądu w osi q (-) oraz momentu bezwładności J (-) dla układu bez prefiltru (a) i z prefiltrem (b) dla sieci wstępnie nauczonej a) b) 5 Qality Index 5.5 Qality Index 3.5 5 3 ISE ISE.5.5 5.5 3 5 6 7 8 9 Period 3 5 6 7 8 9 Period Rys. 5. Przebieg wskaźnika jakości ISE układu bez prefiltru (a) i z prefiltrem (b) dla sieci wstępnie nauczonej

3 Tomasz Pajchrowski W przeprowadzonych, i przedstawionych badaniach symulacyjnych przyjęto rozwiązanie, w którym, po wstępnym nauczeniu sztucznej sieci neuronowej współczynniki wagi neuronów zostały zapamiętane w pamięci i przy każdym ponownym uruchamianiu przepisane do regulatora. Algorytm koryguje współczynniki wag w kolejnych krokach, w chwilach występowania błędu regulacji, czyli w trakcie kolejnych procesów przejściowych wywołanych zmianami prędkości zadanej, momentu oporowego oraz zmian momentu bezwładności. Zmiany współczynników wag są jednak zdecydowanie mniejsze, niewywołujące znacznych oscylacji [6, 7]. Na rys. 3 przedstawiono przebieg zmian prędkości obrotowej dla układu bez prefiltru (a) i z prefiltrem (b) podczas zmiany momentu bezwładności dla wstępnie nauczonej sieci neuronowej. Proces zmiany momentu bezwładności rozpoczął się w czasie, s od wartości,5 kgm i trwał do 3, s. Zakończył się na wartości 5.8 kgm (rys. ). Na rys. 5 przedstawiono wskaźnik jakości ISE (ang. Integral Square Error) uchybu prędkości dla poszczególnych okresów zmian prędkości. Porównując przebiegi prędkości z rys. 3a i 3b można zauważyć, że układ bez prefiltru przejawia tendencję do niewielkich przeregulowań zarówno przed zmianą momentu bezwładności, jak i po zmianie. Wzrost wartości wskaźnika ISE można zaobserwować po rozpoczęciu zmiany momentu bezwładności, a po jej zakończeniu obserwujemy zmniejszenie wartości tego wskaźnika, co świadczy o kontynuowaniu procesu adaptacji. Podobnie wygląda przebieg z prefiltrem, ale przed rozpoczęciem zmian nie zaobserwowano przeregulowania prędkości kątowej, natomiast niewielkie pojawiło się podczas zmiany momentu bezwładności. Po zakończeniu tego procesu, widać wyraźny spadek wskaźnika ISE. Porównując oba wskaźniki (rys. 5a i 5b) można zauważyć również, że wartość tego parametru dla układu z prefiltrem (ISE =.8) jest zdecydowanie mniejsza w porównaniu z układem bez prefiltru (ISE = ), zarówno przed rozpoczęciem procesu zmian momentu bezwładności, podczas jego zmian i po zakończeniu (czas uczenia dla obu układów był taki sam). Natomiast, podczas zmian momentu bezwładności wskaźnik ISE dla układu bez prefiltru wzrósł dwukrotnie (ISE = ), natomiast dla układu z prefiltrem można zauważyć ponad pięciokrotny wzrost tej wartości (ISE =,5). Nadal jednak wskaźnik ten (z prefiltrem) jest ponad pięciokrotnie niższy z układem porównywanym. 5. WNIOSKI Przedstawione wyniki symulacyjne przedstawiają poprawne działanie regulatora neuronowego, uczonego w czasie rzeczywistym. Przedstawiona koncepcja adaptacyjnego regulatora neuronowego pozwala uniezależnić właściwości dynamiczne regulacji prędkości kątowej od zmian parametrów serwonapędu, a w szczególności zmian momentu bezwładności. Przyjęta metoda uczenia sieci neuronowej RPROP umożliwia uczenie sztucznej sieci neuronowej

Adaptacyjne sterowanie silnikiem synchronicznym o magnesach trwałych 33 on-line czyli w czasie rzeczywistym podczas zachodzących szybkich procesów przejściowych. Zaproponowany regulator neuronowy posiada interesujące właściwości, które zostaną przedstawione w dalszych pracach. LITERATURA [] Ellis G., Control System Design Guide. Third Edition: Using Your Computer to Understand and Diagnose Feedback Controllers, Elsevier, Academic Press,. [] Grzesiak L., Meganek V., Sobolewski J., Ufnalski B., DTC_SVM Drive with ANN-based Speed Controller, PELINCEC Conference, Warsaw University of Technology, 5, CD. [3] Grzesiak L. M., Meganek V., Sobolewski J, Ufnalski B., On-line Trained Neural Speed Controller with Variable Weight Update Period for Direct-Torque-Controller AC Drive, EPE-PEMC Conference, Portoroz, 6, CD. [] Orlowska-Kowalska T., Szabat K., Control of the Drive System with Stiff and Elastic Coupling using Adaptive Neuro-Fuzzy Approach, IEEE Trans. On Industrial Electronics, vol. 5, No., 7, pp. 8-. [5] Ossowski S., Sieci neuronowe do przetwarzania informacji, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa. [6] Pajchrowski T., Zawirski K., Adaptive Neural Speed Controller for PMSM Servodrive with Variable Parameters, Proceedings of EPE-PEMC ECCE Europe Conference and Exposition Conference, th to 6th September, Novi Sad, Serbia. [7] Pajchrowski T., Zawirski K., Application of artificial neural network for adaptive speed control of PMSM drive with variable parameters, Proceedings of XXII Symposium on Electromagnetic Phenomena in Nonlinear Circuits, EPNC, Pula, Croatia, 6-9 June. [8] Pajchrowski T., Zawirski K., Application of Artificial Neural Network to Robust Speed Control of Servodrive. IEEE Transaction on Industrial Electronics, Vol.5, No., February 7, pp.-7. [9] Pajchrowski T., Zawirski K.,Robust speed and position control based onneural and fuzzy techniques, EPE 7, Aalborg, Power Electronics and Applications, 7 European Conference on -5 Sept. 7, E-ISBN 978-9-7585--8. [] Riedmiller M., Braun H., A direct adaptive method for faster backpropagation learning: The RPROP algorithm, IEEE International Conference on Neural Networks pp. 586-59, vol., 8 March April, 993. [] Rutkowski L., Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, Warszawa 5. ADAPTIVE PERMANENT MAGNET SYNCHRONOUS MOTOR CONTROL This paper presents the results of simulation of adaptive speed controller using an artificial neural network for permanent magnet synchronous motor drive. Discusses the structure of the artificial neural network and the method of learning the speed controller in real time. Model system has been developed in Matlab. The controller parameters are optimized on-line by RPROP algorithm. The simulation results illustrate the proper operation of the adaptive speed control to change the parameters of the drive system, such as the moment of inertia.