Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
|
|
- Marcin Janicki
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x) oznacza deszyfrowanie kryptogramu x kluczem K. Własność RSA: Niech K 1, K 2 to para kluczy dla algorytmu RSA. Wówczas: D K1 (E K2 (x)) = D K2 (E K1 (x)). Powód: szyfrowanie i deszyfrowanie to ta sama operacja. Zastosowania: szyfrowanie; uwierzytelnianie; 1.1 Algorytm RSA Wybór kluczy 1. Losowy wybór (dużych) liczb pierwszych p i q. 2. Losowy wybór liczby e spełniającej warunek: e i (p 1)(q 1) są względnie pierwsze. 1
2 3. Wybór za pomocą algorytmu Euklidesa liczby d takiej, że e d = 1 mod (p 1)(q 1). 4. Wyznaczenie n = p q i usunięcie liczb p, q. 5. Niech para [e, n] to klucz publiczny, para [d, n] to klucz prywatny. Szyfrowanie Liczbę m < n szyfrujemy w następujący sposób: E [e,n] (m) = m e mod n. Deszyfrowanie Kryptogram c deszyfrujemy w następujący sposób: D [d,n] (c) = c d mod n. Uwaga: szyfrowana wiadomość m na nie więcej bitów niż n, podobnie jej zaszyfrowana postać E [e,n] (m). Narzędzia matematyczne potrzebne przy analizie własności RSA: Twierdzenie 1 (Eulera) Niech φ(n) oznacza liczbę liczb naturalnych mniejszych od n, które sa względnie pierwsze z n. Niech x < n takie, że x i n sa względnie pierwsze. Wówczas x φ(n) = 1 mod n. Wniosek 1 (Twierdzenie Fermata) Jeśli n jest liczba pierwsza, to x n 1 = 1 mod n 2
3 dla każdego x < n. Algorytm Euklidesa: Dane: liczby naturalne m > n. Wyniki: d =NWD(m, n) oraz s, t takie, że d = sm + tn. 1. a := m, a := n, s := 1, s := 0, t := 0, t := 1 2. Dopóki a 0, powtarzaj: 3. d := a q := a div a (a, a ) := (a, a qa ) (s, s ) := (s, s qs ) (t, t ) := (t, t qt ) Jak wykorzystać algorytm Euklidesa do wyznaczenia d: warunek e d = 1 mod (p 1)(q 1) jest równoważny znalezieniu całkowitych d, f takich, że e d + f (p 1)(q 1) = 1 = NWD(e, (p 1)(q 1)). Poprawność deszyfrowania: Twierdzenie 2 Niech [e, n], [d, n] to para kluczy RSA. Wówczas dla każdego m < n zachodzi: D [d,n] (E [e,n] (m)) = m. 3
4 Dowód. Jeśli NWD(m, n) = 1: D [d,n] (E [e,n] (m)) = D [d,n] (m e mod n) = m ed mod n. Z faktu, że e d = 1 mod (p 1)(q 1) uzyskujemy: e d = 1 + x(p 1)(q 1) = 1 + φ(n), dla pewnego naturalnego x. Stosując twierdzenie Eulera: Jeśli NWD(m, n) > 1: m ed = m (m φ(n) ) x = m mod n. ten przypadek ma bardzo małe prawdoodobieństwo; wystąpienie tego przypadku pozwala znaleźć p i q a tym samym d (na podstawie e i n): oznacza to złamanie kluczy; niemniej, również w tym przypadku deszyfrowanie da poprawny wynik (dowód w oparciu o twierdzenie Fermata i chińskie twierdzenie o resztach). Bezpieczeństwo i implementacja RSA: 1. podstawowa metoda łamania RSA: rozkład n na czynniki pierwsze (faktoryzacja); znane tylko algorytmy o złożoności wykładniczej, w praktyce pozwoliły złamać tylko klucze 512-bitowe; 4
5 2. generowanie losowych liczb pierwszych: możliwe dzięki dużej gęstości liczb pierwszych (frakcja 1/ ln n w przedziale [2, n]); 3. sprawdzanie pierwszości liczb: wydajne algorytmy probabilistyczne; algorytm deterministyczny o wielomianowym czasie działania. Uwaga: sprawdzanie pierwszości może wykluczyć pierwszość liczby, bez podania jej dzielników (p. faktoryzacja). Przyklad 1 daddg 1.2 Sprawdzanie pierwszości Uwagi: 1. Istnieje deterministyczny algorytm sprawdzający pierwszość w wielomianowym czasie (alg. Agrawal-Kayal- Saxena). 2. W praktyce najpopularniejsze są probabilistyczne testy pierwszości, np. (oparte na teście Fermata), test Solovaya- Strassena i test Millera-Rabina. Liczbę w nazywamy świadkiem pierwszości dla liczby n jeśli w < n oraz w n 1 = 1 mod n. Test Fermata (dla liczby n): 1. Powtarzamy k razy: 5
6 (a) Wybieramy losowo liczbę w taką, że w < n. Jeśli NWD(w, n) > 1, to n jest liczbą złożoną. (b) Jeśli w n 1 1 mod n, to n jest liczbą złożoną. 2. Jeśli żadna z k powyższych prób nie zakończyła się stwierdzeniem, że n jest liczbą złożoną, stwierdzamy, że n jest liczbą pierwszą. Lemat 1 Niech S będzie zbiorem liczb względnie pierwszych z n (i mniejszych od n). Wtedy albo każdy element S jest świadkiem pierwszości n albo co najwyżej połowa jest świadkami pierwszości S. Dowód: Niech w 1,..., w t będą wszystkimi świadkami pierwszości n. Załóżmy, że istnieje w S, który nie jest świadkiem pierwszości n. Niech u i = w i w dla i [1, t]. Pokażemy, że u i u j dla i j oraz u i nie jest świadkiem pierwszości dla każdego i, j [1, t]: u i u j : Załóżmy nie wprost, że u i = u j Zauważmy, że u i u j = w(w i w j ) = 0, czyli n dzieli u i u j. Skoro w S, czyli w jest względnie pierwszy z n, więc n dzieli w i w j. Ale n < w i w j < n, więc w i = w j sprzeczność. u n 1 i = (ww i ) n 1 = w n 1 w n 1 i = w n 1 1 mod n. 6
7 Wniosek 2 Jeśli n jest liczba złożona dla której istnieje w < n które nie jest świadkiem pierwszości n, to test Fermata zwraca dla n poprawna odpowiedź z prawdopodobieństwem 1 1/2 k. Jeśli n jest liczba pierwsza to test Fermata zawsze zwraca dla n poprawna odpowiedź. Problem: istnieją liczby złożone, dla których wszystkie liczby względnie pierwsze (i mniejsze) są świadkami pierwszości. Rozwiazanie: test Millera-Rabina dla liczby n. Niech n 1 = 2 t m, gdzie m jest liczbą nieparzystą. Powtarzamy k razy: 1. Wybieramy losowo a < n i wyznaczamy w = a m mod n. 2. Niech i będzie minimalną wartością taką, że w 2i 1 mod n lub i = t. 3. Jeśli w 2t 1 mod n lub w 2i 1 1 mod n, to stwierdzamy, że n jest liczbą złożoną. Jeśli żadna z k powyższych prób nie zakończyła się stwierdzeniem, że n jest liczbą złożoną, stwierdzamy, że n jest liczbą pierwszą. Twierdzenie 3 Dla każdej liczby pierwszej test Millera-Rabina zwraca poprawna odpowiedź. Dla każdej liczby złożonej test Millera-Rabina zwraca poprawna odpowiedź z prawdopodobieństwem co najmniej 1 (1/4) k. 7
8 1.3 Bezpieczeństwo RSA 1. Nie należy stosować dwóch lub więcej par kluczy z tą samą wartością n. 2. Łamanie RSA ma podobną trudność do zadania rozkładu liczb na czynniki pierwsze. 2 Jednokierunkowe funkcje haszujace Pożądane własności funkcji h: Jednokierunkowa: dla danego y praktycznie niemożliwe znalezienie x takiego, że h(x) = y; natomiast samo wyznaczanie wartości funkcji h jest łatwe (obliczeniowo). Słabo bezkonfliktowa: dla danego x niemożliwe (w praktyce) wyznaczenie x takiego, że h(x) = h(x ). Silnie bezkonfliktowa: praktycznie nie jest możliwe znalezienie x, x takich, że h(x) = h(x ). Dla zastosowań interesuje nas znalezienie takiej funkcji h (albo iteracyjnego zastosowania pewnej funkcji), która jest jednokierunkowa i bezkonfliktowa oraz przekształca ciągi (liczby) dowolnej długości w ciągi (liczby) o ustalonej długości: Zastosowania: przechowywanie haseł; h : {0, 1} {0, 1} k. 8
9 zabezpieczanie przed zmianami (MAC); odcisk palca. 3 Zastosowania Podpis elektroniczny, szybkie szyfrowanie, uwierzytelnianie, bezpieczna komunikacja,... 9
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Liczby pierwsze wielomianowo - ekstremalnie trudne?
Liczby pierwsze wielomianowo - ekstremalnie trudne? Wojciech Czerwiński Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski 28 sierpnia 2011 Wojciech Czerwiński PRIMES w P 1/12 Problem Wejście:
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Parametry systemów klucza publicznego
Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA
Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne
Elementy teorii liczb. Matematyka dyskretna
Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Elementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy
Pozostałe tematy Barbara Przebieracz 04.06.2016 Spis treści 1 2 Podstawowe pojęcia Kryptografia to nauka o metodach przesyłania wiadomości w zakamuflowanej postaci tak, aby tylko adresat mógł odrzucić
Badanie pierwszości liczby, klasa NP i test Rabina
Badanie pierwszości liczby, klasa NP i test Rabina Mateusz Chynowski 11 stycznia 2009 Liczby pierwsze są bardzo istotne zarówno w matematyce, jak i informatyce. W tej drugiej nauce istnieje dość poważny
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................
Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Kryptografia na procesorach wielordzeniowych
Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
WSIZ Copernicus we Wrocławiu
Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.
Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5
Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku
Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy
Problem P = NP. albo czy informacja może. biec na skróty
Problem P = NP albo czy informacja może biec na skróty Damian Niwiński Problem P=NP? znalazł si e wśród problemów milenijnych, bo mówi coś istotnego o świecie, jego rozwiazanie wydaje sie wymagać przełomu
Zadanie 2: Kryptosystem Rabina
Informatyka, studia dzienne, inż. II st. semestr VI Podstawy kryptografii 2010/2011 Prowadzący: prof. dr hab. inż. Włodzimierz Jemec poniedziałek, 8:30 Data oddania: Ocena: Paweł Tarasiuk 151021 Michał
Szyfrowanie RSA (Podróż do krainy kryptografii)
Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja
Matematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
Bezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
Wprowadzenie ciag dalszy
Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania
PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna
PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Informatyka na WPPT. prof. dr hab. Jacek Cichoń dr inż. Marek Klonowski
prof. dr hab. Jacek Cichoń jacek.cichon@pwr.wroc.pl dr inż. Marek Klonowski marek.klonowski@pwr.wroc.pl Instytut Matematyki i Informatyki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
Liczby pierwsze. Jacek Nowicki Wersja 1.0
Liczby pierwsze Jacek Nowicki Wersja 1.0 Wprowadzenie do liczb pierwszych www.liczbypierwsze.com Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją
Liczby pierwsze. Jacek Nowicki Wersja 0.92
Jacek Nowicki Wersja 0.92 Wprowadzenie do liczb pierwszych Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją liczby, które nie mogą być rozłożone w
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.
Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą
Liczby całkowite. Zadania do pierwszych dwóch lekcji
Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Szyfrowanie RSA. Liczba pierwsza jest liczbą naturalną posiadającą dokładnie dwa różne podzielniki - 1 oraz samą siebie.
Szyfrowanie RSA Liczby pierwsze Na początek przypomnijmy sobie parę użytecznych wiadomości o liczbach pierwszych. Są one znane od starożytności a ich znaczenie jest ogromne w matematyce i tym bardziej
Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S.
Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Plecak ma być zapakowany optymalnie, tzn. bierzemy tylko te przedmioty,
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący
urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania
Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.
Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie
Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Kryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Podstawy programowania. Podstawy C# Przykłady algorytmów
Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania
Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography
W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE. Warszawa, 11 kwietnia 2013 r.
W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE W. Guzicki: Liczby pierwsze 2 Zagadnienie odróżniania liczb pierwszych od złożonych i rozkładanie tych ostatnich na ich czynniki pierwsze uchodzi za najważniejszeiodużympraktycznymznaczeniuwarytmetyce...samapowaga
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
Kongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Matematyka dyskretna
Matematyka dyskretna Andrzej Szepietowski Matematyka dyskretna Wydawnictwo Uniwersytetu Gdańskiego Gdańsk 2018 Recenzja prof. dr hab. Marek Zaionc Redakcja wydawnicza Dorota Zgaińska Projekt okładki i
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Kongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
MADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie
Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu
Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
Pierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
Algorytmy i Struktury Danych, 9. ćwiczenia
Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka KRYPTOGRAFIA STOSOWANA APPLIED CRYPTOGRAPHY Forma studiów: stacjonarne Kod przedmiotu: IO1_03 Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 5/15 Liczby pierwsze Ze wstępu do ksiązki E. Gracjana: liczby pierwsze to niesforna zgraja. Pojawiają się tam gdzie chcą, bez ostrzeżenia,
Zadanie 1. Suma silni (11 pkt)
2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej
Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej Andrzej Chmielowiec Centrum Modelowania Matematycznego Sigma, andrzej.chmielowiec@cmmsigma.eu 26maja2010 Podstawy matematyczne
Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:
Ataki na algorytm RSA
Ataki na algorytm RSA Andrzej Chmielowiec 29 lipca 2009 Streszczenie Przedmiotem referatu są ataki na mechanizm klucza publicznego RSA. Wieloletnia historia wykorzystywania tego algorytmu naznaczona jest
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych Tomasz Stroiński 23.06.2014 Po co faktoryzować tak duże liczby? System RSA Działanie systemu RSA Każdy użytkownik wybiera duże liczby pierwsze
Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata
Przypomnijmy... a p, a p 1 1 (mod p). Zachodzi naturalne pytanie...... czy z faktu a m 1 1 (mod m) wynika, że m = p? Niekoniecznie. Wprawdzie, jeszcze przed 25 wiekami chińscy matematycy uważali, że podzielność
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie