Obligacje o stałym oprocentowaniu (fixed-interest bonds)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obligacje o stałym oprocentowaniu (fixed-interest bonds)"

Transkrypt

1 Obligacje (bonds) Obligacja papier wartościowy emitowany w serii, w którym emitent stwierdza, że jest dłużnikiem obligatariusza i zobowiązuje się wobec niego do spełnienia określonego świadczenia. Najczęściej świadczenie jest pieniężne, tzn. emitent (wystawca obligacji) zobowiązuję się do zapłaty na rzecz obligatariusza (posiadacza obligacji) określonych kwot pieniężnych w określonych terminach.

2 Obligacje o stałym oprocentowaniu (fixed-interest bonds) Najprostsze z nich to Obligacje zerokuponowe (zero-coupon bonds) Mają one konstrukcję taką jak omawiany bon skarbowy (W Polsce obligacjami nazywa się dłużne papiery wartościowe emitowane na okres powyżej jednego roku.). Są zobowiązaniem emitenta do jednorazowej zapłaty określonej kwoty (wartość nominalna) w dacie wykupu. Emitowane (tworzone i sprzedawane) z dyskontem (czyli poniżej wartości nominalnej). Dochodowość tego (i nie tylko tego) typu obligacji wyraża się tzw. YTM (ang.: Yield To Maturity = dochód w terminie do wykupu). W innym języku jest to efektywna roczna stopa zwrotu z inwestycji w taką obligację. 2

3 Przykład. Obligacja skarbowa serii OK0419 jest zerokuponowa o nominale PLN Termin płatności: Data wykupu: Cena na przetargu z dnia : PLN 960,55. Oblicz YTM dla obligacji nabytej na przetargu. YTM = (F/P)!! 1 = ,55!"#!"# 1 = 1, % Informacja MinFin o przetargu gportlet&p_p_lifecycle=2&p_p_state=normal&p_p_mode=view&p_p_cac heability=cachelevelpage&p_p_col_id=column- 2&p_p_col_pos=1&p_p_col_count=2&auctionId= &loadFile=1 3

4 Jedna sztuka obligacji OK0419 w dniu została kupiona na GPW w dniu D= po kursie 97,39. Jaka jest rentowność tej inwestycji dla kupującego (zakładając, że będzie trzymał obligację do dnia wykupu), jeśli prowizja maklerska jaką płaci kupujący wynosi 0,12% wartości transakcji. Kurs 97,39 oznacza, że cena wynosiła 97,39% wartości nominalnej, czyli PLN 973,90. Prowizja od transakcji to PLN 973,90 0,0012 = 1,16868 = 1,17. Łączna kwota zapłacona to PLN 975,07. Termin płatności, to D (dzień zawarcia transakcji) lub D+2 (dwa dni robocze później). Przyjmijmy, że płatność nastąpiła w dniu zawarcia transakcji. Dlatego t = 580/365 i YTM = (F/P)!! 1 = ,07!"#!"# 1 = 1, % 4

5 Obligacje kuponowe (coupon bonds) Obligatariusz kupuje obligacje po cenie emisyjnej równej (lub zbliżonej) do ich wartości nominalnej, a przez cały okres posiadania obligacji otrzymuje od emitenta bieżące wypłaty odsetek (w wysokości oraz terminach ustalonych w warunkach emisji obligacji). Jeśli odsetki są określone procentowo, to nalicza się je od wartości nominalnej. W terminie zapadalności (wykupu) emitent wykupuje obligacje po cenie równej wartości nominalnej obligacji. Bieżące wypłaty odsetek są nazywany wypłatami kuponów. YTM takich obligacji to taka wartość efektywnej stopy zwrotu, przy której suma wartości bieżących wszystkich płatności z obligacji (kuponów i wypłaty wartości nominalnej) jest równa bieżącej cenie. P =!!!! C! (1 + YTM)!! + FV (1 + YTM)!! gdzie P cena bieżąca, C! - wartość k-tego kuponu, FV wartość nominalna, t! - czas do wypłaty k-tego kuponu w latach, t! czas do wypłaty wartości nominalnej (czas do wykupu obligacji) w latach. Uwaga! Obliczenie czasu w latach jest niejednoznaczne, bo zależy od przyjętej konwencji. 5

6 Przykład. Rozpatrujemy obligacje skarbowe serii PS0422. Wartość nominalna: PLN Oprocentowanie roczne: 2,25% Okresy odsetkowe: od X do X+1 następnego roku, gdzie X=2016,2017,2018,2019,2020,2021 Dzień wymagalności odsetek i obligacji: pierwszy dzień roboczy po X+1. List emisyjny: Cena emisyjna na przetargu w dniu (rozliczanym ): PLN 971,10 Notowane na GPW. Kurs w dniu : 98,80 Oblicz cenę obligacji płaconą przez inwestora, który zakupił te obligacje na sesji w dniu Cena czysta (bez odsetek): PLN 0, = 988,00 Dzień rozliczenia (D+2) : Odsetki narosłe (accrued interest) od do dnia rozliczenia (152 dni): 6

7 PLN 22,50!"!!"# = 9, = 9,37 Cena brudna: P = ,37 = 997,37 Obliczyć dochód w terminie do wykupu dla obligacji zakupionych na przetargu w dniu oraz dla obligacji zakupionych na giełdzie w dniu po kursie 98,50 (bez uwzględniania kosztów transakcji). Przyjąć, że rok to 365 kolejnych dni. Na laboratorium! 7

8 Czas trwania obligacji (bond duration) We wzorze P = logarytmiczną tej funkcji:!!!!"!!! + (!!!"#)!! (!!!"#)!! potraktujmy cenę P jako funkcję zmiennej YTD i obliczmy pochodną Oznaczmy P P = 1 P(1 + YTM)!!!! t! C! (1 + YTM)!! t! FV + (1 + YTM)!!!!!!!!!! +!!!! (!!!"#)!! MacD =!! (!!!"#)!! zdyskontowanym wypłatami z obligacji. Oznaczmy również ModD =!"#$!!!"# Stąd mamy wzór przybliżony, ważny przy inwestycji w obligacje. (Macaulay duration). MacD jest średnim czasem do wykupu ważonym (zmodyfikowany czas trwania). Przy tych oznaczeniach mamy P P = ModD ΔP P = ModD ΔYTD Np. Gdy stopa dochodu w terminie do wykupu obligacji o zmodyfikowanym czasie trwania równym 5 lat wzrośnie o 0,1 punktu procentowego(np. z poziomu 1,5% do 1,6%), to cena obligacji zmaleje o ok. 0,5%. Dla inwestycji w obligacje to może być sporo. 8

9 Struktura terminowa stóp procentowych (Term structure of interest rates) W skrócie krzywa stopy procentowej (in short yield curve ) Przykład. Dysponujemy aktualnymi kursami obligacji zerokuponowych o czasach do wykupu od 1 roku do 5 lat. Maturity Quote 1 98, , , , ,53 Obliczamy stopy dochodu w terminie do wykupu dla tych obligacji YTM = F P!! 1 9

10 Maturity (n) YTM (r!) Quote 1 98,04 2,00% 2 95,65 2,25% 3 93,04 2,43% 4 90,33 2,57% 5 87,53 2,70% Nazywane stopami spot (spot rates) Pytamy: jaka musiałaby być stopa dochodu w terminie do wykupu dla inwestycji roczne dokonanej za rok r!,!, inwestycja roczna w zerokupon roczny dziś reinwestowana po stopie r!,! dawała ten sam zwrot co inwestycja dziś w zerokupon dwuletni. Odpowiedź na to pytanie wynika z zależności: Ogólnie (1 + r! )! = (1 + r! )(1 + r!,! ) (1 + r! )! = 1 + r!!!!!! (1 + r!!!,! ) = 1 + r! 1 + r!,! (1 + r!!!,! ) Odpowiedzią na to pytanie jest wartość stopy terminowej (forward rate). 10

11 W naszym przykładzie: Maturity (n) Quote YTM! (r! ) Froward rate (r!!!,! ) 1 98,04 2,00% 2,00% 2 95,65 2,25% 2,50% 3 93,04 2,43% 2,80% 4 90,33 2,57% 3,00% 5 87,53 2,70% 3,20% 3.30% 3.10% 2.90% 2.70% 2.50% 2.30% 2.10% YTM Froward rate 1.90% 1.70% 1.50% W praktyce wykreślenie krzywej stopy procentowej nie jest takie łatwe. Na małych rynkach nie ma wystarczającej ilości obligacji (nie mówiąc już o obligacjach zerokuponowych). Nawet jeśli na rynku jest dużo obligacji. To ich ceny 11

12 są kształtowane nie tylko przez wyobrażenia uczestników rynku dotyczące stóp procentowych. Przy tym obligacje zerokuponowe są emitowane jedynie na krótsze okresy. W przypadku obligacji kuponowych zależność ceny od wartości stóp spot zawiera wiele zmiennych. P =! C!!!! (1 + YTM!! )!! FV + (1 + YTM!! )!! gdzie YTM!! jest stopą spot dla okresu t! kończącego się w momencie wypłaty kuponu C! (odpowiednio t! jest czasem do wypłaty wartości nominalnej FV. Pojęcie stopy terminowej można uogólnić na okresy dowolnej długości. (1 + r!!!!! )!!!!! = (1 + r!! )!!(1 + r!!,!!!!! )!!. Przykład z polskiego rynku. Seria obligacji Dzień płatności Data wykupu Dni do wykupu Kurs Czynnik procentujący YTM Stopa terminowa OK /10/16 15/07/ ,95 1,0106 1,396% OK /10/16 25/10/ ,51 1,0362 1,756% 1,971% 12

13 Typy krzywej stopy procentowej Krzywa rosnąca (czyli normalna). Wskazuje na niechęć inwestorów do lokowania pieniędzy na dłuższe terminy. Normalne zjawisko. Zwykle, konsensus co do tego, że gospodarka będzie rosła. Krzywa malejąca (lub odwrócona) występuje rzadko i zwykle poprzedza recesję. Wskazuje na duży popyt na obligacje o dłuższym terminie do wykupu generowany przez inwestorów, którzy chcą przeczekać cięższa czasy. Krzywa płaska jest zwykle przejściowa. Krzywa wygarbiona. Podaż przewyższa popyt na obligacje o określonych terminach do wykupu. 13

14 Obligacje o zmiennej stopie procentowej. Przykład. Serie TP i EDO obligacji skarboewych, czy większośc obligacji korporacyjnych poslkich firm. Typy obligacji ze względu na emitenta. Obligacje a) skarbowe (treasury) b) komunalne (municipal) c) hipoteczne (mortgage-backed) d) korporacyjne (corporate) e) zamienne na akcje (convertible) To co powiedzieliśmy obligacjach wyznaczających krzywą stopy procentowj dotyczy obligacji o najniższym ryzyku niewypłacalności emitenta obligacji rządowych. W przypadku innych emitentów stopa dochodu do wykupu jest zwykle wyższa. 14

15 Agencje ratingowe, to instytucje oceniające ryzyko niewypłacalności emitenta obligacji (Moody s, Standard and Poor s, Fitch Ratings. Agencja ratingowa ocenia emitenta przyznając mu (a właściwie określonej klasie jego obligacji) syntetyczną ocenę ryzyka niewypłacalności): 15

16 16

Obligacje o stałym oprocentowaniu (fixed- interest bonds) Najprostsze z nich to

Obligacje o stałym oprocentowaniu (fixed- interest bonds) Najprostsze z nich to Obligacje (bonds) Obligacja papier wartościowy emitowany w serii, w którym emitent stwierdza, że jest dłużnikiem obligatariusza i zobowiązuje się wobec niego do spełnienia określonego świadczenia. Najczęściej

Bardziej szczegółowo

MRF2019_2. Obligacje (bonds)

MRF2019_2. Obligacje (bonds) Obligacje (bonds) MRF2019_2 Obligacja papier wartościowy (security) emitowany w serii, w którym emitent (issuer) stwierdza, że jest dłużnikiem obligatariusza i zobowiązuje się wobec niego do spełnienia

Bardziej szczegółowo

1. Charakterystyka obligacji. 2. Rodzaje obligacji. 3. Zadania praktyczne-duration/ceny obligacji.

1. Charakterystyka obligacji. 2. Rodzaje obligacji. 3. Zadania praktyczne-duration/ceny obligacji. mgr Maciej Jagódka 1. Charakterystyka obligacji 2. Rodzaje obligacji. 3. Zadania praktyczne-duration/ceny obligacji. Wierzycielski papier wartościowy, w którym emitent obligacji jest dłużnikiem posiadacza

Bardziej szczegółowo

Kalkulator rentowności obligacji

Kalkulator rentowności obligacji 1 z 7 26.02.2018, 12:01 Nowe zasady dotyczące cookies. Nasz serwis wykorzystuje pliki cookies. Korzystanie z witryny oznacza zgodę na ich zapis lub wykorzystanie. Więcej informacji można znaleźć w "Polityce

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Terminy kolokwiów: kwietnia czerwca 2019

Terminy kolokwiów: kwietnia czerwca 2019 Przedmiot: MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Prowadzący wykład: dr Krzysztof Samotij, e-mail: krzysztof.samotij@pwr.edu.pl Czas i miejsce wykładu: poniedziałki (wg detinicji J.M. Rektora) g. 11:15-11:00,

Bardziej szczegółowo

Co powinna zawierać obligacja?

Co powinna zawierać obligacja? OBLIGACJE Obligacja Jest papierem wartościowym typu wierzytelnościowego, czyli jedna strona, zwana emitentem, stwierdza, że jest dłużnikiem drugiej strony (zwanej obligatariuszem) i zobowiązuje się wobec

Bardziej szczegółowo

8. Papiery wartościowe: obligacje

8. Papiery wartościowe: obligacje 8. Papiery wartościowe: obligacje Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w 8. Krakowie) Papiery wartościowe: obligacje

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

4.5. Obligacja o zmiennym oprocentowaniu

4.5. Obligacja o zmiennym oprocentowaniu .5. Obligacja o zmiennym oprocentowaniu 71.5. Obligacja o zmiennym oprocentowaniu Aby wycenić kontrakt IRS musi bliżej przyjrzeć się obligacji o zmiennym oprocentowaniu (Floating Rate Note lub floater

Bardziej szczegółowo

Obligacje, Swapy, FRAsy i Bob Citron

Obligacje, Swapy, FRAsy i Bob Citron Obligacje, Swapy, FRAsy i Bob Citron Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan Przypomnienie informacji o rynku długu Rodzaje obligacji Ryzyko obligacji yield curve Duration

Bardziej szczegółowo

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,

Bardziej szczegółowo

O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH

O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH A. KARPIO KATEDRA EKONOMETRII I STATYSTYKI SGGW W WARSZAWIE Krzywa dochodowości Obligacja jest papierem wartościowym, którego wycena opiera się na oczekiwanych

Bardziej szczegółowo

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy

Bardziej szczegółowo

Inżynieria Finansowa: 4. FRA i IRS

Inżynieria Finansowa: 4. FRA i IRS Inżynieria Finansowa: 4. FRA i IRS Piotr Bańbuła Katedra Ekonomii Ilościowej, KAE Marzec 2017 r. Warszawa, Szkoła Główna Handlowa Zakup syntetycznej obligacji +1 mln PLN: emisja obligacji/krótka sprzedaż/pożyczka

Bardziej szczegółowo

NARODOWY BANK POLSKI REGULAMIN FIXINGU SKARBOWYCH PAPIERÓW WARTOŚCIOWYCH. (obowiązujący od 2 stycznia 2014 r.)

NARODOWY BANK POLSKI REGULAMIN FIXINGU SKARBOWYCH PAPIERÓW WARTOŚCIOWYCH. (obowiązujący od 2 stycznia 2014 r.) NARODOWY BANK POLSKI REGULAMIN FIXINGU SKARBOWYCH PAPIERÓW WARTOŚCIOWYCH (obowiązujący od 2 stycznia 2014 r.) 1. Słowniczek pojęć 1) SPW - skarbowe papiery wartościowe, określone w Regulaminie pełnienia

Bardziej szczegółowo

pozorom są to instrumenty dużo bardziej interesujące od akcji, oferujące dużo szersze możliwości zarówno inwestorom,

pozorom są to instrumenty dużo bardziej interesujące od akcji, oferujące dużo szersze możliwości zarówno inwestorom, Obligacje Obligacje Teraz pora zająć się obligacjami.. Wbrew pozorom są to instrumenty dużo bardziej interesujące od akcji, oferujące dużo szersze możliwości zarówno inwestorom, jak i emitentom. Definicja

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

W Polsce emisję i obrót obligacjami regulują różne akty prawne. Najważniejsze z nich to:

W Polsce emisję i obrót obligacjami regulują różne akty prawne. Najważniejsze z nich to: Jesteś tu: Bossa.pl Obligacja, podobnie jak akcja, jest papierem wartościowym. W przeciwieństwie jednak do akcji dającej prawo do udziału w majątku firmy, obligacja jest papierem dłużnym, narzędziem kredytu

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

Inżynieria Finansowa: 4. FRA i Swapy

Inżynieria Finansowa: 4. FRA i Swapy Inżynieria Finansowa: 4. FRA i Swapy Piotr Bańbuła Katedra Rynków i Instytucji Finansowych, KES Październik 2014 r. Warszawa, Szkoła Główna Handlowa Zakup syntetycznej obligacji +1 mln PLN: emisja obligacji/krótka

Bardziej szczegółowo

dr hab. Renata Karkowska

dr hab. Renata Karkowska dr hab. Renata Karkowska Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu.

Bardziej szczegółowo

Wykład: Rynki finansowe część I. prof. UG dr hab. Leszek Pawłowicz rok akadem. 2014/2015

Wykład: Rynki finansowe część I. prof. UG dr hab. Leszek Pawłowicz rok akadem. 2014/2015 Wykład: Rynki finansowe część I prof. UG dr hab. Leszek Pawłowicz rok akadem. 2014/2015 Zasadnicza część rynku finansowego służy pozyskiwaniu kapitału Rynek pozyskiwania kapitału to: 1. Rynek pozyskiwania

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171)

MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Przedmiot: MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Prowadzący wykład: dr Krzysztof Samotij, e- mail: krzysztof.samotij@pwr.edu.pl Czas i miejsce wykładu: piątki (wg definicji J.M. Rektora) g. 9:15-11:00,

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe

Bardziej szczegółowo

Jak inwestować w obligacje?

Jak inwestować w obligacje? Jak inwestować w obligacje? Zakup obligacji to jedna z najbezpieczniejszych inwestycji. Niskiemu ryzyku towarzyszy jednak niewielki potencjalny zysk. Mimo to obligacje powinny być częścią złożonych portfeli

Bardziej szczegółowo

Jak inwestować w obligacje? Ewa Dziwok Uniwersytet Ekonomiczny w Katowicach Katedra Matematyki Stosowanej

Jak inwestować w obligacje? Ewa Dziwok Uniwersytet Ekonomiczny w Katowicach Katedra Matematyki Stosowanej Jak inwestować w obligacje? Katedra Matematyki Stosowanej YTM a obligacja kuponowa i = IRR YTM IRR 0 1 2 3 4 P - cena gdzie : P - cena obligacji N - nominał i - wymagana stopa zwrotu n - czas do wykupu

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Decyzje inwestycyjne na giełdzie dr Dominika Kordela Uniwersytet Szczeciński 29 listopad 2018 r. Plan wykładu Giełda Papierów Wartościowych Papiery wartościowe Inwestycje Dochód

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Bond (obligacja) stanowi część rynków kapitałowych. Obligacja jest papierem wartościowym, będącym podobnie jak kredyt bankowy formą długu.

Bond (obligacja) stanowi część rynków kapitałowych. Obligacja jest papierem wartościowym, będącym podobnie jak kredyt bankowy formą długu. Co to jest BOND? Bond (obligacja) stanowi część rynków kapitałowych. Obligacja jest papierem wartościowym, będącym podobnie jak kredyt bankowy formą długu.w przeciwieństwie do kredytów bankowych obligacje

Bardziej szczegółowo

Ze względu na przedmiot inwestycji

Ze względu na przedmiot inwestycji INWESTYCJE Ze względu na przedmiot inwestycji Rzeczowe (nieruchomości, Ziemia, złoto) finansowe papiery wartościowe polisy, lokaty) INWESTYCJE Ze względu na podmiot inwestowania Prywatne Dokonywane przez

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Wykład 2-3 Kontrakt forward na przyszłą stopę procentową Kontrakty futures na długoterminowe instrumenty procentowe Swapy procentowe Przykład 1 Inwestor

Bardziej szczegółowo

Wykaz zmian wprowadzonych do statutu KBC Rynków Azjatyckich Funduszu Inwestycyjnego Zamkniętego w dniu 23 maja 2011 r.

Wykaz zmian wprowadzonych do statutu KBC Rynków Azjatyckich Funduszu Inwestycyjnego Zamkniętego w dniu 23 maja 2011 r. Wykaz zmian wprowadzonych do statutu KBC Rynków Azjatyckich Funduszu Inwestycyjnego Zamkniętego w dniu 23 maja 2011 r. art. 12 ust. 10 Statutu Brzmienie dotychczasowe: 10. W związku z określonym celem

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu

Bardziej szczegółowo

kontraktu. Jeżeli w tak określonym terminie wykupu zapadają mniej niż 3 serie

kontraktu. Jeżeli w tak określonym terminie wykupu zapadają mniej niż 3 serie Standard programu kontraktów terminowych na krótkoterminowe, średnioterminowe oraz długoterminowe obligacje skarbowe określony Uchwałą Nr 561/2013 Zarządu Giełdy z dnia 28 maja 2013 r., z późniejszymi

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia II Stopy Procentowe

Inżynieria finansowa Ćwiczenia II Stopy Procentowe Inżynieria finansowa Ćwiczenia II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 Zadanie 2.1 Oprocentowanie 3M pożyczki wynosi 5.00% (ACT/365). Natomiast, 3M bon skarbowy

Bardziej szczegółowo

Obligacje. Nieograniczone możliwości inwestowania

Obligacje. Nieograniczone możliwości inwestowania Obligacje Nieograniczone możliwości inwestowania Spis treści Obligacje... Kryteria podziału Obligacji... Ogólna informacja o Dłużnych Papierach Wartościowych... Przykład Obligacji stałokuponowej... Obligacje

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Anatomia Sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego. Komisja Nadzoru Finansowego. Krzysztof Jajuga. Obligacje

Anatomia Sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego. Komisja Nadzoru Finansowego. Krzysztof Jajuga. Obligacje Anatomia Sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego Komisja Nadzoru Finansowego Krzysztof Jajuga Obligacje Anatomia sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego prof.

Bardziej szczegółowo

Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Charakterystyka:

Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Charakterystyka: ogół transakcji kupna-sprzedaŝy, których przedmiotem są instrumenty finansowe o okresie wykupu dłuŝszym od roku; środki uzyskane z emisji tych instrumentów mogą być przeznaczone na działalność rozwojową

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r. Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.

Bardziej szczegółowo

3. Wielkość Emisji serii E Emisja obejmuje sztuk Obligacji serii E o łącznej wartości ,00 złotych o kodzie ISIN PLBOS

3. Wielkość Emisji serii E Emisja obejmuje sztuk Obligacji serii E o łącznej wartości ,00 złotych o kodzie ISIN PLBOS RB 35/2011 Emisja obligacji własnych BOŚ S.A. Przekazany do publicznej wiadomości dnia 04.10.2011r. Zgodnie w 5 ust.1 pkt 11 Rozp. Ministra Finansów z dnia 19 lutego 2009 r. w sprawie informacji bieżących

Bardziej szczegółowo

Fundusz PKO Strategii Obligacyjnych FIZ

Fundusz PKO Strategii Obligacyjnych FIZ Fundusz PKO Strategii Obligacyjnych FIZ 1 Wpływ polityki pieniężnej na obszar makro i wyceny funduszy obligacji Polityka pieniężna kluczowym narzędziem w walce z recesją Utrzymująca się duża podaż taniego

Bardziej szczegółowo

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ 1 DEFINICJA RYZYKA STOPY PROCENTOWEJ Ryzyko stopy procentowej to niebezpieczeństwo negatywnego wpływu zmian rynkowej stopy procentowej na sytuację finansową banku

Bardziej szczegółowo

NOTA INFORMACYJNA. Dla obligacji serii BGK0514S003A o łącznej wartości zł. Emitent:

NOTA INFORMACYJNA. Dla obligacji serii BGK0514S003A o łącznej wartości zł. Emitent: NOTA INFORMACYJNA Dla obligacji serii BGK0514S003A o łącznej wartości 1.000.000.000 zł Emitent: Niniejsza nota informacyjna sporządzona została w związku z ubieganiem się Emitenta o wprowadzenie obligacji

Bardziej szczegółowo

BANK SPÓŁDZIELCZY W TYCHACH

BANK SPÓŁDZIELCZY W TYCHACH Nota Informacyjna BANK SPÓŁDZIELCZY W TYCHACH Obligacje na okaziciela serii C Niniejsza Nota Informacyjna została sporządzona na potrzeby wprowadzenia 1.600 obligacji na okaziciela serii C do Alternatywnego

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) II Etap Maj 2013 Zadanie 1 II Etap Maj 2013 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/podaj definicję składnika

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Janusz Kotowicz W8 Wydział Inżynierii i Ochrony Środowiska Politechnika Częstochowska Wpływ stopy dyskonta na przepływ gotówki. Janusz Kotowicz

Bardziej szczegółowo

PAPIERY WARTOŚCIOWE. fragment prezentacji. Opracowanie: mgr Zdzisława Piasecka

PAPIERY WARTOŚCIOWE. fragment prezentacji. Opracowanie: mgr Zdzisława Piasecka PAPIERY WARTOŚCIOWE fragment prezentacji Opracowanie: mgr Zdzisława Piasecka Definicja Papiery wartościowe są dokumentami stwierdzającymi określone prawa majątkowe, których realizacja jest możliwa jedynie

Bardziej szczegółowo

Wyniki sprzedaży obligacji skarbowych w sierpniu 2014 r.

Wyniki sprzedaży obligacji skarbowych w sierpniu 2014 r. Informacja prasowa Warszawa, 15 września 2014 r. Wyniki sprzedaży obligacji skarbowych w sierpniu 2014 r. Sierpień był kolejnym miesiącem, w którym wartość sprzedaży obligacji Skarbu Państwa wzrosła. Wciąż

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

Efektywność rynku. SGH Rynki Finansowe

Efektywność rynku. SGH Rynki Finansowe Wykład Rynek długu Efektywność rynku = SGH Rynki Finansowe 2015 1 Oczekiwana stopa zwrotu Wniosek z teorii portfela M B σ M Ryzyko Co reprezentuje stopa zwrotu wolna od ryzyka Rynek pożyczek kontrakty

Bardziej szczegółowo

Obligacje. Nieograniczone możliwości inwestowania

Obligacje. Nieograniczone możliwości inwestowania Obligacje Nieograniczone możliwości inwestowania Spis treści Obligacje... Kryteria podziału Obligacji... Rentowność a cena... Obligacje z Dyskontem i Premią... Przykład Obligacji... Jak inwestować w Obligacje?...

Bardziej szczegółowo

ANALIZA OBLIGACJI STRATEGIE

ANALIZA OBLIGACJI STRATEGIE KRZYSZTO JAJUGA STRATEGIE ZARZĄDZANIA PORTELEM INSTRUMENTÓW DŁUŻNYCH Proste strategie związane z koniecznością sfinansowania zobowiązań ANALIZA OBLIGACJI STRATEGIE - dopasowanie przepływów pieniężnych

Bardziej szczegółowo

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Powtórzenie Ćwiczenia ZPI 1 Zadanie 1. Średnia wartość stopy zwrotu dla wszystkich spółek finansowych wynosi 12%, a odchylenie standardowe 5,1%. Rozkład tego zjawiska zbliżony jest do rozkładu normalnego.

Bardziej szczegółowo

Portfel oszczędnościowy

Portfel oszczędnościowy POLITYKA INWESTYCYJNA Dokument określający odrębnie dla każdego Portfela modelowego podstawowe parametry inwestycyjne, w szczególności: profil Klienta, strukturę portfela, cechy strategii inwestycyjnej,

Bardziej szczegółowo

Prof. nadzw. dr hab. Marcin Jędrzejczyk

Prof. nadzw. dr hab. Marcin Jędrzejczyk Prof. nadzw. dr hab. Marcin Jędrzejczyk 1. Zakup akcji, udziałów w obcych podmiotach gospodarczych według cen nabycia. 2. Zakup akcji i innych długoterminowych papierów wartościowych, traktowanych jako

Bardziej szczegółowo

10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" t "1%/4( " +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82

10. / 42! 1 A$!! )$$$% 0  + 42 + 1 +! ! 1! !1!!!!42 %  t 1%/4(  +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 Matematyka finansowa 09.12.2000 r. 10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 10 Matematyka finansowa 24.03.2001

Bardziej szczegółowo

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE 1 SWAP - fixed-to-floating rate IRS - swap procentowy jest umową, w której dwie strony uzgadniają, że będą w ustalonych terminach

Bardziej szczegółowo

Notowania i wyceny instrumentów finansowych

Notowania i wyceny instrumentów finansowych Notowania i wyceny instrumentów finansowych W teorii praktyka działa, w praktyce nie. Paweł Cymcyk 11.12.2016, Gdańsk W co będziemy inwestować? Rodzaj instrumentu Potrzebna wiedza Potencjał zysku/poziom

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy

Bardziej szczegółowo

Ryzyko stopy procentowej

Ryzyko stopy procentowej Ryzyko stopy procentowej Inwestycje i teoria portfela Strona 1 z 37 1. Ryzyko inwestowania w obligacje inwestycja w obligacje jest obarczona ryzykiem trzy podstawowe rodzaje ryzyka związane z inwestowaniem

Bardziej szczegółowo

Informacja dotycząca instrumentów finansowych oraz ryzyka związanego z inwestowaniem w instrumenty finansowe w OPERA Domu Maklerskim Sp. z o.o.

Informacja dotycząca instrumentów finansowych oraz ryzyka związanego z inwestowaniem w instrumenty finansowe w OPERA Domu Maklerskim Sp. z o.o. Informacja dotycząca instrumentów finansowych oraz ryzyka związanego z inwestowaniem w instrumenty finansowe w OPERA Domu Maklerskim Sp. z o.o. 1. Informacje ogólne Każda inwestycja w instrumenty finansowe

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Portfel obligacyjny plus

Portfel obligacyjny plus POLITYKA INWESTYCYJNA Dokument określający odrębnie dla każdego Portfela modelowego podstawowe parametry inwestycyjne, w szczególności: profil ryzyka Klienta, strukturę portfela, cechy strategii inwestycyjnej,

Bardziej szczegółowo

dr hab. Marcin Jędrzejczyk

dr hab. Marcin Jędrzejczyk dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW Anna Chmielewska Warunki zaliczenia 40 pkt praca samodzielna (szczegóły na kolejnym wykładzie) 60 pkt egzamin (forma testowa) 14 punktów obecności W przypadku braku

Bardziej szczegółowo

OSTATECZNE WARUNKI OBLIGACJI SERII G ECHO INVESTMENT S.A.

OSTATECZNE WARUNKI OBLIGACJI SERII G ECHO INVESTMENT S.A. OSTATECZNE WARUNKI OBLIGACJI SERII G ECHO INVESTMENT S.A. Kielce, 29 września 2017 r. Niniejszy dokument określa ostateczne warunki emisji dla obligacji wskazanych poniżej, emitowanych przez Echo Investment

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

STRATEGIE INWESTOWANIA NA RYNKU PAPIERÓW WARTOŚCIOWYCH. Wykład 8

STRATEGIE INWESTOWANIA NA RYNKU PAPIERÓW WARTOŚCIOWYCH. Wykład 8 STRATEGIE INWESTOWANIA NA RYNKU PAPIERÓW WARTOŚCIOWYCH Wykład 8 2 Ocena skuteczności systemu Liczba transakcji (o efektywności systemu można wnioskować, gdy dał on minimum 30 sygnałów) Procentowy udział

Bardziej szczegółowo

OSTATECZNE WARUNKI OBLIGACJI SERII J ECHO INVESTMENT S.A.

OSTATECZNE WARUNKI OBLIGACJI SERII J ECHO INVESTMENT S.A. OSTATECZNE WARUNKI OBLIGACJI SERII J ECHO INVESTMENT S.A. Kielce, 12 lutego 2019 r. Niniejszy dokument określa ostateczne warunki emisji dla obligacji wskazanych poniżej, emitowanych przez Echo Investment

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL (II stopień)

Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL (II stopień) dr Adam Salomon Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego w inwestycjach transportowych.

Bardziej szczegółowo

Ryzyko stopy procentowej (opracował: Grzegorz Szafrański)

Ryzyko stopy procentowej (opracował: Grzegorz Szafrański) Ryzyko stopy procentowej (opracował: Grzegorz Szafrański) Przykłady i teoria na podstawie: Bank Management, 6th edition. Timothy W. Koch and S. Scott MacDonald Klasyfikacja 1. ryzyko podstawowe (struktury

Bardziej szczegółowo

Komunikat aktualizujący nr 1 z dnia 9 grudnia 2014 r.

Komunikat aktualizujący nr 1 z dnia 9 grudnia 2014 r. Ghelamco Invest sp. z o.o. (spółka z ograniczoną odpowiedzialnością z siedzibą w Warszawie, przy ul. Wołoskiej 22, 02-675 Warszawa, zarejestrowana w rejestrze przedsiębiorców Krajowego Rejestru Sądowego

Bardziej szczegółowo

Ogólny opis typów instrumentów finansowych i ryzyk związanych z inwestycjami w te instrumenty.

Ogólny opis typów instrumentów finansowych i ryzyk związanych z inwestycjami w te instrumenty. Ogólny opis typów instrumentów finansowych i ryzyk związanych z inwestycjami w te instrumenty. 1. AKCJE Emitowane przez spółki akcyjne papiery wartościowe dające uprawnienia korporacyjne charakterystyczne

Bardziej szczegółowo

NOTA INFORMACYJNA DLA OBLIGACJI SERII A SPÓŁKI RUBICON PARTNERS NFI SA. obligacje zdefiniowane w punkcie 2 poniżej

NOTA INFORMACYJNA DLA OBLIGACJI SERII A SPÓŁKI RUBICON PARTNERS NFI SA. obligacje zdefiniowane w punkcie 2 poniżej NOTA INFORMACYJNA DLA OBLIGACJI SERII A SPÓŁKI RUBICON PARTNERS NFI SA Definicje i skróty Emitent Obligacje Odsetki Rubicon Partners NFI SA obligacje zdefiniowane w punkcie 2 poniżej odsetki od Obligacji,

Bardziej szczegółowo

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku

Bardziej szczegółowo

Porównanie możliwości inwestowania w tzw. bezpieczne formy lokowania oszczędności. Jakub Pakos Paulina Smugarzewska

Porównanie możliwości inwestowania w tzw. bezpieczne formy lokowania oszczędności. Jakub Pakos Paulina Smugarzewska Porównanie możliwości inwestowania w tzw. bezpieczne formy lokowania oszczędności Jakub Pakos Paulina Smugarzewska Plan prezentacji 1. Bezpieczne formy lokowania oszczędności 2. Depozyty 3. Fundusze Papierów

Bardziej szczegółowo

Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki

Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Analiza ryzyka transakcji wykład ćwiczenia Literatura Literatura podstawowa: 1. Kaczmarek T. (2005), Ryzyko

Bardziej szczegółowo

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r.

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. Na podstawie 28 ust. 4 Rozporządzenia Rady Ministrów z dnia 6 listopada

Bardziej szczegółowo

- zabezpieczanie za pomocą opcji

- zabezpieczanie za pomocą opcji Ryzyko stopy procentowej - zabezpieczanie za pomocą opcji Caplets and Floorlets Opcje opiewające na wysokość terminowej stopy procentowej Alternatywa dla FRA Caplet N x M @ i% - kupno daje prawo płacić

Bardziej szczegółowo

dr Iwona Białomazur WSZECHNICA POLSKA Lorem ipsum dolor sit amet, RYNKI FINANSOWE consectetur adipiscing elit.

dr Iwona Białomazur WSZECHNICA POLSKA Lorem ipsum dolor sit amet, RYNKI FINANSOWE consectetur adipiscing elit. dr Iwona Białomazur WSZECHNICA POLSKA Lorem ipsum dolor sit amet, RYNKI consectetur adipiscing elit. 3. INSTRUMENTY DŁUŻNE Podstawowe pojęcia Podstawowe rodzaje Organizacja rynku Podstawy wyceny 2 RYNEK

Bardziej szczegółowo

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 Jak oszczędzać pieniądze? Przykładowe sposoby na zaoszczędzenie pieniędzy Zmień przekonania, zostań freeganem Za każdym razem gaś światło w pokoju Co

Bardziej szczegółowo

Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe

Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe Piotr Bańbuła Katedra Ekonomii Ilościowej, KAE Październik 2014 r. Warszawa, Szkoła Główna Handlowa Stopy procentowe Co to jest stopa procentowa?

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Wydział Matematyki Informatyki i Mechaniki UW 18 października 2011 Zadanie 3.1 W dniu 18 października 2004 Bank X kwotował: 3M PLN Depo -

Bardziej szczegółowo

ZAMORTYZOWANY KOSZT WYCENA ZOBOWIAZAŃ FINANSOWYCH WYCENIANE W WARTOŚCI GODZIWEJ PRZEZ WYNIK

ZAMORTYZOWANY KOSZT WYCENA ZOBOWIAZAŃ FINANSOWYCH WYCENIANE W WARTOŚCI GODZIWEJ PRZEZ WYNIK Według MSR 39 i Rozp Min.Fin. sprawie szczegółowych zasad uznawania, metod wyceny, zakresu ujawniania i sposobu prezentacji instrumentów finansowych klasyfikacja instrumentów finansowych: WYCENA AKTYWÓW

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

Nota Informacyjna. Spółdzielczy Bank Rzemiosła i Rolnictwa. Emitent : Agent emisji: Wołomin, 02 sierpnia 2012 roku

Nota Informacyjna. Spółdzielczy Bank Rzemiosła i Rolnictwa. Emitent : Agent emisji: Wołomin, 02 sierpnia 2012 roku Nota Informacyjna Niniejsza nota informacyjna została sporządzona w związku z ubieganiem się o wprowadzenie instrumentów finansowych objętych tą notą do obrotu w alternatywnym systemie obrotu prowadzonym

Bardziej szczegółowo

Nota Informacyjna dla Obligacji Serii A BUDOSTAL-5 S.A.

Nota Informacyjna dla Obligacji Serii A BUDOSTAL-5 S.A. Załącznik do Raportu bieżącego 12/2010 BUDOSTAL-5 S.A. Nota Informacyjna dla Obligacji Serii A BUDOSTAL-5 S.A. A. Informacje wstępne 1. Podstawa prawna Niniejsza Nota Informacyjna została sporządzona na

Bardziej szczegółowo