PODSTAWY NAWIGACJI Pozycja statku i jej rodzaje.
|
|
- Maksymilian Romanowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 PODSTWY NWIGCJI Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje, zamiana kierunków. Systemy wyrażania kierunków. Zamiana kierunków między systemami. Kształt i wymiary Ziemi, układy odniesienia i współrzędnych. Podstawowe wiadomości o mapach nawigacyjnych. Pozycja statku i jej rodzaje.
2 PODSTWY NWIGCJI Pozycja zliczona miejsce obiektu liczone od ostatniej pozycji obserwowanej. Otrzymana jest na podstawie znajomości kursu rzeczywistego i przebytej drogi z uwzględnieniem oddziaływania prądu i wiatru
3 PODSTWY NWIGCJI Dryf (Dw) powstaje w wyniku oddziaływania wiatru na statek, który jest spychany z linii kursu Dryf jest kątem zawartym między rufową częścią linii symetrii statku a śladem torowym, lub między kursem rzeczywistym a drogą statku po wodzie.
4 PODSTWY NWIGCJI Kąt drogi po wodzie (KDw) kąt zawarty między północną części linie N-S rzeczywistej linią statku po wodzie (Dw) KDw=KR + (+- pw) pw poprawka na wiatr ma znak (+) jeżeli statek znoszony jest w prawo i (-) jeżeli w lewo
5 PODSTWY NWIGCJI Znos - powstaje w wyniku oddziaływania prądu wodnego na statek, który jest znoszony z linii kursu. Oddziaływanie podobne jest do skutków działania wiatru pp poprawka na prąd (+) jeżeli statek znoszony jest w prawo oraz (-) jeżeli znoszony jest w lewo KDd=KDw + (+- pp)
6 PODSTWY NWIGCJI Kąt drogi nad dnem (KDd) kąt zawarty między północną częścią linii N-S a linią drogi statku nad dnem (Dd).
7 PODSTWY NWIGCJI Dryf mierzymy Znos - określamy
8 PODSTWY NWIGCJI Pozycja obserwowana pozycja określona na podstawie dokonanych obserwacji obiektów stałych (o znanych pozycjach mogą to być także sztuczne satelity ziemi) Metody: Namiar i odległość Dwie i więcej odległości Dwa i więcej namiary Namiar i głębokość
9 Obliczanie współrzędnych pozycji na płaszczyźnie Warunek: Obliczenia mogą być prowadzone do odległości od obserwatora, dla której kulistość Ziemi nie wpływa na pomiary parametrów nawigacyjnych
10 1. Pozycja z dwóch kątów poziomych Wartości znane: współrzędne trzech punktów kąty poziome Szukamy: współrzędne pozycji własnej
11 Start 1. Pozycja z dwóch kątów poziomych - algorytm,,c, zymut linii bazy, Długość linii bazy tg tg Y X Y X C C Y X Y X 2 X X Y Y 2 Kąt C X X 2 Y Y 2 C C Połowę sumy kątów oraz C oraz połowę różnicy kątów C Długości odcinków M oraz CM Przyrosty współrzędnych M CM m sin * sin sin C * sin C X Y X Y 2 0 C C M *cos M *sin CM *cos 360 CM *sin 360 o o m n C m n C n 2 ( C ( C) ) wyniki Stop X X Y Y X Y Y X C C Y X C C
12 2. Pozycja z dwóch namiarów obcych Wartości znane: współrzędne punktów, Namiary i na statek Szukamy: współrzędne pozycji własnej
13 Start 2. Pozycja z dwóch namiarów obcych,, NR, NR Kąt Odległość Kąt ok M tg 180 Y X Y X X X Y Y 2 2 NR 180 sin M * sin Przyrosty współrzędnych X Y * M *cos(180 NR) * M *sin(180 NR) wyniki X X Y Y X Y X Y Y X Stop
14 3. Pozycja z dwóch odległości Wartości znane: współrzędne punktów, odległość do punktów Szukamy: współrzędne pozycji własnej
15 3. Pozycja z dwóch odległości Start,, D1,D2 Kąt -azymut linii bazy tg 180 Y X Y X Odległość Kąt cos X X Y Y M M 2* * M 2 Przyrosty współrzędnych X Y M *cos( ) M *sin( ) wyniki X X Y Y X Y Stop
16 4. Pozycja z dwóch różnic odległości Wartości znane: współrzędne punktów,,c dwie różnice odległości Szukamy: współrzędne pozycji własnej 1. azymuty linii bazy, 2. Kąt 3. Długości linii bazy, C 4. Odległość D 2 oraz kąt 5. Przyrosty X oraz Y
17 5. Pozycja z dwóch sum odległości Wartości znane: współrzędne punktów,,c dwie sumy odległości Szukamy: współrzędne pozycji własnej 1. azymuty linii bazy, 2. Kąt 3. Długości linii bazy, C 4. Odległość D 2 oraz kąt 5. Przyrosty X oraz Y
18 6. Pozycja z namiaru i odległości Wartości znane: współrzędne punktu namiar rzeczywisty oraz odległość Szukamy: współrzędne pozycji własnej 1. Przyrosty obliczamy bezpośrednio wg X Y Dcos(180 ) Dsin(180 )
19 7. Pozycja z namiaru i kąta poziomego Wartości znane: współrzędne punktów, Kąt poziomy Szukamy: współrzędne pozycji własnej 1. Kąt bazowy 2. Długość linii bazy 3. Kąty oraz 4. Odległość M 5. Przyrosty X oraz Y
20 7. Pozycja z odległości i kąta poziomego Wartości znane: współrzędne punktów, Kąt poziomy, odległość do jednego ze znaków Szukamy: współrzędne pozycji własnej 1. Kąt bazowy 2. Długość linii bazy 3. Kąty oraz 4. Przyrosty X oraz Y
21 8. Pozycja z odległości i różnica odległości Wartości znane: współrzędne punktów, odległość do jednego ze znaków oraz różnicę odległości między nimi Szukamy: współrzędne pozycji własnej 1. Kąt bazowy 2. Długość linii bazy 3. Kąt 4. Przyrosty X oraz Y
22 9. Pozycja z różnicy i sumy odległości Wartości znane: współrzędne punktów,, C Różnicę oraz sumę odległości Szukamy: współrzędne pozycji własnej 1. Kąty, 2. Kąt 3. Długość linii baz, C 4. Odległość D 2 oraz kąt 5. Przyrosty X oraz Y
Podstawy Nawigacji. Kierunki. Jednostki
Podstawy Nawigacji Kierunki Jednostki Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje,
Bardziej szczegółowoSpis treści Wyznaczenie pozycji przy pomocy jednego obserwowanego obiektu... 47
Spis treści Podstawowe oznaczenia...5 1.Tabela dewiacji.....7 2. Pozycja zliczona.......8 2.1. Pozycja zliczona bez uwzględnienia działania wiatru i prądu...8 2.2. Pozycja zliczona przy uwzględnieniu działania
Bardziej szczegółowoROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU.
SPIS TREŚCI Przedmowa ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU. 1.1. Szerokość i długość geograficzna. Różnica długości. Różnica szerokości. 1.1.1.
Bardziej szczegółowoEGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Pełnienie wachty morskiej i portowej Oznaczenie kwalifikacji: A.39 Numer zadania:
Bardziej szczegółowoEGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Pełnienie wachty morskiej i portowej Oznaczenie kwalifikacji: A.39 Numer zadania:
Bardziej szczegółowoPrzykładowe zadanie egzaminacyjne w części praktycznej egzaminu w modelu d dla kwalifikacji B.35 Obsługa geodezyjna inwestycji budowlanych
Przykładowe zadanie egzaminacyjne w części praktycznej egzaminu w modelu d dla kwalifikacji B.35 Obsługa geodezyjna inwestycji budowlanych W ramach pomiaru kontrolnego pomierzono punkty pośrednie łuku
Bardziej szczegółowoKomentarz technik nawigator morski 314[01]-01 Czerwiec 2009
Strona 1 z 13 Strona 2 z 13 Strona 3 z 13 Strona 4 z 13 Strona 5 z 13 Strona 6 z 13 Zdający egzamin w zawodzie technik nawigator morski wykonywali zadanie praktyczne wynikające ze standardu wymagań o treści
Bardziej szczegółowoARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2010
Zawód: technik nawigator morski Symbol cyfrowy zawodu: 314[01] Numer zadania: 1 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu 314[01]-01-102 Czas trwania egzaminu: 240 minut
Bardziej szczegółowoObliczenia w geodezyjnym układzie współrzędnych
Politechnika Warszawska Wydział Instalacji udowlanych, Hydrotechniki i Inżynierii Środowiska Obliczenia w geodezyjnym układzie współrzędnych Wykład nr 4 Jerzy Kulesza j.kulesza@il.pw.edu.pl Instytut Dróg
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 5 Pomiary radarowe. Szczecin 2007 TEMAT: Pomiary radarowe. 1. Cel ćwiczenia: Celem ćwiczenia
Bardziej szczegółowoRADIONAMIARY. zasady, sposoby, kalibracja, błędy i ograniczenia
RADIONAMIARY zasady, sposoby, kalibracja, błędy i ograniczenia 1 Radionamierzanie jest to: Określenie kąta, zawartego między północną częścią lokalnego południka geograficznego a kierunkiem na dany obiekt,
Bardziej szczegółowoPROGRAM SZKOLENIA Jachtowy sternik morski teoria e-learning stan na dzień:
PROGRAM SZKOLENIA Jachtowy sternik morski 1. Wiedza teoretyczna: 1) jachty żaglowe morskie, w tym: a) eksploatacja i budowa instalacji i urządzeń jachtu oraz ocena ich stanu technicznego b) obsługa przyczepnych
Bardziej szczegółowonawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.
14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej
Bardziej szczegółowoRAMOWY PROGRAM SZKOLENIA I WYMAGANIA EGZAMINACYJNE NA POZIOMIE POMOCNICZYM W DZIALE POKŁADOWYM NA ŚWIADECTWO MARYNARZA WACHTOWEGO
Załącznik nr 1 RAMOWY PROGRAM SZKOLENIA I WYMAGANIA EGZAMINACYJNE NA POZIOMIE POMOCNICZYM W DZIALE POKŁADOWYM NA ŚWIADECTWO MARYNARZA WACHTOWEGO Tabela zbiorcza Przedmiot Liczba godzin I II III IV V VI
Bardziej szczegółowoPodstawy geodezji. dr inż. Stefan Jankowski
Podstawy geodezji dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Systemy i układy odniesienia System odniesienia (reference system) to zbiór zaleceń, ustaleń, stałych i modeli niezbędnych do określenia
Bardziej szczegółowoGPS w praktyce Cz. 3. Halsówka i pływy
GPS w praktyce Cz. 3. Halsówka i pływy Roch Wróblewski (rowro@poczta.onet.pl) W pierwszej części cyklu opisano podstawowe pojęcia opisujące wskazania odbiornika GPS, ich dokładność oraz sposób zapisywania.
Bardziej szczegółowoFunkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14
XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny
Bardziej szczegółowoPrzykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik nawigator morski 314[01]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik nawigator morski 314[01] Zdający egzamin w zawodzie technik nawigator morski wykonywali zadanie praktyczne wynikające ze standardu
Bardziej szczegółowoWymiary akwenu w płaszczyźnie pionowej bezpieczna głębokość podawana zazwyczaj w postaci stosunku minimalnej rezerwy wody pod kilem do zanurzenia
IRM wykład 2 Parametry Wymiary akwenu w płaszczyźnie pionowej bezpieczna głębokość podawana zazwyczaj w postaci stosunku minimalnej rezerwy wody pod kilem do zanurzenia maksymalnego statku /T. Wymiary
Bardziej szczegółowoLinia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji
Linia pozycyjna dr inż. Paweł Zalewski w radionawigacji Wprowadzenie Jednym z zadań nawigacji jest określenie pozycji jednostki ruchomej - człowieka, pojazdu, statku czy samolotu. Pozycję ustala się przez
Bardziej szczegółowoZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE. Układy współrzędnych stosowane w nawigacji na akwenach ograniczonych
ISSN 0209-2069 Stanisław Gucma ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE EXPLO-SHIP 2004 Układy współrzędnych stosowane w nawigacji na akwenach ograniczonych Słowa kluczowe: nawigacja pilotażowa,
Bardziej szczegółowoSPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Bardziej szczegółowoEGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 ZASADY OCENIANIA
Układ graficzny CKE 2018 EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 ZASADY OCENIANIA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Nazwa kwalifikacji: Planowanie
Bardziej szczegółowoPodręcznik Żeglarstwa. Szkoła Żeglarstwa SZEKLA
Podręcznik Żeglarstwa Szkoła Żeglarstwa SZEKLA Autor rozdziału: Wojciech Damsz Podstawy nawigacji dla Żeglarzy Jachtowych Nawigacja morska jest dziedziną wiedzy żeglarskiej, która umożliwia bezpieczne
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE. JEDNOSTKA ORGANIZACYJNA: Wydział nawigacyjny Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych
AKADEMIA MORSKA W SZCZECINIE JEDNOSTKA ORGANIZACYJNA: Wydział nawigacyjny Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych INSTRUKCJA Pomiary radarowe Laboratorium 5 Opracował: Zatwierdził:
Bardziej szczegółowoEGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 018 Nazwa kwalifikacji: Obsługa geodezyjna inwestycji budowlanych Oznaczenie kwalifikacji: B.35 Numer zadania:
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE. JEDNOSTKA ORGANIZACYJNA: Wydział nawigacyjny Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych
AKADEMIA MORSKA W SZCZECINIE JEDNOSTKA ORGANIZACYJNA: Wydział nawigacyjny Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych INSTRUKCJA Pomiary radarowe Laboratorium 5 Opracował: Zatwierdził:
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Bardziej szczegółowo2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
Bardziej szczegółowoGeodezja Inżynieryjno-Przemysłowa
Geodezja Inżynieryjno-Przemysłowa Pozyskanie terenu Prace geodezyjne na etapie studiów projektowych Prace geodezyjne na etapie projektu szczegó łowego Geodezyjne opracowanie projektu OBIEKT Tyczenie Pomiary
Bardziej szczegółowolim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Bardziej szczegółowoZajęcia 1. Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych
KATEDRA GEODEZJI im. Kaspra WEIGLA Wydział Budownictwa i Inżynierii Środowiska Zajęcia 1 Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych Autor: Dawid Zientek Skrypty
Bardziej szczegółowoOrientacja w terenie, kartografia
Orientacja w terenie, kartografia Arkadiusz Majewski 12.11.2013 KURS SKPB Terenoznawstwo Terenoznawstwo (Wikipedia) jest to sztuka orientacji w terenie, odczytywania yy i sporządzania map, posługiwania
Bardziej szczegółowoUkłady współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Bardziej szczegółowo( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)
TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone
Bardziej szczegółowoZagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Bardziej szczegółowoDefinicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Bardziej szczegółowoRadiolokacja. Wykład 3 Zorientowania, zobrazowania ruchu, interpretacja ruchu ech na ekranie
Radiolokacja Wykład 3 Zorientowania, zobrazowania ruchu, interpretacja ruchu ech na ekranie Zakres obserwacji Zakres obserwacji (ang.: range) wyrażony jest przez wartość promienia obszaru zobrazowanego
Bardziej szczegółowoPrzestrzenie liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku
Bardziej szczegółowoDziennik Ustaw 15 Poz. 460 ZAKRES WYMAGAŃ EGZAMINACYJNYCH
Dziennik Ustaw 15 Poz. 460 Załącznik nr 4 ZAKRES WYMAGAŃ EGZAMINACYJNYCH I. Zakres wiedzy i umiejętności wymaganych do uzyskania patentu żeglarza jachtowego. 1) budowa jachtów, w tym: a) zasady obsługi
Bardziej szczegółowoI. KARTA PRZEDMIOTU C10
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: AUTOMATYZACJA NAWIGACJI. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
Bardziej szczegółowoZakład Inżynierii Komunikacyjnej Wydział Inżynierii Lądowej Politechnika Warszawska PODSTAWY PROJEKTOWANIA LINII I WĘZŁÓW TRAMWAJOWYCH CZĘŚĆ III
Zakład Inżynierii Komunikacyjnej Wydział Inżynierii Lądowej Politechnika Warszawska DROGI SZYNOWE PODSTAWY PROJEKTOWANIA LINII I WĘZŁÓW TRAMWAJOWYCH CZĘŚĆ III PROJEKTOWANIE UKŁADU TORÓW TRAMWAJOWYCH W
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Instytut InŜynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 5 Pomiary radarowe. Szczecin 2007 TEMAT: Pomiary radarowe. 1. Cel ćwiczenia: Celem ćwiczenia
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE. JEDNOSTKA ORGANIZACYJNA: Wydział nawigacyjny Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych
AKADEMIA MORSKA W SZCZECINIE JEDNOSTKA ORGANIZACYJNA: Wydział nawigacyjny Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych INSTRUKCJA Pomiary radarowe Laboratorium 5 Opracował: Zatwierdził:
Bardziej szczegółowoTERENOZNAWSTWO. 1.Orientowanie się w terenie
TERENOZNAWSTWO 1.Orientowanie się w terenie Umiejętność ta ma na celu oznaczanie kierunków stron świata, własnego stanowiska w odniesieniu do przedmiotów terenowych oraz rozpoznawanie ich, jak również
Bardziej szczegółowoTYCZENIE OSI TRASY W 2 R 2 SŁ KŁ W 1 W 3
TYCZENIE TRAS W procesie projektowania i realizacji inwestycji liniowych (autostrad, linii kolejowych, kanałów itp.) materiałem źródłowym jest mapa sytuacyjno-wysokościowa w skalach 1:5 000; 1:10 000 lub
Bardziej szczegółowoKartkówka powtórzeniowa nr 1
Terminarz: 3g 3 stycznia 3b 4stycznia 3e 11 stycznia 3a, 3c, 3f 12 stycznia Kartkówka powtórzeniowa nr 1 Zagadnienia: 1. Współrzędne geograficzne 2. Skala 3. Prezentacja zjawisk na mapach Ad. 1. WSPÓŁRZĘDNE
Bardziej szczegółowoMATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)
Bardziej szczegółowoWykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3
Poziome sieci geodezyjne - od triangulacji do poligonizacji. 1 Współrzędne prostokątne i biegunowe na płaszczyźnie Geodeci wiążą osie x,y z geograficznymi kierunkami; oś x kierują na północ (N), a oś y
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu:
Bardziej szczegółowoEGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 ZASADY OCENIANIA
Układ graficzny CKE 2017 EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 ZASADY OCENIANIA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Nazwa kwalifikacji: Wykonywanie
Bardziej szczegółowoOdgłosy z jaskini (10) Kamień, ptak i drzewo
FOTON 10, Jesień 008 59 Odgłosy z jaskini (10) Kamień, ptak i drzewo Adam Smólski Już małe dziecko zauważa, że jak stoi w wannie, to ma krótsze nogi, a spacerując nad Morskim Okiem słyszy od rodziców,
Bardziej szczegółowoAKTYWNY WYPOCZYNEK POD ŻAGLAMI szkolenia, rejsy, obozy żeglarskie
AKTYWNY WYPOCZYNEK POD ŻAGLAMI szkolenia, rejsy, obozy żeglarskie www.jachty.org Podczas kursu przekażemy Państwu wiedzę i umiejętności zawarte w niżej prezentowanym programie szkolenia PZŻ. PROGRAM SZKOLENIA
Bardziej szczegółowo1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Bardziej szczegółowoĆwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
Bardziej szczegółowoGEODEZJA WYKŁAD Rachunek współrzędnych
GEODEZJA WYKŁAD Rachunek współrzędnych Katedra Geodezji im. K. Weigla ul. Poznańska /34 Metody obliczeń geodezyjnych stosowane do obliczenia współrzędnych: - punktów osnów geodezyjnych, - punktów charakterystycznych
Bardziej szczegółowoLista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Bardziej szczegółowoMatematyka, kl. 6. Konieczne umiejętności
Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych
Bardziej szczegółowoHistoria edukacji morskiej w Polsce. Pierwsza szkoła morska w Tczewie
PODSTAWY NAWIGACJI Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje, zamiana kierunków.
Bardziej szczegółowoDokąd on zmierza? Przemieszczenie i prędkość jako wektory
A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Dokąd on zmierza? Przemieszczenie i prędkość jako wektory Łódź żegluje po morzu... Płynie z szybkością 10 węzłów (węzeł to 1 mila morska na godzinę czyli
Bardziej szczegółowoLiczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
Bardziej szczegółowoEGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PISEMNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
Bardziej szczegółowoHARCERSKI OŚRODEK MORSKI PUCK ZWIĄZKU HARCERSTWA POLSKIEGO. 3. Wiadomości o jachtach motorowych i motorowo-żaglowych. Duże jachty motorowe.
HARCERSKI OŚRODEK MORSKI PUCK ZWIĄZKU HARCERSTWA POLSKIEGO Program szkolenia Program szkolenia Wykaz przedmiotów: 1. Wiadomości ogólne. 2. Przepisy. 3. Wiadomości o jachtach motorowych i motorowo-żaglowych.
Bardziej szczegółowoWyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną.
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Uwagi wstępne należy przeczytać przed przystąpieniem do obliczeń W pierwszej kolejności należy wpisać do dostarczonego formularza
Bardziej szczegółowoSTRONA TYTUŁOWA. INSTRUKCJA OPERACYJNA Innego miejsca do startów i lądowań statków powietrznych MILEWO GMINA SOCHOCIN POWIAT PŁOŃSKI
STRONA TYTUŁOWA INSTRUKCJA OPERACYJNA Innego miejsca do startów i lądowań statków powietrznych MILEWO GMINA SOCHOCIN POWIAT PŁOŃSKI WOJEWÓDZTWO MAZOWIECKIE 2 ARKUSZ ZMIAN I POPRAWEK NUMER ZMIANY ZMIANA
Bardziej szczegółowoSymulacyjne badanie wpływu systemu PNDS na bezpieczeństwo i efektywność manewrów
dr inż. st. of. pokł. Stefan Jankowski Symulacyjne badanie wpływu systemu PNDS na bezpieczeństwo i efektywność manewrów słowa kluczowe: systemy pilotowe, systemy dokingowe, dokładność pozycjonowania, prezentacja
Bardziej szczegółowociężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m [cm] = ±,4 m α [cc] d [km] * (9.5) β d 9.7. Zadanie Hansena β d Rys. 9.7.
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoXVI REGATY Świnoujście Kołobrzeg Świnoujście w dniach sierpnia 2016 roku
Instrukcja Żeglugi 1. Przepisy 1.1. Regaty będą rozgrywane zgodnie z przepisami zdefiniowanymi w Przepisach Regatowych Żeglarstwa (PRŻ) obowiązujących w latach 2013-2016. 1.2 Obowiązują Międzynarodowe
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoJachtowy Sternik Morski
Jachtowy Sternik Morski Polski Związek Żeglarski Zakres wiedzy i umiejętności obejmujących szkolenie na patent Jachtowego Sternika Morskiego Wiedza teoretyczna 1. Przepisy 1.1. Międzynarodowe Przepisy
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 2 Parametry techniczno - eksploatacyjne radarów Szczecin 2008 TEMAT: Parametry techniczno - eksploatacyjne
Bardziej szczegółowo2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
Bardziej szczegółowoWyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
Bardziej szczegółowoZakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Instytut InŜynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 2 Parametry techniczno - eksploatacyjne radarów Szczecin 2009 TEMAT: Parametry techniczno - eksploatacyjne
Bardziej szczegółowoRównania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Bardziej szczegółowo8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.
WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Bardziej szczegółowoWykład 5. Pomiary sytuacyjne. Wykład 5 1
Wykład 5 Pomiary sytuacyjne Wykład 5 1 Proste pomiary polowe Tyczenie linii prostych Tyczenie kątów prostych Pomiar szczegółów topograficznych: - metoda ortogonalna, - metoda biegunowa, - związek liniowy.
Bardziej szczegółowoWykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
Bardziej szczegółowoWykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego
Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,
Bardziej szczegółowoSystemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski
Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)
Bardziej szczegółowoWYMIAROWANIE. Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych.
WYMIAROWANIE Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych. Zasady wymiarowania podlegają oczywiście normalizacji. W Polsce obowiązującą
Bardziej szczegółowoTRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO
TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie
Bardziej szczegółowoODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoXVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl lutowy Poziom: szkoły ponadgimnazjalne
Zadanie. XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl lutowy Poziom: szkoły ponadgimnazjalne Wyznacz wartość bezwzględną sumy współczynników a, b, c, d, e w przedstawieniu liczby w postaci
Bardziej szczegółowoZASADY MONITOROWANIA MORSKICH OBIEKTÓW O MAŁYCH PRĘDKOŚCIACH
Tadeusz Stupak Akademia Morska w Gdyni Ryszard Wawruch Akademia Morska w Gdyni ZASADY MONITOROWANIA MORSKICH OBIEKTÓW O MAŁYCH PRĘDKOŚCIACH Streszczenie: W referacie przedstawiono wyniki badań dokładności
Bardziej szczegółowoARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII
(Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.
Bardziej szczegółowoROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Bardziej szczegółowoProste pomiary na pojedynczym zdjęciu lotniczym
Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat: Proste pomiary na pojedynczym zdjęciu lotniczym Kartometryczność zdjęcia Zdjęcie lotnicze
Bardziej szczegółowoWielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą
Bardziej szczegółowoMATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań
MTEMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) III... Uczeń posługuje się w obliczeniach pierwiastkami i stosuje prawa działań na pierwiastkach. 7 6 6 =
Bardziej szczegółowoPORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
Bardziej szczegółowo10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.
Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie
Bardziej szczegółowoWYMIAROWANIE Linie wymiarowe Strzałki wymiarowe Liczby wymiarowe
WYMIAROWANIE Zasady wymiarowania podlegają oczywiście normalizacji. W Polsce obowiązującą normą jest Polska Norma PN-81/N-01614. Ogólne zasady wymiarowania w rysunku technicznym maszynowym dotyczą: - linii
Bardziej szczegółowo