Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
|
|
- Mikołaj Bartosz Bednarek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń,
2 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby móc je odczytać mimo zakłóceń. szyfrowanie sposoby przesyłania danych tak, aby osoby postronne nie mogły ich odczytać, nawet w przypadku podsłuchania transmisji.
3 Kodowanie (teoria kodowania) nadawca dane odbiorca Cele: zakłócenia możliwość rozpoznania, że wystąpiły zakłócenia, możliwość odczytania błędnie przesłanych danych, bez konieczności ponownej transmisji.
4 Przykłady kodów bit kontroli parzystości PESEL ISBN IBAN kody Reeda Solomona stosowane w dyskach CD
5 Szyfrowanie (kryptografia) nadawca wiadomość odbiorca Cele: wróg podsłuchanie/zmiana wiadomości uniemożliwienie odczytania wiadomości mimo jej podsłuchania uniemożliwienie zmiany treści wiadomości weryfikacja tożsamości nadawcy
6 Konwencje dany jest zbiór P znaków używanych do zapisu tekstu jawnego (np. litery, pary liter,... ) dany jest zbiór C znaków używanych do zapisu tekstu zaszyfrowanego zwykle zakładamy, że dla pewnej liczby N w zbiorze P = {0, 1,..., N 1} = C Z N := {0, 1,..., N 1} mamy określone działania + i (modulo N)
7 Szyfr Cezara Ustalmy liczbę e Z N klucz szyfrujący. Rozważmy funkcję jest to funkcja szyfrująca. Funkcją deszyfrującą jest funkcja Z N k k + e Z N Z N k k e Z N liczba e jest też kluczem deszyfrującym.
8 Szyfr Cezara (c.d.) Szyfr Cezara jest szyfrem symetrycznym znajomość klucza szyfrującego pozwala odszyfrować wiadomość. Pojawia się problem dystrybucji kluczy. Rozwiązanie: szyfry asymetryczne znajmość funkcji szyfrującej nie wystarcza do efektywnego wyliczenia funkcji deszyfrującej.
9 Funkcja i twierdzenie Eulera ϕ(n) := #{k Z n : NWD(k, n) = 1}. Wiadomo, że jeśli p i q są różnymi liczbami pierwszymi, to ϕ(p) = p 1 i ϕ(q) = q 1 oraz ϕ(p q) = (p 1) (q 1). Twierdzenie (Euler) Jeśli n jest liczbą naturalną oraz NWD(a, n) = 1, to a ϕ(n) 1 (mod n).
10 Funkcja i twierdzenie Eulera (c.d) Niech p i q będą różnymi liczbami pierwszymi i n := p q. Znajomość liczb p i q jest równoważna znajomości wartości liczb n i ϕ(n). Istotnie, liczby p i q są rozwiązaniami równania x 2 (n ϕ(n) + 1) x + n = 0. Zatem przy założeniu, że problem faktoryzacji jest trudny znajomość liczby n nie wystarcza, aby łatwo znaleźć wartości ϕ(n).
11 Szyfr RSA klucz szyfrujący RSA = Rivest, Shamir, Adleman Ustalmy (duże i przypadkowe) liczby pierwsze p i q i niech N := p q. Wybierzmy (losowo) liczbę naturalną e taką, że NWD(e, ϕ(n)) = 1 (możemy założyć, że e < ϕ(n)). Parę (N, e) nazywamy kluczem szyfrującym funkcją szyfrującą jest funkcja Z N a a e mod N Z N. Uwaga Istnieją efektywne algorytmy potęgowania w zbiorze Z N.
12 Szyfr RSA klucz deszyfrujący Korzystając z rozszerzonego algorytmu Euklidesa znajdujemy liczbę naturalną d taką, że d e 1 (mod ϕ(n)). Parę (N, d) nazywamy kluczem deszyfrującym funkcją deszyfrującą jest funkcja Z N a a d mod N Z N. Uwaga Do znalezienia liczby d niezbędna jest znajomość liczby ϕ(n).
13 Szyfr RSA poprawność Lemat Jeśli d i e są liczbami całkowitymi takimi, że d e 1 (mod ϕ(n)), to dla każdej liczby całkowitej a. a d e a (mod N)
14 Szyfr RSA poprawność (dowód) Wystarczy pokazać, że a d e a (mod p) i a d e a (mod q). Udowodnimy pierwszą z kongruencji. Dowód drugiej jest analogiczny. Jeśli p a, to teza jest oczywista. Jeśli p a, to NWD(a, p) = 1, zatem na mocy Twierdzenia Eulera. a p 1 1 (mod N)
15 Szyfr RSA poprawność (dowód, c.d.) Ponieważ d e 1 (mod ϕ(n)) i ϕ(n) = (p 1) (q 1), więc liczba jest naturalna. Stąd k := d e 1 p 1 a d e = a a de 1 = a (a p 1 ) k a 1 k = a (mod N), co kończy dowód.
16 Szyfr RSA zalety Szyfr RSA jest szyfrem asymetrycznym znajomość klucza szyfrującego nie jest wystarczająca do łatwego znalezienia klucza deszyfrującego. Klucz szyfrujący może być jawny mówimy, że jest to klucz publiczny. W związku z tym nie ma problemu dystrybucji kluczy. Uwaga Klucz deszyfrujący musi być tajny mówimy, że jest to klucz prywatny.
17 Szyfr RSA weryfikacja autentyczności wiadomości Chcemy wysłać wiadomość m Z N tak, aby odbiorca był pewny, że treść wiadomości nie została zmieniona. Wysyłamy parę (m, m d mod N) liczbę m d nazywamy sygnaturą (podpisem) wiadomości m. Odbiorca otrzymuje parę (m, m ). Jeśli m e m (mod N), to odbiorca może przyjąć, że wiadomość jest autentyczna.
18 Inne pomysły ElGamal Jeśli p jest liczbą pierwszą, to grupa Z p = {1, 2,..., p 1} jest cykliczna, tzn. istnieje liczba α Z p taka, że Z p = {1 = α 0, α = α 1, α 2 mod p,..., α p 2 mod p}. Ustalamy (losowo) taką liczbę α, wybieramy (losowo) liczbę i definiujemy liczbę k {0, 1,..., p 2} β := α k mod p. Trójka (p, α, β) jest jawnym kluczem szyfrującym. Tajnym kluczem deszyfrującym jest czwórka (p, α, β, k).
19 ElGamal szyfrowanie Nadawca chce nam wysłać wiadomość m Z p. W tym celu wybiera (losowo) liczbę liczy l {0, 1,..., p 2}, c 1 := α l mod p oraz c 2 := m β l mod p, i wysyła parę (c 1, c 2 ).
20 ElGamal deszyfrowanie Otrzymujemy parę (c 1, c 2 ) i wyliczamy liczbę Istotnie, c 2 c (p 1) k 1 mod p. c 2 c (p 1) k 1 m β l (α l ) (p 1) k = m α k l+l (p 1) l k = m (α p 1 ) l m (mod p). Bezpieczeństwo systemu ElGamala opiera się na problemie logarytmu dyskretnego.
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.
Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA
Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972
Szyfrowanie RSA (Podróż do krainy kryptografii)
Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja
Kryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
WSIZ Copernicus we Wrocławiu
Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Grzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2016 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym
Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej
Grzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2013 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.
Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą
Pierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie
Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu
Bezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
Seminarium Ochrony Danych
Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner
Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?
Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.
Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:
KUS - KONFIGURACJA URZĄDZEŃ SIECIOWYCH - E.13 ZABEZPIECZANIE DOSTĘPU DO SYSTEMÓW OPERACYJNYCH KOMPUTERÓW PRACUJĄCYCH W SIECI.
Zabezpieczanie systemów operacyjnych jest jednym z elementów zabezpieczania systemów komputerowych, a nawet całych sieci komputerowych. Współczesne systemy operacyjne są narażone na naruszenia bezpieczeństwa
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna
PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie
Bezpieczeństwo w Internecie
Elektroniczne Przetwarzanie Informacji Konsultacje: czw. 14.00-15.30, pokój 3.211 Plan prezentacji Szyfrowanie Cechy bezpiecznej komunikacji Infrastruktura klucza publicznego Plan prezentacji Szyfrowanie
2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej
Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8
2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania
Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja
Czym jest kryptografia?
Szyfrowanie danych Czym jest kryptografia? Kryptografia to nauka zajmująca się układaniem szyfrów. Nazwa pochodzi z greckiego słowa: kryptos - "ukryty", gráphein "pisać. Wyróżniane są dwa główne nurty
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
Kongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
Kryptografia szyfrowanie i zabezpieczanie danych
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Kryptografia szyfrowanie i zabezpieczanie danych www.agh.edu.pl
Systemy Mobilne i Bezprzewodowe laboratorium 12. Bezpieczeństwo i prywatność
Systemy Mobilne i Bezprzewodowe laboratorium 12 Bezpieczeństwo i prywatność Plan laboratorium Szyfrowanie, Uwierzytelnianie, Bezpieczeństwo systemów bezprzewodowych. na podstawie : D. P. Agrawal, Q.-A.
Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S.
Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Plecak ma być zapakowany optymalnie, tzn. bierzemy tylko te przedmioty,
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Wprowadzenie ciag dalszy
Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania
KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970)
1 [Wybrane materiały do ćwiczeń 3-7 z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku (semestr letni 2008)] KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) (ang.
Plan całości wykładu. Ochrona informacji 1
Plan całości wykładu Wprowadzenie Warstwa aplikacji Warstwa transportu Warstwa sieci Warstwa łącza i sieci lokalne Podstawy ochrony informacji (2 wykłady) (2 wykłady) (2 wykłady) (3 wykłady) (3 wykłady)
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI
II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii
Kongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
LICZBY PIERWSZE. Jan Ciurej Radosław Żak
LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna
Elementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy
Pozostałe tematy Barbara Przebieracz 04.06.2016 Spis treści 1 2 Podstawowe pojęcia Kryptografia to nauka o metodach przesyłania wiadomości w zakamuflowanej postaci tak, aby tylko adresat mógł odrzucić
Szyfry afiniczne. hczue zfuds dlcsr
Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12
Potencjalne ataki Bezpieczeństwo
Potencjalne ataki Bezpieczeństwo Przerwanie przesyłania danych informacja nie dociera do odbiorcy Przechwycenie danych informacja dochodzi do odbiorcy, ale odczytuje ją również strona trzecia szyfrowanie
Szyfrowanie informacji
Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane
Matematyka dyskretna
Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,
Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku
Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy
SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................
Przewodnik użytkownika
STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis
Kryptografia na procesorach wielordzeniowych
Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji
Laboratorium nr 5 Podpis elektroniczny i certyfikaty
Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Elementy teorii liczb. Matematyka dyskretna
Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Kryptografia Rok akademicki: 2032/2033 Kod: IIN-1-784-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Specjalność: - Poziom studiów: Studia I stopnia
ŁAMIEMY SZYFR CEZARA. 1. Wstęp. 2. Szyfr Cezara w szkole. Informatyka w Edukacji, XV UMK Toruń, 2018
Informatyka w Edukacji, XV UMK Toruń, 2018 ŁAMIEMY SZYFR CEZARA Ośrodek Edukacji Informatycznej i Zastosowań Komputerów 02-026 Warszawa, ul. Raszyńska 8/10 {maciej.borowiecki, krzysztof.chechlacz}@oeiizk.waw.pl
KAMELEON.CRT OPIS. Funkcjonalność szyfrowanie bazy danych. Wtyczka kryptograficzna do KAMELEON.ERP. Wymagania : KAMELEON.ERP wersja
KAMELEON.CRT Funkcjonalność szyfrowanie bazy danych 42-200 Częstochowa ul. Kiepury 24A 034-3620925 www.wilksoft..pl Wtyczka kryptograficzna do KAMELEON.ERP Wymagania : KAMELEON.ERP wersja 10.10.0 lub wyższa
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych Tomasz Stroiński 23.06.2014 Po co faktoryzować tak duże liczby? System RSA Działanie systemu RSA Każdy użytkownik wybiera duże liczby pierwsze
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Marcin Szeliga Dane
Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model
Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.
Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
INFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA.
INFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA http://www.infoceram.agh.edu.pl Klasy metod algorytmicznych Metoda TOP-DOWN (zstępująca, analityczna) Metoda BOTTOM-UP (wstępująca, syntetyczna)
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)
Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna
KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024
KRYPTOGRAFIA I OCHRONA DANYCH Krzysztof Kaczmarczyk 150024 Zadanie 1 Szyfrowanie DES Algorytm DES (Data Encryption Standard) to zastosowanie schematu Feistela. Algorytm operuje na 64-bitowych blokach używając
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography
Podpis elektroniczny
Podpis elektroniczny Powszechne stosowanie dokumentu elektronicznego i systemów elektronicznej wymiany danych oprócz wielu korzyści, niesie równieŝ zagroŝenia. Niebezpieczeństwa korzystania z udogodnień
KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE
KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?
--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c ---
(d) 27x 25(mod 256) -I- I Kongruencje II Małe twierdzenie Fermata III Podzielność IV Operacje binarne V Reprezentacje liczb VI Największy wspólny dzielnik VII Faktoryzacja VIIIWłasności działań 2 3 x 16
Szyfrowanie wiadomości
Szyfrowanie wiadomości I etap edukacyjny / II etap edukacyjny Już w starożytności ludzie używali szyfrów do przesyłania tajnych wiadomości. Początkowo były one proste, jednak z biegiem czasu wprowadzano
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>
Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi