Obliczenia w geodezyjnym układzie współrzędnych
|
|
- Kazimiera Urszula Jastrzębska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Warszawska Wydział Instalacji udowlanych, Hydrotechniki i Inżynierii Środowiska Obliczenia w geodezyjnym układzie współrzędnych Wykład nr 4 Jerzy Kulesza j.kulesza@il.pw.edu.pl Instytut Dróg i Mostów
2 Niezależnie od dokładności pomiarów współrzędne prostokątne płaskie zapisuje się z precyzją do 0,01 m. W obliczeniach z udziałem liczb przybliżonych stosujemy reguły radisa-kryłowa. 2
3 Dodawanie, odejmowanie - miejsce dziesiętne Znakiem dziesiętnym liczby nazywamy jej cyfry położone na prawo do przecinka dziesiętnego. Przy dodawaniu i odejmowaniu liczb przybliżonych należy w wyniku zachować tyle znaków dziesiętnych, ile ich zawiera liczba przybliżona o najmniejszej ilości znaków dziesiętnych. 123,1234 1, ,2 125,5574 poprawny wynik to 125,6 3
4 Mnożenie, dzielenie cyfra znacząca Cyfrą znaczącą nazywamy wszystkie cyfry liczby przybliżonej, oprócz zer położonych na lewo od pierwszej różnej od zera cyfry. Liczby 4243; 42,43; 0, ; 0,4343; 4,243 x 10³ mają po 4 cyfry znaczące, Liczby 42,43000; ; 0, mają po 7 cyfr znaczących. Przy mnożeniu i dzieleniu należy w wyniku zachować tyle cyfr znaczących, ile ich zawiera liczba przybliżona o najmniejszej ilości cyfr znaczących. 42,42 x 0, = 0,0180 wynik poprany 42,42 x 0, = 0, wynik zły 4
5 Układ współrzędnych Geodezyjny Matematyczny X Y IV I II I z Y X III II III IV 5
6 zymut topograficzny zymut topograficzny jest to kąt zawarty między północnym kierunkiem środkowego południka obszaru odwzorowanego a danym kierunkiem. Południk środkowy Kierunek północy 6
7 Południk geograficzny Południk środkowy (osiowy) Południk topograficzny z C = z z C z C zymut geograficzny, azymut Geograficzny topograficzny Topograficzny N N N z C = z z C = z C C C 7
8 zymut a azymut odwrotny z = z ± 180⁰ z z 8
9 Obliczanie X,Y punktu P X P X X P P Y P Y Y P ΔX P X Y P P d d P P cos z sin z P P ΔY P z P - pomiar azymutu busolą - pomiar azymutu giroskopem - pomiar azymutu astronomicznego - wykonanie nawiązania do osnowy 9
10 Dygresja zasady radisa-kryłowa ΔX = d x cos z d = 1234,56 m z b = dobrze: ΔX = 1234,56 m x 0, = 1214,76 m źle: 1234,56 m x 0,98 = 1209,87 m 10
11 Obliczanie z P P β Punkt szukany (obliczane X,Y) Punkt znany (znane X,Y) 11
12 Obliczanie z P P β z P = z 180⁰ +β 12
13 Obliczanie z P P β z P = z 180⁰ + β (lewe) z P = z + 180⁰ - β (prawe) 13
14 Obliczenie azymutu topograficznego z arctg Y X arctg Y X Y X gdzie X X Y Y Współrzędne początku boku Współrzędne końca boku 14
15 zymut obliczony azymut rzeczywisty z rzecz. = z oblicz ⁰ X z rzecz. = z oblicz. Y z rzecz. = z oblicz ⁰ z rzecz. = z oblicz ⁰ 15
16 Wcięcie kątowe w przód α z P β Dane: Współrzędne punktów oraz Pomierzone: Kąty poziome α oraz β Obliczamy: XP = X + d P * cos z P YP = Y + d P * sin z P 1. Ze współrzędnych punktów i obliczamy azymut boku. 2. Ze współrzędnych punktów i obliczamy długość boku. 3. Z twierdzenia sinusów obliczamy długość boku P. 4. Obliczamy azymut boku P. z P = z - α 16
17 Wcięcie biegunowe P C D β z DC Dane: Współrzędne punktów C oraz D Pomierzone: Kąt poziomy β oraz długość DP Obliczamy: XP = XD + d DP * cos z DP YP = YD + d DP * sin z DP 1. Ze współrzędnych punktów C oraz D obliczamy azymut boku DC. 2. Obliczamy azymut boku DP z DP = z DC + β 17
18 Wcięcie liniowe P a p h b z d-p Dane: Współrzędne punktów oraz Pomierzone: Długości a oraz b Obliczamy: XP = X + p cos z + h cos (z + 90⁰) YP = Y + p sin z + h sin (z + 90⁰) 1. Ze współrzędnych punktów oraz obliczamy az y mut boku. 2. Z twierdzenia Pitagorasa obliczamy a 2 = p 2 + h 2 oraz b 2 = h 2 + (d - p) 2 3. Obliczamy a 2 p 2 = b 2 d 2 +2dp p 2 4. Wyliczamy p = (a 2 b 2 + d 2 )/(2d) oraz h = sqrt (a 2 p 2 ) 18
19 Domiary ortogonalne 1 z Dane: Współrzędne punktów oraz Pomierzone: Miary bieżące i domiary do punktów 1 oraz 2 Obliczamy: X1 = X + 16,25 cos z Y1 = Y + 16,25 sin z X1 = X1 + 18,15 cos (z - 90⁰) Y1 = Y1 + 18,15 sin (z - 90⁰) X2 = X + 86,70 cos z Y2 = Y + 86,70 sin z X2 = X2 + 21,75 cos (z + 90⁰) Y2 = Y2 + 21,75 sin (z + 90⁰) zymut linii liczymy ze współrzędnych punktów oraz 19
20 Obliczanie z P P β z P = z 180⁰ + β (lewe) z P = z + 180⁰ - β (prawe) 20
21 Obliczenie azymutu boku następnego kąty tzw. lewe z β z 1 β c c 1 z 12 β z 2C β z CD D z 1 = z -180⁰ + β 2 C z 12 = z 1 180⁰ + β1 z 2C = z ⁰ + β2 z nast. = z pop ⁰ + βi C21
22 Obliczenie azymutu boku następnego kąty tzw. prawe z z 1 c c 1 z 12 z 2C z CD D 2 C z nast. = z pop ⁰ - βi C22
23 Wyrównanie obserwacji Metody wyrównania: - metoda przybliżona - metoda ścisła - pośrednicząca - zawarunkowana 23
Przykładowe zadanie egzaminacyjne w części praktycznej egzaminu w modelu d dla kwalifikacji B.35 Obsługa geodezyjna inwestycji budowlanych
Przykładowe zadanie egzaminacyjne w części praktycznej egzaminu w modelu d dla kwalifikacji B.35 Obsługa geodezyjna inwestycji budowlanych W ramach pomiaru kontrolnego pomierzono punkty pośrednie łuku
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m [cm] = ±,4 m α [cc] d [km] * (9.5) β d 9.7. Zadanie Hansena β d Rys. 9.7.
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną.
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Uwagi wstępne należy przeczytać przed przystąpieniem do obliczeń W pierwszej kolejności należy wpisać do dostarczonego formularza
Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.
Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge - Definicja geodezji, jej podział i zadania. - Miary stopniowe. - Miary długości. - Miary powierzchni pola. - Miary gradowe.
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Wykład 3 Miary i jednostki
Wykład 3 Miary i jednostki Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Od klasycznej definicji metra do systemu SI W 1791 roku Francuskie
Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2013 CZĘŚĆ PISEMNA
Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów Oznaczenie kwalifikacji: B.34 Wersja arkusza: X Układ graficzny CKE 2013 Arkusz zawiera informacje
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PISEMNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
Działania na liczbach przybliżonych. Janusz Sławiński
Działania na liczbach przybliżonych Janusz Sławiński Łódź, czerwiec 2016 Matematyka ma wiele wspólnego z kobietami. Kobieta jest jak matematyka: Prof. dr Włodzimierz Krysicki, Źródło: W. Szymański Fabryka
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Wykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3
Poziome sieci geodezyjne - od triangulacji do poligonizacji. 1 Współrzędne prostokątne i biegunowe na płaszczyźnie Geodeci wiążą osie x,y z geograficznymi kierunkami; oś x kierują na północ (N), a oś y
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Technologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PISEMNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA
Układ graficzny CKE 2016 EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Nazwa kwalifikacji: Wykonywanie
* w przypadku braku numeru PESEL seria i numer paszportu lub innego dokumentu potwierdzającego tożsamość
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PISEMNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 06 Nazwa kwalifikacji: Obsługa geodezyjna inwestycji budowlanych Oznaczenie kwalifikacji: B.5 Numer zadania:
Księgarnia PWN: Wiesław Kosiński - Geodezja. Spis treści
Księgarnia PWN: Wiesław Kosiński - Geodezja Wstęp........................................................ 1 1. WIADOMOŚCI PODSTAWOWE.................................... 3 1.1. Rys historyczny rozwoju geodezji
Wykład 5. Pomiary sytuacyjne. Wykład 5 1
Wykład 5 Pomiary sytuacyjne Wykład 5 1 Proste pomiary polowe Tyczenie linii prostych Tyczenie kątów prostych Pomiar szczegółów topograficznych: - metoda ortogonalna, - metoda biegunowa, - związek liniowy.
Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PISEMNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
PODSTAWY NAWIGACJI Pozycja statku i jej rodzaje.
PODSTWY NWIGCJI Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje, zamiana kierunków. Systemy
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Definicje funkcji trygonometrycznych kąta ostrego
1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.
Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Obsługa geodezyjna inwestycji budowlanych Oznaczenie kwalifikacji: B.35 Numer zadania:
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA IM. KS. BRONISŁAWA MARKIEWICZA W JAROSŁAWIU. Syllabus
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA IM. KS. BRONISŁAWA MARKIEWICZA W JAROSŁAWIU Syllabus. Podstawowe informacje o przedmiocie Imię i nazwisko prowadzącego Tytuł, stopień naukowy Mariusz Frukacz dr inż. Instytut
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2016 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Rys Szkic sieci kątowo-liniowej. Nr X [m] Y [m]
5.14. Ścisłe wyrównanie sieci kątowo-liniowej z wykorzystaniem programu komputerowego B. Przykłady W prezentowanym przykładzie należy wyznaczyć współrzędne płaskie trzech punktów (1201, 1202 i 1203) sieci
SPIS TRE CI: Podstawy jednolito ci prac geodezyjnych na terenie Polski Technologie zakładania osnowy poziomej
SPIS TREŚCI: Słowo wstępne... 9 Rozdział 1: Podstawy jednolitości prac geodezyjnych na terenie Polski... 11 1.1. Założenia ogólne... 11 1.2. Powierzchnie odniesienia i układy współrzędnych... 13 1.2.1.
Geodezja i systemy GIS - opis przedmiotu
Geodezja i systemy GIS - opis przedmiotu Informacje ogólne Nazwa przedmiotu Geodezja i systemy GIS Kod przedmiotu W5 Geod._pNadGenYN7SF Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2 czerwca 2017
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.
Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1
GPSz2 WYKŁAD 9 10 STANDARDY TECHNICZNE DOTYCZĄCE OSNÓW POMIAROWYCH ORAZ POMIARÓW SYTUACYJNO-WYSOKOŚCIOWYCH I ICH INTERPRETACJA
GPSz2 WYKŁAD 9 10 STANDARDY TECHNICZNE DOTYCZĄCE OSNÓW POMIAROWYCH ORAZ POMIARÓW SYTUACYJNO-WYSOKOŚCIOWYCH I ICH INTERPRETACJA 1 STANDARDY DOTYCZACE POMIARÓW SYT. WYS. (W TYM OSNÓW POMIAROWYCH: SYTUACYJNYCH
Wykład 2 Układ współrzędnych, system i układ odniesienia
Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu
Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 201 CZĘŚĆ PISEMNA
Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów Oznaczenie kwalifikacji: B.34 Wersja arkusza: X Układ graficzny CKE 2013 Arkusz zawiera informacje
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
Standard techniczny określający zasady i dokładności pomiarów geodezyjnych dla zakładania wielofunkcyjnych znaków regulacji osi toru Ig-7
Załącznik do zarządzenia Nr 27/2012 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 19 listopada 2012 r. Standard techniczny określający zasady i dokładności pomiarów geodezyjnych dla zakładania wielofunkcyjnych
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Temat: Geodezyjne pomiary sytuacyjne w budownictwie inwentaryzacja powykonawcza fragmentów obiektów budowlanych. Str. 1.Sprawozdanie techniczne 2-3
Rok akademicki 2011/2012 Grupa BD1 LP3 Środa 10.15-13.00 Katedra Geodezji im. Kaspra WEIGLA ĆWICZENIE nr 2 Temat: Geodezyjne pomiary sytuacyjne w budownictwie inwentaryzacja powykonawcza fragmentów obiektów
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów.
Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Funkcje trygonometryczne dla kątów ostrych to stosunki długości odpowiednich dwóch boków trójkąta prostokątnego.
HARMONOGRAM PRAKTYKI Z GEODEZJI I 12 dni
HARMONOGRAM PRAKTYKI Z GEODEZJI I 12 dni Pomiary sytuacyjne 1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. Sprawy organizacyjne Wywiad terenowy i założenie punktów osnowy pomiarowej, wykonanie opisów topograficznych
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Geodezja / Wiesław Kosiński. - wyd. 6, dodr.1. Warszawa, Spis treści. Wstęp 1
Geodezja / Wiesław Kosiński. - wyd. 6, dodr.1. Warszawa, 2011 Spis treści Wstęp 1 1. WIADOMOŚCI PODSTAWOWE 3 1.1. Rys historyczny rozwoju geodezji na świecie i w Polsce 3 1.2. Podziały geodezji 6 1.3.
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Podstawy działań na wektorach - dodawanie
Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 018 Nazwa kwalifikacji: Obsługa geodezyjna inwestycji budowlanych Oznaczenie kwalifikacji: B.35 Numer zadania:
Zajęcia 1. Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych
KATEDRA GEODEZJI im. Kaspra WEIGLA Wydział Budownictwa i Inżynierii Środowiska Zajęcia 1 Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych Autor: Dawid Zientek Skrypty
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"
Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:
1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Punkty geodezyjne Wykład 9 "Poziome sieci geodezyjne - od triangulacji do poligonizacji" 4
Punkty geodezyjne Jeśli znaczne obszary Ziemi są mierzone, to pierwszą czynnością jest umieszczenie w terenie (stabilizacja) punktów geodezyjnych Punkty te są stabilizowane w terenie lub wybierane na budowlach
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY
MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Liczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
GEODEZJA II, wyd. 3, Andrzej Jagielski kod produktu: 4879 kategoria: Kategorie > WYDAWNICTWA > KSIĄŻKI > GEODEZJA
Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl
SYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
MIESIĄC NR TEMAT LEKCJI UWAGI 1 Lekcja organizacyjna, BHP na lekcji. 4 Powtórzenie i utrwalenie wiadomości z klasy I sem. I
Rozkład materiału nauczania w roku szkolnym 2016/2017, kl. II TG Geodezja Ogólna, ( II kl.-6h) mgr inż. Joanna Guzik, TECHNIK GEODETA 311104 Książka Andrzej Jagielski Geodezja I, Geodezja II MIESIĄC NR
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
PODZIAŁY NIERUCHOMOŚCI wg standardów
PODZIAŁY NIERUCHOMOŚCI wg standardów SPIS TREŚCI 30. Wznowienie znaków lub wyznaczenie punktów granicznych... 1 30.4. Protokół, O Którym Mowa W Art. 39 Ust. 4 Ustawy... 1 64. Dokumentacja osnowy... 3 65.
Dział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Zadanie egzaminacyjne
Zadanie egzaminacyjne W celu aktualizacji mapy zasadniczej należy założyć w terenie osnowę pomiarową sytuacyjno-wysokościową jako ciąg dwustronnie nawiązany. Współrzędne punktów nawiązania zamieszczone
http://www-users.mat.umk.pl/~pjedrzej/matwyz.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego i opanowanie przez nich podstawowych pojęć dotyczących
System mapy numerycznej GEO-MAP
mgr inż. Waldemar Izdebski GEO-SYSTEM Sp. z o.o. ul. Szaserów 120B m 14 04-349 Warszawa, tel. 610-36-54 System mapy numerycznej GEO-MAP System GEO-MAP jest wygodnym i prostym w obsłudze narzędziem możliwym
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
przybliżeniema Definicja
Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
KATEDRA EKSPLOATACJI ZŁÓŻ
Strona 1 z 5 Z1-PU7 Wydanie N1 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: GEODEZJA. Karta przedmiotu ważna od roku akademickiego: 2017/2018 4. Poziom kształcenia: studia pierwszego stopnia