Losowość w rozproszonym modelu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Losowość w rozproszonym modelu"

Transkrypt

1 Losowość w rozproszonym modelu Model: ALP520 - Wykład z Algorytmów Probabilistycznych p.2

2 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć ALP520 - Wykład z Algorytmów Probabilistycznych p.2

3 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć brak wspólnej pamięci typu PRAM ALP520 - Wykład z Algorytmów Probabilistycznych p.2

4 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć brak wspólnej pamięci typu PRAM wymiana informacji odbywa sie za pomoca połaczeń ALP520 - Wykład z Algorytmów Probabilistycznych p.2

5 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć brak wspólnej pamięci typu PRAM wymiana informacji odbywa sie za pomoca połaczeń Złożoność czasowa: mierzona liczba równoległych rund ALP520 - Wykład z Algorytmów Probabilistycznych p.2

6 Losowość w rozproszonym modelu Problem: Porozumienie bizantyjskie ALP520 - Wykład z Algorytmów Probabilistycznych p.3

7 Losowość w rozproszonym modelu Problem: Porozumienie bizantyjskie Trochę historii: ALP520 - Wykład z Algorytmów Probabilistycznych p.3

8 Losowość w rozproszonym modelu Problem: Porozumienie bizantyjskie Trochę historii: Oblężenie Konstantynopola (Bizancjum) 1982(Lamport, Pease i Shosta) formułuja klasyczny problem koordynacji w rozproszonym modelu obliczeń: Czy zbiór jednocześnie pracujacych procesorów może osiagn ać wspólne porozumienie mimo błędnej pracy pewnej grupy spośród nich? ALP520 - Wykład z Algorytmów Probabilistycznych p.3

9 Porozumienie bizantyjskie Bład ( zwany bizantyjskim) oznacza, że wadliwy procesor może się zachowywać zupełnie dowolnie i nawet spiskować z innymi wadliwymi procesorami w celu udaremnienia zrealizowania zadania pozostałym. ALP520 - Wykład z Algorytmów Probabilistycznych p.4

10 Porozumienie bizantyjskie Bład ( zwany bizantyjskim) oznacza, że wadliwy procesor może się zachowywać zupełnie dowolnie i nawet spiskować z innymi wadliwymi procesorami w celu udaremnienia zrealizowania zadania pozostałym. Identyfikatory wadliwych procesorów nie sa znane i bład może wystapić w dowolnym, nieprzewidzianym momencie. ALP520 - Wykład z Algorytmów Probabilistycznych p.4

11 Zastosowania NASA i zostosowania militarne system kontroli lotów zastosowania w medycynie wybory elektroniczne elektroniczne aukcje elektroniczne negocjacje ALP520 - Wykład z Algorytmów Probabilistycznych p.5

12 Zastosowania NASA i zostosowania militarne system kontroli lotów zastosowania w medycynie wybory elektroniczne elektroniczne aukcje elektroniczne negocjacje ALP520 - Wykład z Algorytmów Probabilistycznych p.5

13 Problem Porozumienia Bizantyjskiego Czy możliwe jest porozumienie procesorów przy dużej liczbie wadliwych (przekłamujacych) jednostek? ALP520 - Wykład z Algorytmów Probabilistycznych p.6

14 Problem Porozumienia Bizantyjskiego Czy możliwe jest porozumienie procesorów przy dużej liczbie wadliwych (przekłamujacych) jednostek? Dane: zbiór n procesorów: t wadliwych i n t dobrych i [n] procesor P i posiada wejściowy bit b i {0, 1} i musi podać na wyjściu swoja decyzję d i {0, 1} ALP520 - Wykład z Algorytmów Probabilistycznych p.6

15 Problem Porozumienia Bizantyjskiego Czy możliwe jest porozumienie procesorów przy dużej liczbie wadliwych (przekłamujacych) jednostek? Dane: zbiór n procesorów: t wadliwych i n t dobrych i [n] procesor P i posiada wejściowy bit b i {0, 1} i musi podać na wyjściu swoja decyzję d i {0, 1} Założenia dotyczace komunikacji: komunikacja synchroniczna identyfikacja (odbiorca zna identyfikator nadawcy) peer-to-peer ( graf pełny) ALP520 - Wykład z Algorytmów Probabilistycznych p.6

16 Założenia dotyczace protokołu ALP520 - Wykład z Algorytmów Probabilistycznych p.7

17 Założenia dotyczace protokołu i [n t],b i = b j [n t],d j = b jeśli wszystkie dobre procesory maja ten sam bit wejściowy, to taka jest ich wspólna decyzja P i,p j : i,j [n t], d i = d j dobre procesory kończa ze wspólna decyzja ALP520 - Wykład z Algorytmów Probabilistycznych p.7

18 Założenia dotyczace protokołu i [n t],b i = b j [n t],d j = b jeśli wszystkie dobre procesory maja ten sam bit wejściowy, to taka jest ich wspólna decyzja P i,p j : i,j [n t], d i = d j dobre procesory kończa ze wspólna decyzja w czasie jednej rundy każdy procesor może: wysłać jeden komunikat do każdego innego procesora (niekoniecznie ten sam) odebrać komunikat od każdego procesora ALP520 - Wykład z Algorytmów Probabilistycznych p.7

19 Założenia dotyczace protokołu Dobre procesory stosuja się do reguł. ALP520 - Wykład z Algorytmów Probabilistycznych p.8

20 Założenia dotyczace protokołu Dobre procesory stosuja się do reguł. Wadliwe procesory moga wysyłać zupełnie dowolne komunikaty do dowolnych procesorów. Zakładamy, że spiskuja ze soba (na poczatku każdej rundy) w celu zmaksymalizowania zniszczeń. ALP520 - Wykład z Algorytmów Probabilistycznych p.8

21 Założenia dotyczace protokołu Dobre procesory stosuja się do reguł. Wadliwe procesory moga wysyłać zupełnie dowolne komunikaty do dowolnych procesorów. Zakładamy, że spiskuja ze soba (na poczatku każdej rundy) w celu zmaksymalizowania zniszczeń. Badamy liczbę rund niezbędna do osiagnięcia porozumienia. ALP520 - Wykład z Algorytmów Probabilistycznych p.8

22 Wynik deterministyczny Dowolny protokół deterministyczny wymaga t + 1 rund (praca Fischera i Lyncha 1982). ALP520 - Wykład z Algorytmów Probabilistycznych p.9

23 Wynik deterministyczny Dowolny protokół deterministyczny wymaga t + 1 rund (praca Fischera i Lyncha 1982). Pokażemy losowy algorytm o stałej oczekiwanej liczbie rund (triumf losowości). ALP520 - Wykład z Algorytmów Probabilistycznych p.9

24 Wynik deterministyczny Dowolny protokół deterministyczny wymaga t + 1 rund (praca Fischera i Lyncha 1982). Pokażemy losowy algorytm o stałej oczekiwanej liczbie rund (triumf losowości). Założenia : ALP520 - Wykład z Algorytmów Probabilistycznych p.9

25 Wynik deterministyczny Dowolny protokół deterministyczny wymaga t + 1 rund (praca Fischera i Lyncha 1982). Pokażemy losowy algorytm o stałej oczekiwanej liczbie rund (triumf losowości). Założenia : Ktoś (Bóg?) rzuca uczciwa moneta w każdym kroku (uproszczenie prezentacji). t n 8, n = 8k, L = 8 5n + 1, H = 3 4 n + 1, G = 7 8 n (wystarczy L n 2 + t + 1, H L + t) ALP520 - Wykład z Algorytmów Probabilistycznych p.9

26 Losowy algorytm rozproszony (Rabin) Równolegle, każdy procesor wykonuje następujaca procedurę: ALP520 - Wykład z Algorytmów Probabilistycznych p.10

27 Losowy algorytm rozproszony (Rabin) Równolegle, każdy procesor wykonuje następujaca procedurę: Algorytm BYZGEN In: bit b i Out: decyzja d i 1. glos := b i 2. w każdej rundzie wykonaj (a) Rozgłoś wszystkim glos (b) Odbierz glosy od pozostałych procesorów (c) Maj wartość, która wystapiła u większości spośród wszystkich n procesorów (d) ilosc liczba wystapień Maj (e) if moneta = ORZEL then prog L else prog H (f) ilosc prog then glos Maj else glos 0. (g) ilosc G then d i := Maj (na stałe). ALP520 - Wykład z Algorytmów Probabilistycznych p.10

28 Analiza Algorytmu BYZGEN Fakt. Jeśli wszystkie dobre procesory rozpoczna jakaś rundę z ta sama wartościa poczatkow a, to w stałej liczbie rund wartość ta będzie ich wspólna decyzja. ALP520 - Wykład z Algorytmów Probabilistycznych p.11

29 Analiza Algorytmu BYZGEN Fakt. Jeśli wszystkie dobre procesory rozpoczna jakaś rundę z ta sama wartościa poczatkow a, to w stałej liczbie rund wartość ta będzie ich wspólna decyzja. Przypadek trudniejszy: różne wartości na starcie. ALP520 - Wykład z Algorytmów Probabilistycznych p.11

30 Analiza Algorytmu BYZGEN Fakt. Jeśli wszystkie dobre procesory rozpoczna jakaś rundę z ta sama wartościa poczatkow a, to w stałej liczbie rund wartość ta będzie ich wspólna decyzja. Przypadek trudniejszy: różne wartości na starcie. 1) dwa dobre procesory obliczaja różne wartości Maj w (c) ilosc nie przekracza progu i w następnym kroku d i = 0 i [n t]. 2) wszystkie dobre procesory obliczaja tę sama wartość Maj ALP520 - Wykład z Algorytmów Probabilistycznych p.11

31 Analiza Algorytmu BYZGEN cd. W jaki sposób wadliwe procesory moga przeszkodzić dobrym w podjęciu wspólnej decyzji w jednej rundzie? ALP520 - Wykład z Algorytmów Probabilistycznych p.12

32 Analiza Algorytmu BYZGEN cd. W jaki sposób wadliwe procesory moga przeszkodzić dobrym w podjęciu wspólnej decyzji w jednej rundzie? zmiana wartości progu L lub H ( co najwyżej jednej z nich w jednej rundzie, bo różnica t) ALP520 - Wykład z Algorytmów Probabilistycznych p.12

33 Analiza Algorytmu BYZGEN cd. W jaki sposób wadliwe procesory moga przeszkodzić dobrym w podjęciu wspólnej decyzji w jednej rundzie? zmiana wartości progu L lub H ( co najwyżej jednej z nich w jednej rundzie, bo różnica t) losowość ma im w tym przeszkodzić ALP520 - Wykład z Algorytmów Probabilistycznych p.12

34 Analiza Algorytmu BYZGEN cd. W jaki sposób wadliwe procesory moga przeszkodzić dobrym w podjęciu wspólnej decyzji w jednej rundzie? zmiana wartości progu L lub H ( co najwyżej jednej z nich w jednej rundzie, bo różnica t) losowość ma im w tym przeszkodzić zatem z prawdopodobieństwem 1 2 mamy zły prog ALP520 - Wykład z Algorytmów Probabilistycznych p.12

35 Analiza Algorytmu BYZGEN cd. W jaki sposób wadliwe procesory moga przeszkodzić dobrym w podjęciu wspólnej decyzji w jednej rundzie? zmiana wartości progu L lub H ( co najwyżej jednej z nich w jednej rundzie, bo różnica t) losowość ma im w tym przeszkodzić zatem z prawdopodobieństwem 1 2 mamy zły prog powtarzajac do pierwszego sukcesu ( prawdziwa wartość progu) wykonujemy średnio 2 rundy. ALP520 - Wykład z Algorytmów Probabilistycznych p.12

36 Analiza Algorytmu BYZGEN cd. W jaki sposób wadliwe procesory moga przeszkodzić dobrym w podjęciu wspólnej decyzji w jednej rundzie? zmiana wartości progu L lub H ( co najwyżej jednej z nich w jednej rundzie, bo różnica t) losowość ma im w tym przeszkodzić zatem z prawdopodobieństwem 1 2 mamy zły prog powtarzajac do pierwszego sukcesu ( prawdziwa wartość progu) wykonujemy średnio 2 rundy. jest to algorytm Las Vegas ALP520 - Wykład z Algorytmów Probabilistycznych p.12

37 Podsumowanie ALP520 - Wykład z Algorytmów Probabilistycznych p.13

38 Podsumowanie Twierdzenie. Wartość oczekiwana liczby rund algorytmu losowego BYZGEN do momentu osiagnięcia porozumienia jest stała. ALP520 - Wykład z Algorytmów Probabilistycznych p.13

39 Zadania/Pytania ALP520 - Wykład z Algorytmów Probabilistycznych p.14

40 Zadania/Pytania 1. Dodać kryterium stopu do procedury BYZGEN zatrzymujace wszystkie dobre procesory po osiagnięciu porozumienia. ALP520 - Wykład z Algorytmów Probabilistycznych p.14

41 Zadania/Pytania 1. Dodać kryterium stopu do procedury BYZGEN zatrzymujace wszystkie dobre procesory po osiagnięciu porozumienia. 2. Czy w procedurze BYZGEN wszystkie dobre procesory podejmuja decyzję w tej samej rundzie? ALP520 - Wykład z Algorytmów Probabilistycznych p.14

42 Zadania/Pytania 1. Dodać kryterium stopu do procedury BYZGEN zatrzymujace wszystkie dobre procesory po osiagnięciu porozumienia. 2. Czy w procedurze BYZGEN wszystkie dobre procesory podejmuja decyzję w tej samej rundzie? 3. Model asynchroniczny? ALP520 - Wykład z Algorytmów Probabilistycznych p.14

Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych

Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2018/19 Problem: znajdowanie

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Detekcja zakleszczenia (1)

Detekcja zakleszczenia (1) Detekcja zakleszczenia (1) Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Procesy aktywne i pasywne Definicja zakleszczenia Problem detekcji wystąpienia zakleszczenia Detekcja zakleszczenia

Bardziej szczegółowo

Mechanizmy pracy równoległej. Jarosław Kuchta

Mechanizmy pracy równoległej. Jarosław Kuchta Mechanizmy pracy równoległej Jarosław Kuchta Zagadnienia Algorytmy wzajemnego wykluczania algorytm Dekkera Mechanizmy niskopoziomowe przerwania mechanizmy ochrony pamięci instrukcje specjalne Mechanizmy

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Stan globalny. Krzysztof Banaś Systemy rozproszone 1

Stan globalny. Krzysztof Banaś Systemy rozproszone 1 Stan globalny Krzysztof Banaś Systemy rozproszone 1 Stan globalny Z problemem globalnego czasu jest związany także problem globalnego stanu: interesuje nas stan systemu rozproszonego w konkretnej pojedynczej

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia

Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@kaims.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

5. Model komunikujących się procesów, komunikaty

5. Model komunikujących się procesów, komunikaty Jędrzej Ułasiewicz str. 1 5. Model komunikujących się procesów, komunikaty Obecnie stosuje się następujące modele przetwarzania: Model procesów i komunikatów Model procesów komunikujących się poprzez pamięć

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część VII - Systemy rozproszone, wstęp

Algorytmy Równoległe i Rozproszone Część VII - Systemy rozproszone, wstęp Algorytmy Równoległe i Rozproszone Część VII - Systemy rozproszone, wstęp Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Wykład 6. Wyszukiwanie wzorca w tekście

Wykład 6. Wyszukiwanie wzorca w tekście Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski

Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski Dane w sieciach (i inne historie) Marcin Bieńkowski Jak przechowywać dane w sieciach (strony WWW, bazy danych, ) tak, żeby dowolne ciągi odwołań do (części) tych obiektów mogły być obsłużone małym kosztem?

Bardziej szczegółowo

Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min.

Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min. Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min. Temat lekcji: Adresy IP. Konfiguracja stacji roboczych. Część I. Cele lekcji: wyjaśnienie

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część IV - Model PRAM

Algorytmy Równoległe i Rozproszone Część IV - Model PRAM Algorytmy Równoległe i Rozproszone Część IV - Model PRAM Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Przetwarzanie rozproszone

Przetwarzanie rozproszone Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Proces sekwencyjny Komunikaty, kanały komunikacyjne Stan kanału Operacje komunikacyjne Model formalny procesu sekwencyjnego Zdarzenia Warunek

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Problem detekcji zakończenia

Problem detekcji zakończenia Problem detekcji zakończenia Przykład sortowanie rozproszone Rozważmy problem sortowania rozproszonego zbioru X składającego się z v różnych liczb naturalnych, w środowisku rozproszonym o n węzłach (procesorach),

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994

Bardziej szczegółowo

Wirtualna centralka telefoniczna P2P

Wirtualna centralka telefoniczna P2P Spis treści Wirtualna centralka telefoniczna P2P opis protokołu Spis treści...1 Streszczenie...2 Cel...2 Założenia...2 Definicje...2 Format komunikatów...2 Typy proste...2 Stałe używane w opisie komunikatów...3

Bardziej szczegółowo

Przesyłania danych przez protokół TCP/IP

Przesyłania danych przez protokół TCP/IP Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do

Bardziej szczegółowo

koniec punkt zatrzymania przepływów sterowania na diagramie czynności

koniec punkt zatrzymania przepływów sterowania na diagramie czynności Diagramy czynności opisują dynamikę systemu, graficzne przedstawienie uszeregowania działań obrazuje strumień wykonywanych czynności z ich pomocą modeluje się: - scenariusze przypadków użycia, - procesy

Bardziej szczegółowo

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24 Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 24 Przypomnienie W poprzednim odcinku Podstawy warstwy pierwszej

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Sieci komputerowe. Wykład 1: Podstawowe pojęcia i modele. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 1: Podstawowe pojęcia i modele. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 1: Podstawowe pojęcia i modele Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 1 1 / 14 Komunikacja Komunikacja Komunikacja = proces

Bardziej szczegółowo

WEP: przykład statystycznego ataku na źle zaprojektowany algorytm szyfrowania

WEP: przykład statystycznego ataku na źle zaprojektowany algorytm szyfrowania WEP: przykład statystycznego ataku na źle zaprojektowany algorytm szyfrowania Mateusz Kwaśnicki Politechnika Wrocławska Wykład habilitacyjny Warszawa, 25 października 2012 Plan wykładu: Słabości standardu

Bardziej szczegółowo

Risk-Aware Project Scheduling. SimpleUCT

Risk-Aware Project Scheduling. SimpleUCT Risk-Aware Project Scheduling SimpleUCT DEFINICJA ZAGADNIENIA Resource-Constrained Project Scheduling (RCPS) Risk-Aware Project Scheduling (RAPS) 1 tryb wykonywania działań Czas trwania zadań jako zmienna

Bardziej szczegółowo

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Architektura komputerów. Układy wejścia-wyjścia komputera

Architektura komputerów. Układy wejścia-wyjścia komputera Architektura komputerów Układy wejścia-wyjścia komputera Wspópraca komputera z urządzeniami zewnętrznymi Integracja urządzeń w systemach: sprzętowa - interfejs programowa - protokół sterujący Interfejs

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania, Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią

Bardziej szczegółowo

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r.

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r. Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu Ireneusz Szcześniak Politechnika Śląska 20 czerwca 2002 r. 2 Plan prezentacji Wprowadzenie Prezentacja trójwymiarowych sieci

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie tabu

Optymalizacja. Przeszukiwanie tabu dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Naturalny sposób powstania algorytmu Algorytm optymalizacji lokalnej Niezdolność wyjścia z lokalnych

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

Sortowanie przez scalanie

Sortowanie przez scalanie Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2 Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera

Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera Praca dyplomowa magisterska Opiekun: prof. nzw. Zbigniew Kotulski Andrzej Piasecki apiaseck@mion.elka.pw.edu.pl Plan

Bardziej szczegółowo

Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej

Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 8 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego Metoda dialogu diagnostycznego między komputerami sieci komputerowej, zalicza się do, tak zwanych, rozproszonych metod samodiagnozowania

Bardziej szczegółowo

Podstawy i języki programowania

Podstawy i języki programowania Podstawy i języki programowania Laboratorium 1 - wprowadzenie do przedmiotu mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 16 października 2017 1 / 25 mgr inż. Krzysztof Szwarc Podstawy i

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 12 - Algorytmy i protokoły kwantowe Jarosław Miszczak IITiS PAN Gliwice 19/05/2016 1 / 39 1 Motywacja rozwoju informatyki kwantowej. 2 Stany kwantowe. 3 Notacja Diraca.

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń

Bardziej szczegółowo

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego 1 Historia i pojęcia wstępne Przetwarzanie współbieżne realizacja wielu programów (procesów) w taki sposób, że ich

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU OPIS PRZEDMIOTU Nazwa przedmiotu Systemy rozproszone Kod przedmiotu Wydział Wydział Matematyki, Fizyki i Techniki Instytut/Katedra Instytut Mechaniki i Informatyki Stosowanej Kierunek Informatyka Specjalizacja/specjalność

Bardziej szczegółowo

Zwiększanie losowości

Zwiększanie losowości Zwiększanie losowości Maciej Stankiewicz Wydział Matematyki, Fizyki i Informatyki UG Krajowe Centrum Informatyki Kwantowej XIII Matematyczne Warsztaty KaeNeMów Hel, 20-22 maja 2016 Maciej Stankiewicz Zwiększanie

Bardziej szczegółowo

Wykład 5: Specyfikacja na poziomie systemowym

Wykład 5: Specyfikacja na poziomie systemowym Systemy wbudowane Wykład 5: Specyfikacja na poziomie systemowym Ogólny model systemu informatycznego Sieć komunikujących się procesów P1 P3 P2 Kiedy procesy się aktywują? Czy jest synchronizacja między

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Kolejkowanie wiadomości Standard MQ (JMS)

Kolejkowanie wiadomości Standard MQ (JMS) Kolejkowanie wiadomości Standard MQ (JMS) Kolejkowanie wiadomości Standard wymiany informacji wiadomości (ang. message) między procesami (mogą być rozproszone) Przykładowe rozwiązania: - RabbitMQ - ActiveMQ

Bardziej szczegółowo

Sieci komputerowe. Wykład 11: Podstawy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 11: Podstawy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 11: Podstawy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 35 Spis treści 1 Szyfrowanie 2 Uwierzytelnianie

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa

Bardziej szczegółowo

Bizantyńscy generałowie: zdrada, telekomunikacja i fizyka

Bizantyńscy generałowie: zdrada, telekomunikacja i fizyka Bizantyńscy generałowie: zdrada, telekomunikacja i fizyka P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ 26 września 2018 P. F. Góra (WFAIS UJ) Bizantyńscy generałowie 26 września 2018

Bardziej szczegółowo

Hardware mikrokontrolera X51

Hardware mikrokontrolera X51 Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)

Bardziej szczegółowo

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś   Wykład 13 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie

Bardziej szczegółowo

Podstawy symulacji komputerowej

Podstawy symulacji komputerowej Podstawy symulacji komputerowej Wykład 3 Generatory liczb losowych Wojciech Kordecki wojciech.kordecki@pwsz-legnica.eu Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział Nauk Technicznych

Bardziej szczegółowo

Poprawność algorytmów

Poprawność algorytmów Poprawność algorytmów Jeśli uważasz, że jakiś program komputerowy jest bezbłędny, to się mylisz - po prostu nie zauważyłeś jeszcze skutków błędu, który jest w nim zawarty. Jakie błędy można popełnić? Błędy

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Programowanie współbieżne Wstęp do obliczeń równoległych. Rafał Skinderowicz

Programowanie współbieżne Wstęp do obliczeń równoległych. Rafał Skinderowicz Programowanie współbieżne Wstęp do obliczeń równoległych Rafał Skinderowicz Plan wykładu Modele obliczeń równoległych Miary oceny wydajności algorytmów równoległych Prawo Amdahla Prawo Gustavsona Modele

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo