Karta pracy M+ do multipodręcznika dla klasy siódmej
|
|
- Lidia Michalak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Karta pracy M+ do multipodręcznika dla klasy siódmej Bezkresne pola pomidorowe Część A. Sprawdź, czy rozumiesz film. 1. Uzupełnij poniższy tekst brakującymi słowami. Uprawa pomidorów w Kalifornii Stany Zjednoczone... Północnej są największym... żywności na świecie. Stanem, w którym produkuje się jej najwięcej, jest.... Najbardziej intensywne uprawy rolne są zlokalizowane na terenach, które jeszcze kilkadziesiąt lat temu były.... Nie dziwi więc, że najcenniejsza jest tu.... Trzeba ją transportować z odległych terenów systemem akweduktów i.... Szacuje się, że uprawy wymagają 14 miliardów... wody rocznie. Dlatego farmerzy często rezygnują z upraw roślin wymagających więcej wody na rzecz tych, które wymagają jej mniej. Z tego powodu hodowla drzew... często jest zastępowana uprawą.... Liczba ludności Kalifornii szybko.... W ciągu ostatnich 80 lat wzrosła do... Wody potrzeba więc coraz więcej. W uprawianiu obszarów nawodnionej pustyni pomagają ludziom zdobycze nauki i techniki. Olbrzymie... zaopatrzone w... ścinają krzewy, zrywają z nich pomidory i sortują je, oddzielając dojrzałe owoce od.... Potrzeby rolnictwa zmuszają do poszukiwania lepszych sposobów wykorzystywania ziemi, wody i pracy. Liczne organizacje i pracownicy naukowi rozwiązują technologiczne problemy amerykańskiego rolnictwa. Pytanie, które nurtuje ich najbardziej, brzmi: jak wyprodukować więcej..., zużywając przy tym mniejszą niż do tej pory ilość....
2 2. Wykorzystując tekst oraz wiadomości z filmu, ustal, które zdania są prawdziwe, a które ywe. Zaznacz odpowiednie pola. Najwięcej pomidorów w USA uprawia się w stanie Oregon. Aby móc uprawiać warzywa na obszarach pustynnych, trzeba te obszary najpierw nawodnić. Migdałowce potrzebują dwa razy mniej wody niż krzewy pomidorowe. Liczba ludności Kalifornii potroiła się w ciągu ostatnich 80 lat. W rolnictwie dąży się do tego, by przy jak największym udziale zasobów, uzyskiwać jak najmniejszy efekt. USA to największy eksporter żywności. 3. Dopasuj podpis do odpowiedniego kadru. Wpisz w okienkach właściwe numery. 1. Kombajn zbierający pomidory 4. Praca w polu trwa przez cały dzień 2. Ziemia bez wody staje się pustynią 5. Kombajn i przyczepy pełne pomidorów 3. System nawadniający pustynne gleby 2 6. Maszyna do niszczenia gałęzi
3 Część B. Rozwiąż poniższe zadania. Tabelka przedstawia dane dotyczące uprawy pomidorów w Kalifornii. Skorzystaj z poniższych informacji podczas rozwiązywania kolejnych dwóch zadań. Rok Powierzchnia (akry) Wydajność (tona/akr) Ilość zebranych pomidorów (tony) Cena za 1 tonę ($) Uzyskany dochód (tys. $) , , , , , , , , , , ,83 65, , , , , , , , , , , oraz data dostępu: r. Zadanie 1. Uzupełnij luki w tabeli. Wpisz brakujące informacje. Zadanie 2. Wykorzystując dane z tabeli, wskaż zdania prawdziwe. Najdroższe pomidory były w roku Między rokiem 2000 a 2012 powierzchnia upraw pomidorów zmalała o akrów. Największy dochód z upraw pomidorów uzyskano w roku Najmniej pomidorów z jednego akra zebrano w roku Różnica między największą a najmniejszą powierzchnią upraw pomidorów w podanych latach wynosi akrów. Zadanie 3. Akr to obszar, który można było zaorać pługiem ciągniętym przez woły w ciągu jednego dnia. Przyjmuje się, że akr to około 40,47 ara. Ile hektarów mogłyby zaorać 4 zaprzęgi wołów w ciągu sześciu dni? Odp
4 Zadanie 4. Ile średnio hektarów ziemi przeznaczono na uprawę pomidorów w Kalifornii w latach ? Odp.... Zadanie 5. W USA jeden bilion oznacza nasz miliard i liczy tysiąc milionów. Jeden galon amerykański to 3,79 litra, natomiast jeden galon angielski to 4,55 litra. Wyraź w hektolitrach dane na temat ilości wody potrzebnej do rocznej uprawy pomidorów w Kalifornii (14 bilionów galonów). W filmie nie podano, czy zużycie wody liczono w galonach angielskich czy amerykańskich. Posłuż się obiema jednostkami objętości i porównaj wyniki. Czy różnią się znacznie? Jak zmieni się ta różnica, gdy weźmiemy pod uwagę uprawę drzew migdałowych? Odp.... Zadanie 6. Według danych statystycznych w Polsce uprawia się pomidory w około gospodarstw. Uprawy te zajmują łącznie około 6000 ha. Jak duże jest średnio pole obsadzone krzewami pomidorów w naszym kraju? Wyraź tę wielkość w arach. Odp.... Zadanie 7. Powierzchnia stanu Kalifornia wynosi km 2. Oszacuj, jaki procent powierzchni tego stanu przeznacza się na uprawę pomidorów (skorzystaj z wyliczeń z zadania 4.). Oszacuj również, jaki procent powierzchni naszego kraju ( km 2 ) przeznacza się na uprawę tego warzywa. Porównaj obie liczby i sformułuj wniosek. Odp Zadanie 8. Największymi producentami pomidorów na świecie są: Chiny, USA, Indie, Turcja, Egipt, Włochy, Iran i Hiszpania. Polska produkuje ok. 700 tys. ton pomidorów rocznie. Chiny i USA produkują łącznie 10 razy tyle pomidorów co Włochy. Indie produkują 2 razy tyle pomidorów co Włochy. Iran zaś produkuje o 1 milion ton pomidorów mniej niż Włochy oraz 2 razy mniej niż Turcja, która produkuje o 6 milionów ton pomidorów więcej niż Hiszpania. Hiszpania wytwarza ich 4 miliony ton. Oblicz, ile ton pomidorów produkują wymienione kraje. Dane dla USA (są zbliżone do produkcji w Kalifornii w roku 2012) weź z tabelki do zadania 1. Jak myślisz, które miejsce zajmuje nasz kraj? Odp
5 Pomidor uprawny Wartości odżywcze na 100 g produktu woda 94,5 g witamina A 0,38 mg magnez 10 mg błonnik 1,4 g witamina B 1 0,06 mg fosfor 24 mg białko 0,9 g witamina B 2 0,04 mg żelazo 0,4 mg tłuszcze 0,2 g witamina B 6 0,11 mg sód 1,2 mg węglowodany 2,8 g witamina C 15 mg wapń 10 mg witamina PP 0,7 mg potas 280 mg Zadanie 9. Na podstawie powyższej tabeli odpowiedz na pytania. a) Jaki procent wartości odżywczych stanowią w pomidorze tłuszcze, a jaki węglowodany?... Odp.... b) Czy w pomidorach jest więcej witamin, czy potasu? O ile procent?... Odp.... Zadanie 10. Pomidory zajmują pierwsze miejsce na liście warzyw spożywanych w Polsce najchętniej około 16% wszystkich zjadanych warzyw. W roku 2012 zjedliśmy w sumie tony pomidorów. Ile kilogramów pomidorów zjadł statystyczny Polak? Ile ton warzyw zjedliśmy w 2012 roku? Przyjmij, że liczba ludności Polski to 38,5 mln Odp Zadanie 11. Oblicz, ile ton pomidorów może się spodziewać właściciel uprawy pomidorów. Kształt i wymiary jego pola przedstawiono na rysunku obok. Przyjmij, że wydajność uprawy pomidorów w danym roku wynosi 1,1 tony/ar Odp.... 5
6 Część C. Zagadka. Rozwiąż krzyżówkę. W jednej z kolumn odczytasz rozwiązanie Ten czworokąt ma co najmniej jedną parę boków równoległych. 2. Jego brzeg to okrąg. 3. Część każdego kąta. 4. Długość, szerokość, wysokość. 5. Jego dwie przekątne przecinają się pod kątem prostym. 6. Odcinek w trójkącie poprowadzony z wierzchołka i prostopadły do podstawy. 7. Część płaszczyzny ograniczona łamaną zwyczajną zamkniętą złożoną z czterech odcinków.
Karta pracy M+ do multipodręcznika dla klasy 1 gimnazjum
Karta pracy M+ do multipodręcznika dla klasy 1 gimnazjum Bezkresne pola pomidorowe Część A. Sprawdź, czy rozumiesz film. 1. Uzupełnij poniższy tekst brakującymi słowami. Uprawa pomidorów w Kalifornii Stany
Karta pracy M+ Do multipodręcznika dla klasy siódmej
Karta pracy M+ Do multipodręcznika dla klasy siódmej Hawana miasto ogródków Część A. Sprawdź, czy zrozumiałeś film. A1. Uzupełnij poniższy tekst o brakujące słowa. Hawana miasto ogródków Hawana to stolica...,
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Matematyka miast Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Niesamowite odkrycie profesora
Skrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Kąty, trójkąty i czworokąty.
Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
1 Pole figury. P 1. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) cm i cm c) 15 cm i 5,2 dm
68 Pola figur 6 Pola figur Pole figury P. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) 3 2 cm i 2 7 cm c) 5 cm i 5,2 dm P 2. Oblicz pole prostokąta o podanych bokach. a) 8 cm i 6 cm b) 4
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?
Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm
I POLA FIGUR zadania łatwe i średnie
I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość
Karta pracy M+ do multipodręcznika dla klasy 1 gimnazjum. Skarby ziemi
Karta pracy M+ do multipodręcznika dla klasy 1 gimnazjum Skarby ziemi Część A. Sprawdź, czy rozumiesz film. 1. Uzupełnij poniższy tekst brakującymi słowami. Źródła energii Dwa najważniejsze źródła energii,
Klasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 016/017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony
Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Geometria w starożytnym świecie Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Bryły platońskie
Żywność. zapewnia prawidłowe funkcjonowanie. poprawia samopoczucie
Warsztaty żywieniowe Żywność buduje i regeneruje dostarcza energii zapewnia prawidłowe funkcjonowanie poprawia samopoczucie Żaden pojedynczy produkt nie dostarczy Ci wszystkiego, czego potrzebujesz dlatego
ETAP SZKOLNY V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego
Informacje do zadań 1 3 Mieszkający w Poznaniu państwo Pyrkowscy bardzo lubią spędzać weekendy poza miastem. Pierwszego stycznia podjęli noworoczne postanowienie, że zakupią działkę rekreacyjną, żeby więcej
Karta pracy M+ Do multipodręcznika dla klasy 1 gimnazjum
Karta pracy M+ Do multipodręcznika dla klasy 1 gimnazjum Hawana miasto ogródków Część A. Sprawdź, czy zrozumiałeś film. A1. Uzupełnij poniższy tekst o brakujące słowa. Hawana miasto ogródków Hawana to
Jarosław Wróblewski Matematyka dla Myślących, 2008/09
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 12 IX rok 2003/2004 Bukiet 1 O pewnych liczbach A, B i C wiadomo, że: A + B = 32, B + C = 40, C + A = 26. 1. Ile wynosi A
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNI Etap: Data: Czas pracy: szkolny 13 listopada 2013 r. 120 minut Informacje dla
Klasa 6. Pola wielokątów
Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
I POLA FIGUR zadania średnie i trudne
I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki
WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA
Karta pracy M+ do multipodręcznika dla klasy siódmej
Karta pracy M+ do multipodręcznika dla klasy siódmej Skarby ziemi Część A. Sprawdź, czy rozumiesz film. 1. Uzupełnij poniższy tekst brakującymi słowami. Źródła energii Dwa najważniejsze źródła energii,
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.
Karta pracy M+ do multipodręcznika dla klasy 4 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 4 szkoły podstawowej Jak powstają świece Część A. Sprawdź, czy rozumiesz film. 1. Uzupełnij poniższy tekst brakującymi słowami. Od plastrów w pszczelich ulach
2 Figury geometryczne
Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Skrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala
PRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 23 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Poniżej zamieszczono fragment etykiety z sałatki z kurczakiem
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013
.... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia:
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: W zadaniach od 1 do 10 tylko jedna odpowiedź jest prawidłowa. Za poprawną odpowiedź otrzymasz 1 punkt; za brak odpowiedzi lub złą odpowiedź 0 punktów;
Pole trójkata, trapezu
Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj
Wymagania szczegółowe z matematyki klasa 7
Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,
EGZAMIN WSTĘPNY Z MATEMATYKI
Egzamin wstępny do I Społecznego Liceum Ogólnokształcącego BEDNARSKA Kod zdającego EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin wstępny z matematyki, który składa się z dwóch części. Osoby,
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA. Czas pracy: 120 minut
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Skrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Figury płaskie Podstawowe figury geometryczne
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Odcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 13.04.2018 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
Przedmiotowy system oceniania
Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi
Kąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATURĄ MAJ 2015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony ( zadania 1 19). Ewentualny brak zgłoś przewodniczącemu
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
EGZAMIN ÓSMOKLASISTY MATEMATYKA
www.galileusz.com.pl EGZAMIN ÓSMOKLASISTY MATEMATYKA ARKUSZ 100 minut 30 Zadanie 1. (0-1) Dane są liczby:,,,. Suma trzech spośród nich wynosi. Którą liczbę należy odrzucić, aby suma pozostałych trzech
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
WYMAGANIA EDUKACYJNE KLASA VII. LICZBY i DZIAŁANIA
WYMAGANIA EDUKACYJNE KLASA VII A uczeń zna, B uczeń rozumie, C uczeń umie stosować wiadomości w sytuacjach typowych, D uczeń umie stosować wiadomości w sytuacjach problemowych. LICZBY i DZIAŁANIA zna PSO,
POTĘGI I PIERWIASTKI
POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą
Jak obracać trójkąt, by otrzymać bryłę o największej. objętości?
Jak obracać trójkąt, by otrzymać bryłę o największej objętości? Czas trwania zajęć: 40 minut Kontekst w jakim wprowadzono doświadczenie: Trójkąt o bokach długości: cm, 4 cm, 5 cm obrócono o kąt 60 o w
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 204/205 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 5 stycznia 205 r. 20 minut Informacje dla ucznia.
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY V : 1. doda i odejmie liczby naturalne sposobem pisemnym z przekraczaniem progów
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Maraton Matematyczny Klasa I październik
Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=
Konkurs dla gimnazjalistów Etap II 5 luty 2013 roku
Strona1 Konkurs dla gimnazjalistów Etap II 5 luty 2013 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 6 KWIETNIA 209 CZAS PRACY: 90 MINUT ZADANIE ( PKT) Grupie dwustu osób zadano pytanie: Jaka jest twoja ulubiona
Prawidłowe odżywianie. Czy marnujemy szansę na zdrowe żywienie?
Katedra Żywienia Człowieka Uniwersytet Warmińsko-Mazurski w Olsztynie Polskie Towarzystwo Nauk Żywieniowych Prawidłowe odżywianie. Czy marnujemy szansę na zdrowe żywienie? prof. dr hab. Lidia Wądołowska
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki lutego 01 r. 90 minut Informacje dla ucznia:
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY VII. końcoworoczne
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY VII końcoworoczne POZIOM WYMAGAŃ KONIECZNYCH - WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ, obejmują te wiadomości i umiejętności, które
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII Ocenę niedostateczną (1) otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą, Wymagania na ocenę dopuszczającą (2) zna pojęcie liczby naturalnej,
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku
Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku KLASA VII LICZBY I DZIAŁANIA rozumie konieczność rozszerzenia osi liczbowej na liczby ujemne, umie porównywać typowe przykłady
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 14 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z