Optymalizacja. Przeszukiwanie tabu
|
|
- Ludwika Urban
- 8 lat temu
- Przeglądów:
Transkrypt
1 dr hab. inż. Instytut Informatyki Politechnika Poznańska Maciej Hapke
2 Naturalny sposób powstania algorytmu Algorytm optymalizacji lokalnej Niezdolność wyjścia z lokalnych optimów! Akceptacja ruchów niepolepszających Cykle! Lista tabu Za dużo zakazanych ruchów! Poziom aspiracji akceptacja atrakcyjnych ruchów zakazanych Algorytm przeszukiwania tabu Czasochłonne sprawdzanie całego sąsiedztwa w każdym kroku? Kandydaci podzbiór sąsiedztwa V N
3 Przeszukiwanie tabu Główna idea wykorzystanie pamięci Zapamiętywanie rozwiązań lub ruchów (zmian)
4 Przykład zapamiętywania ruchów tabu (0) Struktura listy tabu: Wewnątrz numer kadencji (ilość iteracji tabu do końca). Iteracja 0 (punkt startowy, kryterium maksymalizacji) Rozwiązanie bieżące wartość=10
5 Przykład zapamiętywania ruchów tabu (1, 2) Iteracja 1 Rozwiązanie bieżące wartość=16 Iteracja 2 Rozwiązanie bieżące wartość=18
6 Przykład zapamiętywania ruchów tabu (3, 4) Iteracja 3 Rozwiązanie bieżące wartość=14 Super! Iteracja 4 Rozwiązanie bieżące wartość=20
7 Recency-based memory vs. frequency-based memory Częstość wystąpień poszczególnych ruchów może być dodatkowo wykorzystana do większego rozproszenia przeszukiwania w przestrzeni rozwiązań dopuszczalnych (dywersyfikacja). Na przykład: ruchy otrzymują proporcjonalną do ich częstości karę w przypadku, gdy nie polepszają wartości rozwiązania. Dywersyfikacja jest przydatna tylko w określonych warunkach (np. gdy nie ma żadnych polepszeń). Iteracja 26. p = v kara za częstość
8 Przeszukiwanie tabu procedure PRZESZUKIWANIE TABU begin INICJALIZUJ(xstart, xbest, T ) x := xstart repeat GENERUJ(V N(x)) WYBIERZ(x ) //najlepsze f w V + aspiracja UAKTUALNIJ LISTĘ TABU(T ) if f (x ) f (xbest) then xbest := x x := x until WARUNEK STOPU end
9 Determinizm Algorytm jest deterministyczny Autor TS: zły wybór strategiczny jest lepszy, niż dobry wybór losowy (bo jest pod kontrolą, więc można wyciągać jakieś wnioski)
10 Nowość: lista kandydatów zbiór V po co: żeby w każdej iteracji nie przeglądać i nie oceniać całego sąsiedztwa dobry ruch, jeśli nie jest wykonany w bieżącej iteracji, będzie wciąż dobry w kilku następnych (?) jaki podzbiór V N zbioru sąsiadów N ma być kandydatami? kandydaci = dobrzy sąsiedzi należy wybrać takie ruchy, które są korzystne... dla obecnego rozwiązania i dla przyszłych.
11 Konstrukcja listy kandydatów. Strategia 1: Aspiracja plus przeszukiwanie sąsiedztwa aż do znalezienia sąsiada lepszego o pewną wartość progową ( aspiracja plus ) liczba kandydatów rośnie aż do osiągnięcia wartości progowej Min liczba sprawdzonych sąsiadów Max poziom aspiracji może być zmienny w trakcie przeszukiwania (może zależeć od historii przeszukiwania) strategia zwraca 1 lub więcej najlepszych znalezionych sąsiadów aż 3 parametry...
12 Konstrukcja listy kandydatów. Strategia 2: Elitarna lista kandydatów (master list) tworzenie master list sprawdzenie wszystkich lub większości ruchów, wybór k najlepszych (k jest parametrem) w następnych iteracjach aktualnie najlepszy ruch ze zbioru k ruchów jest wybierany do wykonania, aż jakość ruchu spadnie poniżej danego progu, lub zostanie osiągnięta pewna liczba iteracji
13 Kryteria aspiracji Cel: określić kiedy restrykcje tabu mogą zostać pominięte Pierwsze kryterium aspiracji: usunąć ograniczenie tabu wtedy, gdy ruch da rozwiązanie lepsze od najlepszego znalezionego do tej pory Aspiracja domniemana Jeżeli wszystkie ruchy są tabu i nie są dozwolone przez inne kryteria, to wybierany jest ruch najmniej tabu Aspiracja wg kryterium Forma globalna ruch tabu jest akceptowany jeżeli c(x ) < best cost Forma regionalna (przestrzeń dzieli się na podregiony R) ruch tabu jest akceptowany jeżeli c(x ) < best cost(r)
14 Unifikacja algorytmów optymalizacji: intensyfikacja i dywersyfikacja (exploitation and exploration) Intensyfikacja W dobrych rejonach Powrót do najlepszego rozwiązania znalezionego do tej pory Skrócenie listy Tabu (short term memory) Pamięć długotrwała (long term memory) Każde rozwiązanie lub ruch to zbiór komponentów Zapamiętywanie komponentów dobrych ruchów lub rozwiązań w czasie obliczeń W czasie intensyfikacji ruchy i rozwiązania włączają dobre komponenty Pamięć długotrwała daje możliwość uczenia się Dywersyfikacja Dla rzadko odwiedzanych rejonów Karanie często wykonywanych ruchów ucieczka z rejonu Można postrzegać te mechanizmy jako pewien sposób modyfikacji funkcji celu: f = f + Int + Div
Optymalizacja. Przeszukiwanie tabu
dr inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Naturalny sposób powstania algorytmu Algorytm największego spadku niezdolność wyjścia z lokalnych optimów!
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Optymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Tabu Search (Poszukiwanie z zakazami)
Tabu Search (Poszukiwanie z zakazami) Heurystyka - technika znajdująca dobre rozwiązanie problemu (np. optymalizacji kombinatorycznej) przy rozsądnych (akceptowalnych z punktu widzenia celu) nakładach
Techniki optymalizacji
Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Rozdział 9 PROGRAMOWANIE DYNAMICZNE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując
Wstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel
Wstęp do programowania Procedury i funkcje Piotr Chrząstowski-Wachtel Po co procedury i funkcje? Gdyby jakis tyran zabronił korzystać z procedur lub funkcji, to informatyka by upadła! Procedury i funkcje
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Techniki optymalizacji
Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
ALHE. prof. Jarosław Arabas semestr 15Z
ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych
1/12 Opracowała Kozłowska Ewa ekozbelferek@poczta.onet.pl nauczyciel przedmiotów informatycznych Zespół Szkół Technicznych Mielec, ul. Jagiellończyka 3 Znajdowanie największego i najmniejszego elementu
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Techniki optymalizacji
Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji
Metody ilościowe w badaniach ekonomicznych
prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017
Informatyka I. Wykład 3. Sterowanie wykonaniem programu. Instrukcje warunkowe Instrukcje pętli. Dr inż. Andrzej Czerepicki
Informatyka I Wykład 3. Sterowanie wykonaniem programu. Instrukcje warunkowe Instrukcje pętli Dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2018 Operacje relacji (porównania) A
Heurystyki w podejmowaniu decyzji
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Heurystyki w podejmowaniu decyzji Metaheurystyki, heurystyki Wprowadzenie, podstawowe pojęcia Proste techniki przeszukiwania Symulowane wyżarzanie
ZASTOSOWANIE ALGORYTMÓW POSZUKIWANIA Z TABU DO OPTYMALIZACJI UKŁADANIA PLANU ZAJĘĆ
Studia i Materiały Informatyki Stosowanej, Tom 2, Nr 2, 2010 str. 59-66 ZASTOSOWANIE ALGORYTMÓW POSZUKIWANIA Z TABU DO OPTYMALIZACJI UKŁADANIA PLANU ZAJĘĆ Eliza Witczak Uniwersytet Kazimierza Wielkiego
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.
Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Algorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Mrówka Pachycondyla apicalis
Mrówka Pachycondyla apicalis Mrówki Pachycondyla apicalis wystepują w lasach południowego Meksyku, północnej Argentyny i Kostaryki. Wystepuja zarówno w lasach wilgotnych jak i suchych. Mrówki te polują
Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie
Algorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Przeszukiwanie lokalne
Przeszukiwanie lokalne 1. Klasyfikacja algorytmów 2. Przeszukiwanie lokalne 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują rozwiązanie optymalne, 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
P(F=1) F P(C1 = 1 F = 1) P(C1 = 1 F = 0) P(C2 = 1 F = 1) P(C2 = 1 F = 0) P(R = 1 C2 = 1) P(R = 1 C2 = 0)
Sieci bayesowskie P(F=) F P(C = F = ) P(C = F = 0) C C P(C = F = ) P(C = F = 0) M P(M = C =, C = ) P(M = C =, C = 0) P(M = C = 0, C = ) P(M = C = 0, C = 0) R P(R = C = ) P(R = C = 0) F pali papierosy C
Wstęp do programowania
wykład 7 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Instrukcje cykliczne (pętle) WHILE...END WHILE
Instrukcje cykliczne (pętle) Pętle pozwalają na powtarzanie fragmentu kodu programu. PĘTLE LOGICZNE WHILE...END WHILE While (warunek)...... End While Pętla będzie się wykonywała dopóki warunek jest spełniony.
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Wstęp do programowania
Wstęp do programowania wykład 2 Piotr Cybula Wydział Matematyki i Informatyki UŁ 2012/2013 http://www.math.uni.lodz.pl/~cybula Język programowania Każdy język ma swoją składnię: słowa kluczowe instrukcje
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6
PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 TEMAT: Programowanie w języku C/C++: instrukcje iteracyjne for, while, do while Ogólna postać instrukcji for for (wyr1; wyr2; wyr3) Instrukcja for twory pętlę działającą
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
Metody przeszukiwania lokalnego
Metody przeszukiwania lokalnego Literatura [1] F. Glover, T. Laguna, Tabu search, Kluwer Academic Publishers, 1997. [2] R. Ahuja, O. Ergun, J. Orlin, A. Punnen, A survey of very large-scale neighborhood
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Aktywna hurtownia danych AHD [T. Thalhammer,
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 4. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 4 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Tablice Wskaźniki Adresy pamięci Operator adresu
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
procesów Współbieżność i synchronizacja procesów Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak
Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Abstrakcja programowania współbieżnego Instrukcje atomowe i ich przeplot Istota synchronizacji Kryteria poprawności programów współbieżnych
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów
Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Andrzej Jaszkiewicz, Przemysław Wesołek 3 grudnia 2013 Kontekst problemu Firma dystrybucyjna Kilka statystyk (wiedza z danych miesięcznych)
Pole wielokąta. Wejście. Wyjście. Przykład
Pole wielokąta Liczba punktów: 60 Limit czasu: 1-3s Limit pamięci: 26MB Oblicz pole wielokąta wypukłego. Wielokąt wypukły jest to wielokąt, który dla dowolnych jego dwóch punktów zawiera również odcinek
Hyper-resolution. Śmieciarki w Manncheim
Hyper-resolution Hyper-resolution Algorytm repeat NGi NGi NGj NGi nowe Nogoods, które da się wywieść z NGi if NGi then NGi NGi NGi roześlij NGi do wszystkich sąsiadów if NGi then stop end until NGi nie
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010 Wykład nr 8 (29.01.2009) dr inż. Jarosław Forenc Rok akademicki
dr inŝ. Jarosław Forenc
Rok akademicki 2009/2010, Wykład nr 8 2/19 Plan wykładu nr 8 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Zaawansowane programowanie
Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Programowanie RAD Delphi
Programowanie RAD Delphi Dr Sławomir Orłowski Zespół Fizyki Medycznej, Instytut Fizyki, Uniwersytet Mikołaja Kopernika w Toruniu Pokój: 202, tel. 611-32-46, e-mial: bigman@fizyka.umk.pl Delphi zasoby Aplikacje
Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
Instrukcje iteracyjne (pętle)
Instrukcje iteracyjne (pętle) Instrukcja for..to i for..downto Instrukcja while Instrukcja repeat..until echniki programowania I s.4-1 Zastosowanie instrukcji iteracyjnych Instrukcje iteracyjne (inaczej
2.Sprawdzanie czy podana liczba naturalna jest pierwsza Liczba pierwsza to liczba podzielna tylko przez 1 i przez siebie.
CZEŚĆ A. Przykłady, cd. 1.Obliczanie wartości pierwiastka kwadratowego - algorytm Newtona-Raphsona http://pl.wikipedia.org/wiki/metoda_newtona (pierwszy przykład na stronach Wiki) Dane: Liczba a (a>0)
Losowość w rozproszonym modelu
Losowość w rozproszonym modelu Model: ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć ALP520
Integracja systemów transakcyjnych
Integracja systemów transakcyjnych Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Alokacja danych Alokacja danych umieszczanie
Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1
Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:
Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer
Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny
Modelowanie procesów współbieżnych
Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.
Ilość cyfr liczby naturalnej
Ilość cyfr liczby naturalnej Użytkownik wprowadza liczbę naturalną n. Podaj algorytm znajdowania ilości cyfr liczby n. (Np.: po wprowadzeniu liczby 2453, jako wynik powinna zostać podana liczba 4). Specyfikacja
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń
Szeregowanie zadań w Linux Kernel 2.6. Daniel Górski Przemysław Jakubowski
Szeregowanie zadań w Linux Kernel 2.6 Daniel Górski Przemysław Jakubowski Plan prezentacji Szeregowanie procesów - Szeregowanie - Cele szeregowania - Scheduler 2.6 - Struktury danych używane w 2.6 - Multiprocesorowość
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 15: Klasyczne techniki
Wstęp do Programowania potok funkcyjny
i programowanie dynamiczne Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 i programowanie dynamiczne Outline 1 i programowanie dynamiczne i programowanie dynamiczne Rekurencyjny zapis rozwiązania
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
Luty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest