Zadania PDF. Rozwiązania PDF. Źródło zadań w texu.
|
|
- Ludwika Piątkowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zadania PDF. Rozwiązania PDF. Źródło zadań w texu. % File: zadanka.tex % Created: Fri Oct 11 12:00 AM 2013 C % Last Change: Fri Oct 11 12:00 AM 2013 C documentclass[10pt, a4paper]{article} usepackage{amssymb} usepackage{amsmath} usepackage{amsthm} usepackage[textwidth=16cm, textheight=24cm]{geometry} usepackage[polish]{babel} usepackage[utf8]{inputenc} usepackage[t1]{fontenc} usepackage{polski} usepackage{graphicx} usepackage{enumitem} setenumerate{itemsep=2pt,topsep=2pt,parsep=0pt,partopsep=0pt} usepackage[pdfborder={0 0 0}]{hyperref} %usepackage{mnsymbol} % vfuzz4pt % Don't report over-full v-boxes if over-edge is small hfuzz4pt % Don't report over-full h-boxes if over-edge is small % THEOREMS newtheorem{thm}{twierdzenie} newtheorem{cor}[thm]{wniosek} newtheorem{lem}[thm]{lemat} newtheorem{defn}[thm]{definicja} newtheorem{tozs}[thm]{tożsamość} newtheorem{hyp}[thm]{hipoteza} newcommand{hrule}{rule{linewidth}{0.2mm}} renewcommand{section}[1]{ %vspace*{-1.5cm} stepcounter{section}% begin{center}% begin{minipage}{2.5cm} includegraphics[origin=c,width=2.5cm]{headpicture} end{minipage}begin{minipage}{sectionwidth} begin{center} {Huge bfseries center #1} vskip 1mm small normalfont sc author{}\ 1 / 5
2 date{} end{center} end{minipage} end{center} HRule } newenvironment{sol}[1][rozwiązanie. ]{ vskip 3mm noindentemph{#1} } { } newcounter{problem} newenvironment{problem}[1][]{ stepcounter{problem} vskip 3mm noindent{textsc{{bfseries Zadanie theproblem{}} #1}}\} { } pagestyle{empty} defabs #1{leftvert #1rightvert} renewcommand{angle}{sphericalangle} renewcommand{vec}[1]{overrightarrow{#1}} renewcommand{leq}{leqslant} renewcommand{geq}{geqslant} renewcommand{dots}{ldots} defsectionwidth{6cm} defheadpicture{../micek-2cm.jpg} defauthor{kółko I~LO Białystok} defdate{11 października 2013} begin{document} section{sieknijmy!} noindentbegin{minipage}{10.5cm} begin{problem}[twierdzenie o~siecznych] Dany jest okrąg $o$ o~środku $O$ i~promieniu $R$ oraz~punkt $P$. Jeżeli prosta $l$ przechodzi przez $P$ i~przecina okrąg $o$ w~(niekoniecznie różnych) punktach $A$ i~$b$, to iloczyn $ PA cdot PB $ nie zależy od wyboru $l$, a~dokładniej [ PA cdot PB = abs{ PO ^{2} - R^2}. ] end{problem} end{minipage}begin{minipage}{5cm} includegraphics[origin=c]{pow_in} end{minipage} begin{problem} Dany jest trójkąt ostrokątny $ABC$. Punkt $D$ jest rzutem $A$ na $BC$, zaś punkt $E$ jest rzutem $B$ na $AC$. Uzasadnij, że $CEcdot CA = CDcdot CB$. Punkt $H$ jest punktem przecięcia wysokości $ triangle ABC$. Które z~liczb [ DHcdot HA,quad AHcdot AD,quad AEcdot CA,quad EH cdot BH,] są równe? end{problem} begin{problem} Punkt $P$ leży na przecięciu stycznych wypuszczonych z~punktów $A$ i~$b$ leżących na okręgu o~środku w~$o$. Punkt $K$ jest środkiem odcinka $AB$. Uzasadnij, że zachodzi $PA^2 = PKcdot PO$. end{problem} begin{problem} Dane są okręgi $O_1, O_2$, przecinające się w punktach $A,B$. Punkt $P$ leży na prostej $AB$, proste $PX$, $PY$ są styczne do $O_1$, $O_2$ odpowiednio. Uzasadnić, że $angle PXY = angle PYX$. end{problem} begin{problem}[kryterium współokręgowości] Jeżeli punkty $S,A,B$ oraz $S, C, D$ leżą odpowiednio na dwu półprostych o~początku w~$s$ to $A, B, C, D$ leżą na jednym okręgu wtedy i~tylko wtedy, gdy $SAcdot SB = SC cdot SD$. end{problem} begin{problem} Punkty $E, F$ leżą na bokach $AC, AB$ trójkąta $ABC$ odpowiednio. Odcinki $BE$ i $CF$ przecinają się w $M$ i zachodzi $MBcdot ME=MCcdot MF$. Udowodnij, że zachodzi $AEcdot AC=AFcdot AB$. end{problem} begin{problem}[$star$] Dane są okręgi $o_1, o_2$ przecinające się w~dwóch punktach leżących na prostej $m$ oraz punkt $P$. Półproste $k$ i~$l$ mają początek w~$p$ i przecinają: $k$ okrąg $o_1$ w~$a, B$, zaś $l$ okrąg $o_2$ w~$c$, $D$ (punkty $A, B, C, D$ są parami różne). Udowodnić, że na czworokącie $ABCD$ da się opisać okrąg wtedy i~tylko wtedy, gdy $P$ leży na prostej $m$. end{problem} begin{problem} Punkt $P$ leży wewnątrz nierównoramiennego trójkąta $ABC$. Proste $AP, BP, CP$ przecinają okrąg opisany w~punktach $D, E, F$ (przy czym $Dneq A, Eneq B,Fneq C$). Styczna do okręgu opisanego w~punkcie $C$ przecina $AB$ w~punkcie $S$ takim, że $CS = SP$. Uzasadnij, że $SP$ jest styczną do okręgu opisanego na $ triangle ABP$ oraz że $FD = FE$. end{problem} end{document} Źródło rozwiązań w texu. 2 / 5
3 % File: zadanka.tex % Created: Fri Oct 11 12:00 AM 2013 C % Last Change: Fri Oct 11 12:00 AM 2013 C documentclass[10pt, a4paper]{article} usepackage{amssymb} usepackage{amsmath} usepackage{amsthm} usepackage[textwidth=16cm, textheight=26cm]{geometry} usepackage[polish]{babel} usepackage[utf8]{inputenc} usepackage[t1]{fontenc} usepackage{polski} usepackage{graphicx} usepackage{enumitem} %usepackage{multline} setenumerate{itemsep=2pt,topsep=2pt,parsep=0pt,partopsep=0pt} usepackage[pdfborder={0 0 0}]{hyperref} %usepackage{mnsymbol} % vfuzz4pt % Don't report over-full v-boxes if over-edge is small hfuzz4pt % Don't report over-full h-boxes if over-edge is small % THEOREMS newtheorem{thm}{twierdzenie} newtheorem{cor}[thm]{wniosek} newtheorem{lem}[thm]{lemat} newtheorem{defn}[thm]{definicja} newtheorem{tozs}[thm]{tożsamość} newtheorem{hyp}[thm]{hipoteza} newcommand{hrule}{rule{linewidth}{0.2mm}} renewcommand{section}[1]{ %vspace*{-1.5cm} stepcounter{section}% begin{center}% begin{minipage}{2.5cm} includegraphics[origin=c,width=2.5cm]{headpicture} end{minipage}begin{minipage}{sectionwidth} begin{center} {Huge bfseries center #1} vskip 1mm small normalfont sc author{}\ date{} end{center} end{minipage} end{center} HRule } newenvironment{sol}[1][rozwiązanie. ]{ vskip 3mm noindentemph{#1} } { } newcounter{problem} newenvironment{problem}[1][]{ stepcounter{problem} vskip 3mm noindent{textsc{{bfseries Zadanie theproblem{}} #1}}\} { } pagestyle{empty} defabs #1{leftvert #1rightvert} renewcommand{angle}{sphericalangle} renewcommand{vec}[1]{overrightarrow{#1}} renewcommand{leq}{leqslant} renewcommand{geq}{geqslant} renewcommand{dots}{ldots} defsectionwidth{6cm} defheadpicture{../micek-2cm.jpg} defauthor{kółko I~LO Białystok} defdate{11 października 2013} begin{document} section{sieknijmy!\large rozwiązania} noindentbegin{minipage}{10.5cm} begin{problem}[twierdzenie o~siecznych] Dany jest okrąg $o$ o~środku $O$ i~promieniu $R$ oraz~punkt $P$. Jeżeli prosta $l$ przechodzi przez $P$ i~przecina okrąg $o$ w~(niekoniecznie różnych) punktach $A$ i~$b$, to iloczyn $ PA cdot PB $ nie zależy od wyboru $l$, a~dokładniej [ PA cdot PB = abs{ PO ^{2} - R^2}. ] end{problem} end{minipage}begin{minipage}{5cm} includegraphics[origin=c]{pow_in} end{minipage} begin{problem} Dany jest trójkąt ostrokątny $ABC$. Punkt $D$ jest rzutem $A$ na $BC$, zaś punkt $E$ jest rzutem $B$ na $AC$. Uzasadnij, że $CEcdot CA = CDcdot CB$. Punkt $H$ jest punktem przecięcia wysokości $ triangle ABC$. Które z~liczb [ DHcdot HA,quad AHcdot AD,quad AEcdot CA,quad EH cdot BH,] są równe? end{problem} begin{sol} Skoro $ triangle ABC$ jest ostrokątny, to $DH < AD$, stąd $DHcdot HA < AHcdot AD$. Pokażemy, że $DHcdot HA = EHcdot HB$ oraz $AHcdot AD = AEcdot CA$, będą to więc jedyne równości. Skoro $ angle ADB = angle BEA = 90^circ$, to na czworokącie $ABDE$ da się opisać okrąg. Przekątne $AD$ i~$be$ przecinają się w~$h$, więc $AHcdot HD = HEcdot HB$ z~twierdzenia o~siecznych. Podobnie, $ angle HDC = angle HEC = 90^circ$, więc punkty $H, D, C, E$ leżą na jednym okręgu. Z~twierdzenia o~siecznych mamy $AEcdot AC = AH cdot AD$. end{sol} begin{problem} Punkt $P$ leży na przecięciu stycznych wypuszczonych z~punktów $A$ i~$b$ leżących na okręgu o~środku w~$o$. Punkt $K$ jest środkiem odcinka $AB$. Uzasadnij, że zachodzi $PA^2 = PKcdot PO$. end{problem} begin{sol} Skoro $K$ jest środkiem cięciwy $AB$, to $OKperp AB$, czyli $ angle AKO = 3 / 5
4 90^circ$ i~środek okręgu opisanego na $ triangle AKO$ leży na $AO$. Wobec tego $PA$ jest styczną do tego okręgu i~z~twierdzenia o~siecznych (a~konkretniej o~siecznej i~stycznej) mamy $PA^2 = PKcdot PO$. end{sol} begin{problem} Dane są okręgi $O_1, O_2$, przecinające się w punktach $A,B$. Punkt $P$ leży na prostej $AB$, proste $PX$, $PY$ są styczne do $O_1$, $O_2$ odpowiednio. Uzasadnić, że $angle PXY = angle PYX$. end{problem} begin{sol} Skoro punkt $P$ leży na $AB$ to [ PX^2 = PAcdot PB = PY^2, ] stąd $ PX ^2 = PY ^2$, $ PX = PY $, więc trójkąt $PXY$ jest równoramienny, co kończy dowód. end{sol} begin{problem}[kryterium współokręgowości] Jeżeli punkty $S,A,B$ oraz $S, C, D$ leżą odpowiednio na dwu półprostych o~początku w~$s$ to $A, B, C, D$ leżą na jednym okręgu wtedy i~tylko wtedy, gdy $SAcdot SB = SC cdot SD$. end{problem} begin{sol} ``wtedy''. Jeżeli $A, B, C, D$ leżą na jednym okręgu, to $ SA cdot SB = SC cdot SD $. ``tylko wtedy''. Załóżmy zatem, że $ SA cdot SB = SC cdot SD $. Okrąg opisany na $A, B, C$ przecina półprostą $SC$ w~punkcie $D'$ (gdy jest on styczny przyjmujemy $D' = C$). Korzystając z~implikacji ``wtedy'' obliczamy $ SA cdot SB = SC cdot SD $. Łącznie $ SC cdot SD = SA cdot SB = SC cdot SD' $, czyli $ SD = SD' $, $D = D'$. end{sol} begin{problem} Punkty $E, F$ leżą na bokach $AC, AB$ trójkąta $ABC$ odpowiednio. Odcinki $BE$ i $CF$ przecinają się w $M$ i zachodzi $MBcdot ME=MCcdot MF$. Udowodnij, że zachodzi $AEcdot AC=AFcdot AB$. end{problem} begin{sol} Skoro $MBcdot ME=MCcdot MF$ to (z~powyższego kryterium) $B, E, C, F$ leżą na jednym okręgu $o$, a~skoro tak to $AEcdot AC = AFcdot AB$. end{sol} begin{problem}[$star$] Dane są okręgi $o_1, o_2$ przecinające się w~dwóch punktach leżących na prostej $m$ oraz punkt $P$. Półproste $k$ i~$l$ mają początek w~$p$ i przecinają: $k$ okrąg $o_1$ w~$a, B$, zaś $l$ okrąg $o_2$ w~$c$, $D$ (punkty $A, B, C, D$ są parami różne). Udowodnić, że na czworokącie $ABCD$ da się opisać okrąg wtedy i~tylko wtedy, gdy $P$ leży na prostej $m$. end{problem} begin{sol} Oznaczmy punkty przecięcia przez $X, Y$. Jeżeli $P$ leży na $XY$, to $PAcdot PB = PXcdot PY = PCcdot PD$ z~twierdzenia o~siecznych dla $o_1, o_2$. Jeżeli zaś $PAcdot PB = PCcdot PD$, to oznaczamy przez $Y'$ drugi punkt przecięcia prostej $PX$ z~$o_1$. Wtedy $PXcdot PY' = PA cdot PB = PCcdot PD$, więc $C, D, X, Y'$ leżą na jednym okręgu~--- $o_2$. Skoro tak, to $Y'$ leży na $o_1$ i~$o_2$, więc $Y' = Y$. emph{uwaga: jest tutaj nieco niewyjaśnionych delikatności, np. dlaczego $Y' neq X$?} end{sol} begin{problem} Punkt $P$ leży wewnątrz nierównoramiennego trójkąta $ABC$. Proste $AP, BP, CP$ przecinają okrąg opisany w~punktach $D, E, F$ (przy czym $Dneq A, Eneq B,Fneq C$). Styczna do okręgu opisanego w~punkcie $C$ przecina $AB$ w~punkcie $S$ takim, że $CS = SP$. Uzasadnij, że $SP$ jest styczną do okręgu opisanego na $ triangle ABP$ oraz że $FD = FE$. end{problem} begin{sol} begin{minipage}{8cm} Skoro $SC$ jest styczną to $SC^2 = SAcdot SB$. Wobec tego również $SP^2 = SAcdot SB$. Oznaczmy drugi punkt przecięcia prostej $SP$ z~okręgiem opisanym na $ triangle ABP$ jako $P'$. Wtedy $SPcdot SP' = SAcdot SB = SP^2$, czyli $P' = P$ i~jest $SP$ jest styczną. Aby udowodnić, że $FD = FE$ wystarczy (i~potrzeba) wykazać, że styczna do okręgu opisanego na $ triangle ABC$ w~punkcie $F$ jest równoległa do $ED$. Udowodnimy, że obydwie te proste są równoległe do $PS$. Dla uproszczenia zapisu niech $S'$ leży na $PS$ po innej stronie $P$ niż $S$. Mamy, używając twierdzenia o~kącie wpisanym i~dopisanym $ angle BED = angle BAD = angle BPS'$, stąd $PS' parallel DE$. 4 / 5
5 Oznaczmy przez $F'$ punkt na stycznej do $F$ leżący,,po przeciwnej stronie niż $B$''. Obliczamy begin{multline*}angle F'FC = angle F'FA + angle AFC = \ angle FCA + angle ACS = angle SCP = angle SPC,end{multline*} end{minipage}begin{minipage}{8cm} includegraphics{zad8} end{minipage} gdzie stosujemy twierdzenie o~kącie wpisanym i~dopisanym oraz, w~ostatnim przejściu, założenie $SC = SP$. Wobec powyższej równości mamy $PS parallel FF'$, co kończy dowód. emph{wszystkie powyższe triki ze styczną da się przepisać na kąty. Ale po namyśle uważam, że nie ma najmniejszych szans zobaczyć tych kątów bez dobrego rysunku :) I~to dlatego zadanie było trudnedots} end{sol} end{document} 5 / 5
Zadania PDF. Rozwiązania PDF. Źródło zadań w texu.
Zadania PDF. Rozwiązania PDF. Źródło zadań w texu. % File: zad.tex % Created: Wed Dec 15 06:00 PM 2010 C % Last Change: Wed Dec 15 06:00 PM 2010 C documentclass[10pt]{article} usepackage{amssymb} usepackage{amsmath}
Zadania z kółka PDF. Wstępny Szkic rozwiązań serii III PDF. Źródło zadań w texu.
Zadania z kółka PDF. Wstępny Szkic rozwiązań serii III PDF. Źródło zadań w texu. % File: zad.tex % Created: Tue Dec 11 10:00 AM 2012 C % Last Change: Tue Dec 11 10:00 AM 2012 C documentclass[10pt, a4paper]{article}
Do wszystkich zadań są wskazówki. W razie, gdyby ktoś zobaczył błąd -- piszcie!
Do wszystkich zadań są wskazówki. W razie, gdyby ktoś zobaczył błąd -- piszcie! Niech przestrzeń będzie z Wami! J. Zadania PDF. Źródło zadań w texu. % File: zadania.tex % Created: Thu Jan 30 08:00 AM 2014
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Zadania PDF. Rozwiązania PDF. Źródło zadań w texu.
Zadania PDF. Rozwiązania PDF. Źródło zadań w texu. documentclass[10pt]{article} usepackage{amssymb} usepackage{amsmath} textwidth 16cm textheight 24cm oddsidemargin 0cm topmargin 0pt headheight 0pt headsep
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli
Ćwiczenia z geometrii I
Ćwiczenia z geometrii I Dominik Burek 1 stycznia 2013 Zadanie 1. W trójkącie ABC punkt I jest środkiem okręgu wpisanego. Punkt P leży wewnątrz trójkąta oraz: Pokazać, że AP AI. P BA + P CA = P BC + P CB.
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
Stereo. (a miejscami nawet surround) 30 stycznia 2014
Stereo (a miejscami nawet surround) 30 stycznia 2014 To kółko wiele zawdzięcza niezrównanym artykułom Michała Kiezy z Kącika Przestrzennego Delty. Oprócz tego zadania pochodzą z OMów oraz prezentacji Adama
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
= a + 1. b + 1. b całkowita?
9 ALGEBRA Liczby wymierne Bukiet 1 1. Oblicz wartość wyrażenia 1+ 1 1+ 1 1+ 1 1. 2. Znajdź liczby naturalne a, b, c i d, dla których 151 115 = a + 1 b + 1. c + 1 d 3. W podobny sposób spróbuj przekształcić
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego
Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A
g H e D c H' E g' h e' O d A C' d' C A' F' f' I' G' B' G I F f INWERSJA Inwersją o środku O i promieniu r nazywamy takie przekształcenie płaszczyzny (bez punktu O), które każdemu punktowi X O przyporządkowuje
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
Własności punktów w czworokątach
Własności punktów w czworokątach Autor: Michał Woźny Gimnazjum nr 2 im. A. Mickiewicza w Krakowie Opiekun pracy: dr Jacek Dymel Spis treści 1. Wstęp str. 3 2. Badanie punktów będących środkami boków w
Praca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
rys. 4 BK KC AM MB CL LA = 1.
Joanna Zakrzewska Wspólny punkt Na najnowszym, trzecim już, plakacie Stowarzyszenia na rzecz Edukacji Matematycznej (zob. www.sem.edu.pl) widnieje dwanaście konfiguracji geometrycznych. Ich wspólną cechą
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
LXV Olimpiada Matematyczna
LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy
Spis treści. Zadania... 7 Algebra... 9 Geometria Teoria liczb, nierówności, kombinatoryka Wskazówki Rozwiazania...
Spis treści Zadania... 7 Algebra... 9 Geometria... 18 Teoria liczb, nierówności, kombinatoryka... 29 Wskazówki... 39 Rozwiazania... 55 Literatura... 135 Dokument pochodzi ze strony www.gwo.pl 9 ALGEBRA
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Zadania na dowodzenie Opracowała: Ewa Ślubowska
Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie
Metoda siatek zadania
Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
MiNI Akademia Matematyki na Politechnice Warszawskiej
MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Cztery punkty na okręgu
Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy
Wielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
Jak rozpoznać trójkąt równoboczny?
O tym, czego nie ma na plakacie 05.11.2011 To jest na plakacie Co jest na plakacie? Charles Leytem, Rysunek 3: Własność 1. Trójkąty równoboczne to proste obiekty, które łatwo scharakteryzować. Można je
Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1
Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie
Jednokładność i podobieństwo
Jednokładność i podobieństwo Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Iloczynem niezerowego wektora u przez liczbę rzeczywistą s 0 nazywamy wektor v spełniający następujące dwa warunki: 1) v =
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Zadanie 2. ( 4p ) Czworokąt ABCD ma kąty proste przy wierzchołkach B i D. Ponadto AB = BC i BH = 1.
Zadanie 1. ( p ) Dodatnia liczba naturalna n ma tylko dwa dzielniki naturalne, podczas gdy liczba n + 1 ma trzy dzielniki naturalne. Liczba naturalna n + ma. dzielniki naturalne. Liczna n jest równa..
ZADANIA MATURALNE PLANIMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE PLANIMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 1pkt) Kąt środkowy i kąt wpisany są oparte na tym samym łuku. Suma ich miar jest równa. Jaka jest miara kąta środkowego?
Odległośc w układzie współrzędnych. Środek odcinka.
GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki
ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy
Odbicie lustrzane, oś symetrii
Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
MATURA Powtórka do matury z matematyki. Część VII: Planimetria ROZWIĄZANIA. Organizatorzy: MatmaNa6.p l i Dziennik.pl
MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Organizatorzy: MatmaNa6.p l i Dziennik.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści
II Warsztaty Matematyczne w I LO
II Warsztaty Matematyczne w I LO Geometria Zadania konkursowe + niektóre rozwiązania 22 24września2008r. Dzień 1, Grupa młodsza Czas: 100 minut Zadanie1.(5p.)WtrójkątKLMwpisujemyokrągośrodkuS,stycznydobokówKLiKModpowiedniowpunktachPiQ.PunktKjestśrodkiemodcinkaPR(jesttodefinicjapunktuR).Wykazać,
TRÓJKĄTY CIĘCIW. Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie
TRÓJKĄTY CIĘCIW Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie Spis treści 1. Zapoznanie z zagadnieniem 1.1. Co to jest trójkąt cięciw? 2. Twierdzenia dotyczące trójkątów
Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy
Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
LVII Olimpiada Matematyczna
LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (12 września 2005 r 5 grudnia 2005 r) Zadanie 1 Wyznaczyć wszystkie nieujemne liczby całkowite n, dla których liczba
Wokół twierdzenia Pascala
Wokół twierdzenia Pascala Marcin Fryz 08 czerwca 2012 1 Wstęp Geometria, a w szczególności planimetria, jest jednym z najważniejszych działów matematyki. Jej zastosowania można dojrzeć wszędzie: zaczynając
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
trójkąta ABC. Wykazać, że te proste zawierają dwusieczne kątów wewnętrznych trójkąta PQR.
1. W trójkącie ABC boki AB i BC są różnej długości. Wykazać, że punkt przecięcia dwusiecznej kąta przy wierzchołku B i symetralnej boku AC należy do okręgu opisanego na trójkącie ABC. 2. Pięciokąt ABCDE
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 24 lutego 2017 r. (pierwszy dzień zawodów)
LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 4 lutego 017 r. (pierwszy dzień zawodów) 1. Wykazać, że dla każdej liczby pierwszej p > istnieje dokładnie jedna taka
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H 1. Niech A = {(x, y) R R : 3 x +4 x = 5 y } będzie zbiorem rozwiązań równania 3 x +4 x = 5 y w liczbach rzeczywistych. Wówczas zbiór A i zbiór N N mają
Proponowane rozwiazania Matura 2013 MATEMATYKA Poziom rozszerzony
POLITECHNIKA WARSZAWSKA WYDZIAŁ MATEMATYKI I NAUK INFORMACYJNYCH Proponowane rozwiazania Matura 013 MATEMATYKA Poziom rozszerzony Autorzy: Kamil Kosiba Tomasz Kostrzewa Wojciech Ożański Agnieszka Piliszek
MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl
MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW. Cel lekcji: kształcenie wyobraźni przestrzennej
Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW Cel lekcji: kształcenie wyobraźni przestrzennej Przypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami prostopadłościanów. 1. Prostopadłościan
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli
w edukacji matematycznej uczniów
Zadania Wykaż, udowodnij w edukacji matematycznej uczniów szkół podstawowych i klas gimnazjalnych Zadania pochodzą z materiałów CKE, egzaminów próbnych i zbiorów zadań GWO, Operon, Nowa Era, WSiP Opracowanie
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
LIV Olimpiada Matematyczna
Zadanie LIV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego września 2002 r 0 grudnia 2002 r Znaleźć wszystkie pary liczb całkowitych dodatnich x, y spełniających równanie
MATURA Przygotowanie do matury z matematyki
MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
LXV Olimpiada Matematyczna
Zadanie 1. LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego I i II seria (1 września 2013 r. 4 listopada 2013 r.) Wykazać, że jeśli liczby całkowite a, b, c spełniają
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
LXIII Olimpiada Matematyczna
1 LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2012 r. (pierwszy dzień zawodów) Zadanie 1. Rozstrzygnąć, czy istnieje taka dodatnia liczba wymierna