Zró nicowanie bie ¹cego przyrostu sosen w trzech klasach wieku
|
|
- Anatol Wróblewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 DOI: /frp ORYGINALNA PRACA NAUKOWA Leœne Prace Badawcze (Forest Research Papers), Czerwiec (June) 2013, Vol. 74 (2): Zró nicowanie bie ¹cego przyrostu sosen w trzech klasach wieku The current growth increment of pine tree stands comprising three different age classes Katarzyna KaŸmierczak Uniwersytet Przyrodniczy w Poznaniu, Zak³ad Dendrometrii i Produkcyjnoœci Lasu, ul. Wojska Polskiego 71 C, Poznañ Tel ; kkdendro@up.poznan.pl Abstract. The study presents the results of an analysis of the pine tree growth increments (height increment, dbh increment, basal area increment and volume increment) for a 5-year period. The study involved Scots pine trees of Kraft's class 1, 2 and 3 (dominant stand) in stands of different age classes (II, III, V) growing in fresh mixed coniferous (BMœw) and fresh coniferous (Bœw) forest habitats. The multivariate analysis of variance was performed to assess the statistical significance of age and dominance of trees within a stand on their increment. The dominance position was classified for each tree using Kraft's criteria. The following characteristics were also measured: dbh of the trunk in two directions (N-S and W-E), and crown projection area on the basis of the characteristic tree crown points, projected using of a crown projector, characteristic points in tree crowns (7 to 14 on average). The actual height was determined after trees were felled. The following measurements of the single tree growing space were selected and determined: crown projection area p k (m 2 ), crown diameter d k (m), Seebach's growth space number dk / d, crown projection area to basal area ratio dk / d13., crown deflection coefficient dk / h, single tree space ppd=pk h (m 3 ). We assessed the strength of the relationships between tree growth parameters and tree growth space, crown length, relative crown length and slenderness. Both the age and dominance position of trees within the stand affected the growth increments. The strongest correlation among measured traits was between the 5-year volume increment and decreasing slenderness. Key words: height increment, dbh increment, basal area increment, volume increment, growth space, crown, age, biosocial position, Pinus sylvestris 1. Wstêp D¹ eniem leœnej praktyki gospodarczej jest zwiêkszanie przyrostu mi¹ szoœci drzewostanu w przeliczeniu na jednostkê powierzchni. Przyrost drzew wchodz¹cych w sk³ad drzewostanu zdeterminowany jest wieloma czynnikami. Zale y nie tylko od cech genetycznych czy jakoœci siedliska, ale i warunków otoczenia drzew. W drzewostanie drzewa ró nicuj¹ siê, osi¹gaj¹c ró n¹ pozycjê w budowie pionowej drzewostanu, co warunkuje przyrost tych drzew. Planowane i prowadzone racjonalnie zabiegi pielêgnacyjne mog¹ zmieniæ warunki wzrostowe drzew. Pozwalaj¹ te zmieniæ strukturê gruboœciow¹ drzewostanu, umo liwiaj¹c uzyskanie wiêkszego przyrostu mi¹ szoœci drzew dobrej jakoœci. Celem zabiegów jest znalezienie optymalnej przestrzeni wzrostu, która pozwoli taki przyrost drzew uzyskaæ. Borowski (1968) stwierdzi³, e opisanie udzia³u klas biosocjalnych w drzewostanie okreœla strukturê drzewostanu i wyjaœnia jej rolê w bie ¹cym przyroœcie mi¹ - szoœci. Nie daje jednak odpowiedzi na pytania, jaka powinna byæ struktura i drzewa jakich klas nale y preferowaæ, by dobrze wykorzystaæ zarówno zdolnoœæ produkcyjn¹ siedliska, jak i w³aœciwoœci gatunku. Drzewa góruj¹ce cechuj¹ siê du ym przyrostem mi¹ szoœci, ale i zajmuj¹ du ¹ przestrzeñ. Natomiast drzewa drzewostanu opanowanego z ma³ej przestrzeni wzrostu uzyskuj¹ ma³y przyrost. Borowski (1968) dowodzi, i o przyroœcie drzew decyduje nie tylko wielkoœæ korony i zajmowana przestrzeñ, ale g³ównie stanowisko bioso- Praca zosta³a z³o ona r. i po recenzjach przyjêta r. 2013, Instytut Badawczy Leœnictwa
2 94 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): cjalne. Zmiany w przyroœcie drzewa przebiegaj¹ w ró nych okresach ycia w ró nym tempie, celowym zatem jest pog³êbianie i poszerzanie wiedzy na temat przyrostu drzew. Celem pracy jest analiza przyrostu sosen trzech drzewostanów w wieku 35, 50 i 88 lat w zale noœci od pozycji biosocjalnej drzewa w drzewostanie panuj¹cym. Analizie poddano bie ¹ce przyrosty: wysokoœci, pierœnicy, pola przekroju pierœnicowego i mi¹ szoœci za okres ostatnich 5 lat. Oceniono ponadto moc korelacji pomiêdzy rozpatrywanymi rodzajami przyrostów sosen a innymi cechami pomiarowymi i miarami przestrzeni wzrostu drzewa. 2. Materia³ i metody Materia³ badawczy zosta³ zebrany na trzech zrêbach zupe³nych za³o onych w litych drzewostanach sosnowych w wieku 35, 50 i 88 lat na terenie Nadleœnictwa Doœwiadczalnego Zielonka. Wielkoœæ powierzchni zrêbowych wynosi³a kolejno: 0,10 ha, 0,25 ha i 1,00 ha, a liczba rosn¹cych tam drzew (sosen) odpowiednio: 302, 274 i 474. Drzewostan panuj¹cy na powierzchni badawczej w 35-letnim drzewostanie obejmowa³ 185 drzew, co stanowi³o ponad 61% wszystkich drzew w drzewostanie. W 50-letnim drzewostanie by³o to odpowiednio 229, co przekracza³o 83%, a w najstarszym, 88- letnim, blisko 99% wszystkich drzew, czyli 469 sosen. Drzewostany wzrasta³y na typowych dla sosny siedliskach: 35- i 88-letni w warunkach boru œwie ego (Bœw), trzeci na siedlisku boru mieszanego œwie ego (BMœw). Na drzewach stoj¹cych pomierzono: 1) pierœnicê w korze w dwu kierunkach N-S i W-E z dok³adnoœci¹ do 0,1 cm, a œredni¹ arytmetyczn¹ z tych pomiarów przyjêto za pierœnicê drzewa (d 1,3 ), 2) powierzchniê rzutu korony p k (m 2 ) na podstawie rzutowanych charakterystycznych punktów koron drzew (przeciêtnie 4 do 14). Po œciêciu ustalono ponadto miêdzy innymi: 1) d³ugoœæ drzewa z dok³adnoœci¹ do 0,01 m i przyjêto j¹ za wysokoœæ drzewa (h), 2) przyrost wysokoœci (m) po okó³kach za ostatnie piêæ lat Ih 5, 3) wysokoœæ osadzenia korony do pierwszej ywej ga³êzi zwartej korony, 4) przyrost pierœnicy (cm) za okres 5 lat Id 5, 5) przyrost pola przekroju pierœnicowego (m 2 )za ostatni 5-letni okres przyrostowy Ig 5, 6) bie ¹cy przyrost mi¹ szoœci (m 3 ) za okres ostatnich piêciu lat Iv 5, okreœlony sposobem sekcyjnym. Dla ka dego drzewa, zgodnie z kryteriami klasyfikacji Krafta, przed œciêciem okreœlono stanowisko biosocjalne. Szerokoœæ korony d k uzyskano z powierzchni rzutu korony przyjêtej za pole ko³a. D³ugoœæ korony l k obliczono jako ró nicê pomiêdzy ca³kowit¹ wysokoœci¹ drzewa a wysokoœci¹ osadzenia korony. Okreœlono równie miary przestrzeni wzrostu pojedynczego drzewa, m.in.: liczbê przestrzeni wzrostowej Seebacha 2 2 d d, iloraz powierzchni rzutu korony d / d,, / k 13, stopieñ roz³o ystoœci korony dk / h, przestrzeñ pojedynczego drzewa ppd = pk h (m 3 ). W omawianych drzewostanach analizy przeprowadzono jedynie dla drzewostanu panuj¹cego (klasy od I do III Krafta). Dla wszystkich omawianych cech przyrostowych w klasach Krafta wyliczono podstawowe charakterystyki statystyczne. Przeprowadzono analizê wariancji ze wzglêdu na pozycjê drzewa w budowie pionowej drzewostanu i jego wiek. Poprzedzono j¹ ocen¹ zgodnoœci rozk³adów empirycznych wszystkich cech przyrostowych z rozk³adem normalnym przy u yciu testu Ko³mogorowa-Smirnowa. Obliczono si³ê korelacji zwi¹zku miêdzy cechami przyrostowymi sosen a wybranymi cechami drzewa i miarami przestrzeni wzrostu. Do obliczeñ wykorzystano pakiet Statistica Wyniki Zasadniczo nie stwierdzono odstêpstw rozk³adów empirycznych przyrostu wysokoœci, przyrostu pierœnicy, przyrostu pola przekroju pierœnicowego i przyrostu mi¹ szoœci badanych klas Krafta analizowanych drzewostanów od rozk³adu normalnego (wyj¹tek stanowi rozk³ad przyrostu pierœnicy 88-letnich drzew). Przyrost wysokoœci Przeprowadzona dwuczynnikowa analiza wariancji w odniesieniu do bie ¹cego 5-letniego przyrostu wysokoœci wykaza³a istotny statystycznie wp³yw zarówno pozycji drzewa w strukturze drzewostanu, jak i wieku drzew na zró nicowanie tej cechy przyrostowej (tab. 1). Stwierdzono równie ³¹czny wp³yw klasy biosocjalnej i wieku na wielkoœæ przyrostu wysokoœci. Z wiekiem badanych drzewostanów œredni przyrost wysokoœci maleje. Ró nica przyrostu wysokoœci jest szczególnie wyraÿna pomiêdzy drzewostanem 50-letnim i 88-letnim, na niekorzyœæ tego ostatniego. Dotyczy to wszystkich klas Krafta drzewostanu panuj¹cego (tab. 2). Wyniki te potwierdzaj¹ prawid³owoœæ, i przyrost wysokoœci kulminuje we wczesnym wieku, a po kulminacji maleje. Ka dorazowo najwiêkszym œrednim przyrostem wysokoœci cechuj¹ siê drzewa góruj¹ce, mniejszym panuj¹ce, a najmniejszym wspó³panuj¹ce. Ró nice w przyroœcie wysokoœci miêdzy poszcze- k 13
3 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): Tabela 1. Wyniki analizy wariancji 5-letniego przyrostu wysokoœci (Ih 5 ) Table 1. Results of the analysis of variance of 5 years height increment (Ih 5 ) ród³o zmiennoœci Source of variability SS df MS F p-wartoœæ p-value Wyraz wolny / Intercept 1103, , ,88 0,000 Efekty g³ówne main effects Interakcje Interactions kl. Krafta 3, ,653 36,17 0,000 wiek /age 180, , ,61 0,000 kl. Krafta wiek age 0, ,215 4,71 0,001 B³¹d / Error 39, ,046 Wykaz skrótów / List of abbreviations SS suma kwadratów / sum of squares df liczba stopni swobody / degrees of freedom MS œredni kwadrat odchyleñ / mean squares F test F Tabela 2. Podstawowe charakterystyki statystyczne 5-letniego przyrostu drzew Table 2. Basic statistical characteristics of 5 years tree increment Klasa Krafta Wiek Age N/ha Ih 5 Id 5 Ig 5 Iv 5 x s dx x s dx x s dx x s dx m cm m 2 m ,72 0,28 0,98 0,32 0,0017 0,0008 0,0203 0, ,62 0,26 1,11 0,38 0,0029 0,0014 0,0432 0, ,68 0,17 0,78 0,28 0,0030 0,0014 0,0528 0,0235 I ,89 0,32 1,38 0,23 0,0030 0,0007 0,0374 0,0096 I ,75 0,25 1,49 0,35 0,0048 0,0013 0,0756 0,0202 I ,70 0,17 0,95 0,25 0,0045 0,0014 0,0829 0,0219 II ,79 0,24 1,08 0,21 0,0019 0,0004 0,0219 0,0046 II ,63 0,27 1,19 0,32 0,0030 0,0010 0,0459 0,0136 II ,70 0,17 0,78 0,27 0,0030 0,0011 0,0514 0,0163 III ,61 0,23 0,76 0,23 0,0011 0,0003 0,0127 0,0032 III ,56 0,24 0,80 0,28 0,0017 0,0006 0,0241 0,0075 III ,62 0,17 0,60 0,21 0,0019 0,0008 0,0295 0,0097 Ih 5 piêcioletni przyrost wysokoœci / 5 years height increment Id 5 piêcioletni przyrost pierœnicy / 5 years dbh increment Ig 5 5-letni przyrost pola przekroju pierœnicowego / 5 years basal area increment Iv 5 5-letni przyrost mi¹ szoœci / 5 years volume increment x œrednia arytmetyczna / arithmetic mean s dx odchylenie standardowe / standard deviation gólnymi klasami Krafta widoczne by³y w najm³odszym drzewostanie, w starszych by³y mniejsze (tab. 2). Przyrost pierœnicy Na podstawie przeprowadzonej analizy wariancji bie ¹cego przyrostu pierœnicy stwierdzono istotny statystycznie wp³yw zarówno pozycji biosocjalnej drzewa, jak i jego wieku na zró nicowanie przyrostu pierœnicy (tab. 3). Wyniki analizy wariancji potwierdzi³y ponadto ³¹czny wp³yw klasy Krafta i wieku na wielkoœæ przyrostu pierœnicy. Bie ¹cy przyrost pieœnicy drzew 1 klasy Krafta by³ najwiêkszy, kolejnych klas mniejszy. Wielkoœæ tego przyrostu zale a³a od wieku. W drzewostanie najm³odszym by³ du y, w starszych mniejszy. Kulminacja przyrostu pierœnicy nast¹pi³a prawdopodobnie ju w fazie erdziowiny. Œredni przyrost pierœnicy równie zale a³ od wieku drzew. Najwiêkszym przyrostem tej cechy charakteryzowa³y siê 50-letnie sosny. Na uzyskany wynik wp³y-
4 96 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): nê³a wy sza jakoœæ siedliska. Dotyczy³o to wszystkich klas biosocjalnych (tab. 2). U drzew w tym wieku te zaobserwowano najwiêksze ró nice w przyroœcie pierœnicy pomiêdzy klasami Krafta. W drzewostanie najstarszym ró nice te by³y mniejsze, choæ nadal wyraÿne. Najmniejszym bie ¹cym przyrostem pierœnicy we wszystkich badanych klasach drzewostanu panuj¹cego cechowa³y siê sosny najstarsze 88-letnie (tab. 2). Przyrost pola przekroju pierœnicowego Analiza wariancji przeprowadzona w odniesieniu do bie ¹cego przyrostu pola przekroju pierœnicowego wykaza³a istotny statystycznie wp³yw zarówno pozycji biosocjalnej drzewa w drzewostanie, jak i jego wieku na jego wielkoœæ (tab. 4). Stwierdzono równie ³¹czny wp³yw klasy biosocjalnej i wieku na wielkoœæ tego rodzaju przyrostu. Tabela 3. Wyniki analizy wariancji 5-letniego przyrostu pierœnicy ( Id5 ) Table 3. Results of the analysis of variance of 5 years dbh increment (Id 5 ) ród³o zmiennoœci Source of variability SS df MS F p-wartoœæ p-value Wyraz wolny / Intercept 600, , ,794 0,000 Efekty g³ówne Main effects kl. Krafta 27, , ,741 0,000 wiek / age 20, , ,598 0,000 Interakcje Interactions kl. Krafta wiek age 2, ,578 8,274 0,000 B³¹d / Error 61, ,070 Oznaczenia jak w tabeli 1 / For symbols see Table 1 Tabela 4. Wyniki analizy wariancji 5-letniego przyrostu pola przekroju pierœnicowego (Ig 5 ) Table 4. Results of the analysis of variance of 5 years basal area increment (Ig 5 ) ród³o zmiennoœci Source of variability SS df MS F p-wartoœæ p-value Wyraz wolny / Intercept 0, , ,894 0,000 Efekty g³ówne Main effects Interakcje Interactions kl. Krafta 0, , ,808 0,000 wiek / age 0, , ,925 0,000 kl. Krafta wiek age 0, , ,015 0,001 B³¹d / Error 0, , Tabela 5. Wyniki analizy wariancji 5-letniego przyrostu mi¹ szoœci (Iv 5 ) Table 5. Results of the analysis of variance of 5 years volume increment (Iv 5 ) ród³o zmiennoœci Source of variability SS df MS F p-wartoœæ p-value Wyraz wolny / Intercept 1, , ,890 0,000 Efekty g³ówne Main effects kl. Krafta 0, , ,966 0,000 wiek / age 0, , ,385 0,000 Interakcje interactions kl. Krafta wiek age 0, , ,508 0,000 B³¹d / Error 0, ,0002
5 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): Œredni przyrost pola przekroju pierœnicowego zale a³ od wieku i klas Krafta. W przypadku drzew wspó³panuj¹cych by³ najwiêkszy w drzewostanie najstarszym, a u drzew panuj¹cych zwiêkszy³ siê do wieku 50 lat, po czym utrzyma³ na tym samym poziome. Œredni przyrost drzew góruj¹cych kszta³towa³ siê odmiennie. Najwiêkszym œrednim przyrostem pola przekroju pierœnicowego cechowa³ siê drzewostan 50-letni, póÿniej by³ widoczny niewielki spadek tej cechy przyrostowej (tab. 2). U drzew w tym wieku te zaobserwowano najwiêksze ró nice w przyroœcie pierœnicy pomiêdzy omawianymi klasami Krafta. Potwierdza to lepsze siedliskowe warunki wzrostu tego drzewostanu. Przyrost mi¹ szoœci Równie wyniki analizy wariancji bie ¹cego przyrostu mi¹ szoœci wykaza³y istotny statystycznie wp³yw pozycji biosocjalnej drzewa i wieku na zró nicowanie tej cechy (tab. 5). Stwierdzono ponadto ³¹czny wp³yw klasy biosocjalnej i wieku na wielkoœæ przyrostu mi¹ - szoœci. Œredni przyrost mi¹ szoœci zwiêksza³ siê z wiekiem badanych drzewostanów. Widoczne to by³o we wszystkich klasach biosocjalnych (tab. 2). Najwiêksze wartoœci przyrostu mi¹ szoœci cechowa³y drzewa góruj¹ce. Z wiekiem ró nice przyrostu mi¹ szoœci miêdzy drzewami o ró nej pozycji biosocjalnej zwiêkszy³y siê. Przyrost a klasy Krafta i cechy drzew Zbadano si³ê zale noœci pomiêdzy poszczególnymi rodzajami przyrostu a klas¹ Krafta, cechami pomiarowymi sosen pierœnic¹ i wysokoœci¹, wybranymi miarami przestrzeni wzrostu pojedynczego drzewa (powierzchni¹ rzutu korony, szerokoœci¹ korony, liczb¹ przestrzeni wzrostowej Seebacha, ilorazem powierzchni rzutu korony, stopniem wychylenia korony), d³ugoœci¹ absolutn¹ i wzglêdn¹ korony oraz smuk³oœci¹ drzewa. Analizê przeprowadzono dla warstwy panuj¹cej w ka - dym z badanych drzewostanów. Wyniki zamieszczono Tabela 6. Wspó³czynniki korelacji prostoliniowej pomiêdzy badanymi rodzajami przyrostu a wybranymi cechami Table 6. Coefficient of linear correlation between tree increments and chosen traits Cecha Trait Klasa Krafta 2 2 d 1,3 h p k d k d k /d 1,3 d / d k 13, ppd d k /h l k l k /h h/d 1,3 35-letni drzewostan / 35 year-old stand Ih 5-0,406* 0,313* 0,555* 0,311* 0,304* 0,059 0,047 0,363* 0,153* 0,510* 0,412* -0,130 Id 5-0,726* 0,672* 0,627* 0,620* 0,628* 0,118 0,101 0,657* 0,487* 0,596* 0,484* -0,554* Ig 5-0,830* 0,864* 0,741* 0,700* 0,691* -0,006-0,021 0,753* 0,514* 0,697* 0,554* -0,727* Iv 5-0,852* 0,909* 0,789* 0,703* 0,687* -0,059-0,075 0,764* 0,493* 0,734* 0,577* -0,750* 50-letni drzewostan / 50 year-old stand Ih 5-0,231* 0,185* 0,418* 0,071 0,068-0,079-0,091 0,115-0,031 0,372* 0,288* -0,043 Id 5-0,599* 0,654* 0,571* 0,546* 0,546* 0,142* 0,129 0,574* 0,448* 0,532* 0,418* -0,588* Ig 5-0,721* 0,837* 0,681* 0,677* 0,664* 0,124 0,102 0,718* 0,540* 0,620* 0,475* -0,742* Iv 5-0,772* 0,856* 0,767* 0,715* 0,697* 0,147* 0,124 0,765* 0,554* 0,648* 0,476* -0,726* 88-letni drzewostan / 88 year-old stand Ih 5-0,148* 0,121* 0,352* 0,113* 0,122* 0,055 0,050 0,150* 0,021 0,160* 0,067 0,025 Id 5-0,396* 0,332* 0,337* 0,383* 0,391* 0,213* 0,201* 0,400* 0,319* 0,326* 0,272* -0,248* Ig 5-0,606* 0,660* 0,521* 0,594* 0,594* 0,172* 0,154* 0,627* 0,475* 0,501* 0,408* -0,542* Iv 5-0,706* 0,806* 0,640* 0,683* 0,684* 0,153* 0,134* 0,727* 0,534* 0,568* 0,443* -0,661* * wspó³czynnik korelacji istotny statystycznie na poziomie 0,05 / coefficient of correlation significant at level 0,05 p k powierzchnia rzutu korony crown projection area d k szerokoœæ korony / crown diameter d d13, liczba przestrzeni wzrostowej Seebacha / Seebach s growth space number / k 2 2 d / d iloraz powierzchni rzutu korony / crown projection area to basal area ratio k 13, ppd przestrzeñ pojedynczego drzewa / single tree space d h / k stopieñ roz³o ystoœci korony / crown spread l k d³ugoœæ korony / crown length l k /h wzglêdna d³ugoœæ korony / relative crown length h/d 1,3 wspó³czynnik smuk³oœci / slenderness coefficient.
6 98 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): w tabeli 6. Na ich podstawie mo na stwierdziæ, i z pogarszaniem siê pozycji drzewa wszystkie badane rodzaje przyrostów malej¹. Najsilniejszym zwi¹zkiem z klas¹ biosocjaln¹ charakteryzowa³ siê bie ¹cy przyrost mi¹ szoœci, nieco s³abszym bie ¹cy przyrost pola przekroju pierœnicowego, s³abszym bie ¹cy przyrost pierœnicy, i najs³abszym bie ¹cy przyrost wysokoœci. Tak¹ kolejnoœæ stwierdzono we wszystkich badanych drzewostanach, jednak wraz z wiekiem drzewostanu wspó³czynnik korelacji przyrostu z klas¹ biosocjaln¹ osi¹ga³ ni sze wartoœci (tab. 6). Podobna kolejnoœæ mocy korelacji by³a w przypadku zwi¹zku przyrostów sosen z cechami pomiarowymi pierœnic¹ i wysokoœci¹. W ka dym z drzewostanów z bie ¹cym przyrostem wysokoœci silniej ni pozosta³e cechy przyrostowe zwi¹zana jest wysokoœæ drzewa, a z wiekiem moc tej korelacji s³abnie (tab. 6). Pozosta³e cechy przyrostowe cechuje natomiast wiêksza moc korelacji z pierœnic¹ ni z wysokoœci¹, a si³a korelacji równie wraz z wiekiem maleje. Wybrane miary przestrzeni wzrostu pojedynczego drzewa w ró nym stopniu wp³ywaj¹ na rozpatrywane rodzaje przyrostów sosen. W przypadku sosen najsilniejszy zwi¹zek z przyrostem wykazuje przestrzeñ pojedynczego drzewa (tab. 6). Najs³abszy wp³yw na przyrost wysokoœci, istotny jedynie w przypadku najm³odszego drzewostanu, ma stopieñ wychylenia korony. Spoœród miar przestrzeni wzrostu pojedynczego drzewa s³abym wp³ywem na badane rodzaje przyrostów w wiêkszoœci przypadków wspó³czynnik korelacji by³ nieistotny statystycznie wyró niaj¹ siê dwie cechy liczba przestrzeni wzrostowej Seebacha i iloraz powierzchni rzutu korony. Oceniaj¹c si³ê zale noœci cech przyrostowych od d³ugoœci korony i jej wzglêdnej d³ugoœci stwierdzono ka dorazowo silniejszy zwi¹zek z d³ugoœci¹ korony. Silna by³a zale noœæ z przyrostem mi¹ - szoœci i przyrostem pola przekroju pierœnicowego. Z wiekiem drzewostanu równie moc korelacji zmniejszy³a siê, a w drzewostanie najstarszym, 88-letnim, zwi¹zek wzglêdnej d³ugoœci korony z przyrostem wysokoœci by³ nieistotny (tab. 6). Ostatni¹ cech¹, której wp³yw na przyrost sosen badano, by³a smuk³oœæ drzewa (h/d 1,3 ). Nie stwierdzono istotnej zale noœci smuk³oœci z przyrostem wysokoœci. Poza tym okaza³o siê, i wzrostowi wspó³czynnika smuk³oœci towarzyszy³o zmniejszanie siê cech przyrostowych. Z wiekiem moc korelacji wyraÿnie s³ab³a (tab. 6). 4. Dyskusja Przeprowadzone analizy wykaza³y, i na wielkoœæ przyrostów sosen istotnie wp³ywa pozycja biosocjalna drzewa w budowie pionowej drzewostanu. Z obni aniem pozycji biosocjalnej drzewa wszystkie badane przyrosty malej¹. Retrospektywna analiza wzrostu i przyrostu 50-letnich sosen przeprowadzona przez Lemke (1972) wykaza³a, e krzywe bie ¹cego przyrostu mi¹ szoœci drzew poszczególnych klas Krafta uk³ada³y siê w kolejnoœci klas biosocjalnych. Podobne rezultaty uzyska³ Zaj¹czkowski (1973) w odniesieniu do sosny z warstwy drzewostanu panuj¹cego. Analogiczne wyniki otrzyma³ Šmelko (1982) w odniesieniu do buka i œwierka. ó³ciak (1963), analizuj¹c kszta³towanie siê przyrostów sosen w ró nych okresach ycia, stwierdzi³, i drzewa zmieniaj¹ce czasowo sw¹ pozycjê w drzewostanie, przeciêtnie utrzymuj¹ swoje sta³e po³o enie. Zgodnie z uzyskanymi wynikami Borowski (1968) stwierdzi³, i o przyroœcie drzew decyduje nie tylko wielkoœæ korony i zajmowana przestrzeñ, ale i stanowisko biosocjalne. WyraŸnie widoczne by³o to w drzewostanie m³odszym o przeciêtnym wieku 44 lat. Przyrost mi¹ szoœci na metr kwadratowy powierzchni rzutu korony maleje ze wzrostem powierzchni rzutu korony w ka dej z klas biosocjalnych. Przy ma³ej powierzchni rzutu korony maleje szybko, a przy du ej spadek nastêpuje wolniej. Przy takiej samej powierzchni rzutu korony przyrost mi¹ szoœci na tê powierzchniê jest wiêkszy im wy sze jest stanowisko drzewa w strukturze pionowej drzewostanu. Wielkoœæ przyrostu mi¹ szoœci drzewa w danych warunkach zdeterminowana jest wielkoœci¹ aparatu asymilacyjnego i pozycj¹ biososcjaln¹. Najbardziej ekonomiczny jest przyrost drzew zajmuj¹cych wysokie stanowisko biosocjalne o ma³ej powierzchni rzutu korony. Zaj¹czkowski (1973) wykaza³ wzrost przyrostu mi¹ szoœci ze wzrostem powierzchni rzutu korony w klasach biosocjalnych. Drzewa wy szych klas Krafta cechowa³y siê wiêkszym przyrostem mi¹ szoœci od drzew z klas ni szych o koronach podobnej wielkoœci. Prezentowane badania dowiod³y wp³yw przestrzeni wzrostu (zdefiniowanej wielkoœci¹ korony) na ró ne rodzaje przyrostów. Wielkoœæ korony by³a istotnie zwi¹zana z iloœci¹ aparatu asymilacyjnego znajduj¹cego siê w koronie. Lemke (1968), okreœlaj¹c zwi¹zek pomiêdzy wielkoœci¹ korony a przyrostem drzew w drzewostanach, stwierdzi³ istotne zale noœci miêdzy elementami korony a ró nymi rodzajami przyrostu. Rozwa a³ objêtoœæ korony (jako objêtoœæ walca o szerokoœci korony i jej d³ugoœci), powierzchniê rzutu korony i jej d³ugoœæ. Zwi¹zki miêdzy elementami pomiarowymi korony a poszczególnymi przyrostami kszta³tuj¹ siê tak samo w obu okresach przyrostowych, jednak w d³u szym okresie przyrostowym by³y nieco silniejsze. Lemke (1966) udowodni³ wp³yw wielkoœci aparatu asymilacyjnego na przyrost mi¹ szoœci drzew. Zwi¹zek pomiêdzy wielkoœci¹ korony a przyrostem drzew naj-
7 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): dok³adniej okreœlany mo e byæ na podstawie mi¹ szoœci ulistnionych ga³¹zek. Autor stwierdzi³ tak e, e oceniaj¹c wp³yw wielkoœci aparatu asymilacyjnego lub wielkoœci korony na przyrost drzew nie nale y pos³ugiwaæ siê wynikami dla pewnej tylko klasy biosocjalnej, gdy mo e to prowadziæ do niew³aœciwych wniosków. Wykaza³ równie, e produkcja masy drewna na jednostkê aparatu asymilacyjnego w klasie drzew góruj¹cych by³a o 1/3, a w klasie drzew panuj¹cych o 1/7 mniejsza ni w klasie drzew wspó³panuj¹cych. Stwierdzi³, e w 3 klasie Krafta drzewa o ma³ych koronach cechuj¹ siê wiêksz¹ wydajnoœci¹ produkcyjn¹ ni drzewa o koronach du ych. Najmniejsz¹ energi¹ asymilacji charakteryzowa³y siê drzewa o najwiêkszych koronach (zasadniczo drzewa góruj¹ce). Jednak przeciêtny przyrost mi¹ szoœci drzew klasy 1 by³ blisko trzy razy wiêkszy od klasy 3. Mimo mniejszej energii asymilacji drzewa o du ych koronach produkuj¹ najwiêksz¹ masê drewna (Lemke 1966). Dudek (1969) stwierdzi³, e m³odsze drzewa o zbli- onej powierzchni rzutu korony maj¹ wiêkszy przyrost pierœnicy i wiêkszy przyrost mi¹ szoœci na jednostkê pola przekroju pierœnicowego (wiêkszy wspó³czynnik intensywnoœci przyrostu mi¹ szoœci) ni drzewa starsze. Badania Svenssona (1998), prowadzone na bogatym materiale drzew próbnych w odniesieniu do sosny i œwierka, wykaza³y koniecznoœæ uwzglêdniania cech korony (wzglêdnej d³ugoœci korony) przy okreœlaniu przyrostu mi¹ szoœci. Skrzyszewski (1995) w 11 drzewostanach œwierkowych spoœród badanych 15 stwierdzi³ zwi¹zek d³ugoœci korony z bie ¹cym 10-letnim przyrostem powierzchni przekroju pierœnicowego. Wzglêdna d³ugoœæ koron wp³ywa³a w sposób istotny statystycznie na ten rodzaj przyrostu drzewa w 9 drzewostanach spoœród 15. Zwi¹zek wspomnianych cech autor stwierdzi³ równie w przypadku modrzewia. Z przyrostem pola przekroju pierœnicowego istotnie zwi¹zana by³a d³ugoœæ i szerokoœæ korony w 6 drzewostanach z 7 badanych i wzglêdna d³ugoœæ korony w 4 drzewostanach na 6 badanych. Zale noœæ pomiêdzy tymi cechami by³a silniejsza u modrzewia ni u œwierka (Skrzyszewski 1995). Jaworski i in. (1988, 1995) stwierdzili, e wspó³czynnik korelacji pomiêdzy wzglêdn¹ d³ugoœci¹ koron a przyrostem s³oja rocznego jode³ w m³odszych drzewostanach wynosi³ 0,579, a w starszych 0,515. Badania KaŸmierczak i in. (2008) wykaza³y wp³yw smuk³oœci na przyrost pierœnicy i przyrost mi¹ szoœci. Stwierdzono, e ze wzrostem przyrostu pierœnicy i przyrostu mi¹ szoœci smuk³oœæ drzew mala³a. 5. Wnioski 1. Zajmowane przez drzewo stanowisko biosocjalne w istotny sposób ró nicuje wielkoœæ cech przyrostowych sosen badanych drzewostanów. Z obni eniem pozycji biosocjalnej drzewa wszystkie badane przyrosty malej¹. 2. Wielkoœæ cech przyrostowych zdeterminowana jest te wiekiem drzew. 3. Ze stanowiskiem biosocjalnym drzewa w drzewostanie (klasy Krafta) najsilniej zwi¹zany jest bie ¹cy przyrost mi¹ szoœci, a najs³abiej przyrost wysokoœci. Z wiekiem moc korelacji s³abnie. 4. Zwi¹zki przyrostów sosen z pierœnic¹ i wysokoœci¹ cechuj¹ siê podobn¹ kolejnoœci¹ mocy korelacji. 5. Miary przestrzeni wzrostu pojedynczego drzewa w ró nym stopniu wp³ywaj¹ na wielkoœæ przyrostów sosen. Najsilniejsze zwi¹zki z przyrostem mi¹ szoœci wykazuje przestrzeñ pojedynczego drzewa. 6. Liczba przestrzeni wzrostowej Seebacha oraz iloraz powierzchni rzutu korony cechuj¹ siê w wiêkszoœci przypadków nieistotn¹ korelacj¹ z przyrostami sosen. 7. D³ugoœæ korony i wzglêdna d³ugoœæ korony wp³ywaj¹ na wielkoœæ przyrostów sosen (najsilniejsza zale - noœæ z bie ¹cym przyrostem mi¹ szoœci). 8. Wzrost wspó³czynnika smuk³oœci powoduje zmniejszanie siê cech przyrostowych (silny zwi¹zek smuk³oœci z przyrostem mi¹ szoœci). Literatura Borowski M Udzia³ klas biosocjalnych w przyroœcie drzewostanu sosnowego. Folia Forestalia Polonica, Seria A, 19: Dudek A Zale noœæ intensywnoœci przyrostu mi¹ szoœci i przyrostu pierœnicy od wielkoœci korony. Folia Forestalia Polonica, Seria A, z. 15: Jaworski A., Kaczmarski J., Pach M., Skrzyszewski J., Szar J Ocena ywotnoœci drzewostanów jod³owych w oparciu o cechy biomorfologiczne koron i przyrost promienia pierœnicy. Acta Agraria et Silvestria, Series Silvestris, 33: Jaworski A., Podlaski R., Sajkiewicz P Kszta³towanie siê zale noœci miêdzy ywotnoœci¹ i cechami biomorfologicznymi korony a szerokoœci¹ s³ojów rocznych u jode³. Acta Agraria et Silvestria, Series Silvestris, 27: KaŸmierczak K., Pazdrowski W., Mañka K., Szymañski M., Nawrot M Kszta³towanie siê smuk³oœci pni dêbu szypu³kowego (Quercus robur L.) w zale noœci od wieku drzew. Sylwan, 7: Lemke J Korona jako kryterium oceny dynamiki wzrostowej drzew w drzewostanie sosnowym. Folia Forestalia Polonica, Seria A, 12:
8 100 K. KaŸmierczak / Leœne Prace Badawcze, 2013, Vol. 74 (2): Lemke J Zwi¹zek pomiêdzy wielkoœci¹ korony a przyrostem drzew w drzewostanach sosnowych. Prace Komisji Nauk Rolniczych i Komisji Nauk Leœnych PTPN, 25: Lemke J Retrospektywna analiza wzrostu i przyrostu drzew w 50-letnim drzewostanie sosnowym. Folia Forestalia Polonica, Seria A, 19: Skrzyszewski J Charakterystyka przyrostowa oraz kszta³towanie siê zale noœci pomiêdzy wybranymi cechami drzew a przyrostem promienia na pierœnicy œwierka i modrzewia. Acta Agraria et Silvestria, Series Silvestris, 33: Svensson S.A Estimation of annual stem volume increment. SUAS, Dept. of Forest Survey Report 46, Umea. Šmelko S Biometrickie zakonitosti rastu a prirastku lesnych stromov a porastov. Bratislava, Veda. Zaj¹czkowski J Przyrost mi¹ szoœci w klasach biosocjalnych starszych drzewostanów sosnowych. Sylwan, 1: 1-9. ó³ciak E Analiza kszta³towania siê przyrostów drzew w ró nych okresach ycia drzewostanów sosnowych w borze œwie ym na przyk³adzie Nadleœnictwa Doœwiadczalnego WSR Zielonka. Roczniki WSR w Poznaniu, 14:
3.2 Warunki meteorologiczne
Fundacja ARMAAG Raport 1999 3.2 Warunki meteorologiczne Pomiary podstawowych elementów meteorologicznych prowadzono we wszystkich stacjach lokalnych sieci ARMAAG, równolegle z pomiarami stê eñ substancji
Prof. dr hab. Jerzy Modrzyński Poznań, 20.10.2013 Katedra Siedliskoznawstwa i Ekologii Lasu Wydział Leśny Uniwersytetu Przyrodniczego w Poznaniu
Prof. dr hab. Jerzy Modrzyński Poznań, 20.10.2013 Katedra Siedliskoznawstwa i Ekologii Lasu Wydział Leśny Uniwersytetu Przyrodniczego w Poznaniu Recenzja istotnej aktywności naukowej oraz osiągnięcia naukowego
Przyrosty drzew uszkodzonych przy pozyskiwaniu drewna w drzewostanach sosnowych w trzebie ach póÿnych
Leœne Prace Badawcze (Forest Research Papers), 2008, Vol. 69 (2): 101 108. Marian Suwa³a 1 Przyrosty drzew uszkodzonych przy pozyskiwaniu drewna w drzewostanach sosnowych w trzebie ach póÿnych Increments
Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 16(1) 2017, 39 46
SCIENTIARUM POLONORUMACTA Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 16(1) 2017, 39 46 FORESTRY AND WOOD TECHNOLOGY www.forestry.actapol.net pissn 1644-0722 eissn 2450-7997 ORIGINAL PAPER http://dx.doi.org/10.17306/j.afw.2017.1.4
Projektowanie procesów logistycznych w systemach wytwarzania
GABRIELA MAZUR ZYGMUNT MAZUR MAREK DUDEK Projektowanie procesów logistycznych w systemach wytwarzania 1. Wprowadzenie Badania struktury kosztów logistycznych w wielu krajach wykaza³y, e podstawowym ich
Przestrzeń wzrostu modrzewia europejskiego (Larix decidua Mill.) w zależności od wieku, siedliska i pozycji biosocjalnej
Poznańskie Towarzystwo Przyjaciół Nauk Wydział Nauk rolniczych i leśnych Prace komisji nauk rolniczych i komisji nauk leśnych Tom 103 2012 Kata r z y n a Ka ź m i e r c z a k, Wi t o l d Pa z d r o w s
DWP. NOWOή: Dysza wentylacji po arowej
NOWOŒÆ: Dysza wentylacji po arowej DWP Aprobata Techniczna AT-15-550/2007 SMAY Sp. z o.o. / ul. Ciep³ownicza 29 / 1-587 Kraków tel. +48 12 78 18 80 / fax. +48 12 78 18 88 / e-mail: info@smay.eu Przeznaczenie
Smukłość modrzewia europejskiego (Larix decidua MILL.) i jej związki z innymi cechami biometrycznymi
sylwan 156 (2): 83 88, 2012 Katarzyna Kaźmierczak, Marcin Nawrot, Witold Pazdrowski, Agnieszka Jędraszak, Tomasz Najgrakowski Smukłość modrzewia europejskiego (Larix decidua MILL.) i jej związki z innymi
ZMIENNOŚĆ SUMY MIĄŻSZOŚCI DRZEW NA POWIERZCHNIACH PRÓBNYCH W RÓŻNOWIEKOWYCH LASACH GÓRSKICH
SCIENTIARUM POLONORUMACTA Silv. Colendar. Rat. Ind. Lignar. 3(2) 2004, 5-11 ZMIENNOŚĆ SUMY MIĄŻSZOŚCI DRZEW NA POWIERZCHNIACH PRÓBNYCH W RÓŻNOWIEKOWYCH LASACH GÓRSKICH Jan Banaś Akademia Rolnicza w Krakowie
Powszechność nauczania języków obcych w roku szkolnym
Z PRAC INSTYTUTÓW Jadwiga Zarębska Warszawa, CODN Powszechność nauczania języków obcych w roku szkolnym 2000 2001 Ö I. Powszechność nauczania języków obcych w różnych typach szkół Dane przedstawione w
Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych
Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja
VRRK. Regulatory przep³ywu CAV
Regulatory przep³ywu CAV VRRK SMAY Sp. z o.o. / ul. Ciep³ownicza 29 / 1-587 Kraków tel. +48 12 680 20 80 / fax. +48 12 680 20 89 / e-mail: info@smay.eu Przeznaczenie Regulator sta³ego przep³ywu powietrza
Kształtowanie się smukłości pni dębu szypułkowego (Quercus robur L.) w zależności od wieku drzew
sylwan nr 7: 39 45, 2008 Katarzyna Kaźmierczak, Witold Pazdrowski, Krzysztof Mańka, Marek Szymański, Marcin Nawrot Kształtowanie się smukłości pni dębu szypułkowego (Quercus robur L.) w zależności od wieku
Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15(2) 2016, 73 78
SCIENTIARUM POLONORUMACTA Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15(2) 2016, 73 78 www.forestry.actapol.net FORESTRY AND WOOD TECHNOLOGY pissn 1644-0722 eissn 2450-7997 DOI: 10.17306/J.AFW.2016.2.9
Wyniki 18-letniego doœwiadczenia proweniencyjnego z bukiem zwyczajnym (Fagus sylvatica L.) w Nadleœnictwie obez
DOI:.478/frp-3-9 ORYGINALNA PRACA NAUKOWA Leœne Prace Badawcze (Forest Research Papers), Wrzesieñ (September) 3, Vol. 74 (3): 97 3. Wyniki 8-letniego doœwiadczenia proweniencyjnego z bukiem zwyczajnym
Warszawska Giełda Towarowa S.A.
KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości
W³aœciwoœci drewna sosny zwyczajnej (Pinus sylvestris L.) na gruntach porolnych w pó³nocnej Polsce
DOI: 10.2478/v10111-009-0025-y Prace Badawcze ( Research Papers), 2009, Vol. 70 (3): 277 286. ORYGINALNA PRACA NAUKOWA Tomasz Jelonek 1, Witold Pazdrowski 1, Arkadiusz Tomczak 1 W³aœciwoœci drewna sosny
SPRAWOZDANIE MERYTORYCZNE. z wykonanego zadania na rzecz postępu biologicznego w produkcji zwierzęcej
SPRAWOZDANIE MERYTORYCZNE z wykonanego zadania na rzecz postępu biologicznego w produkcji zwierzęcej zrealizowanego na podstawie decyzji Ministra Rolnictwa i Rozwoju Wsi nr 43/2015, znak: ŻWeoz/ek-8628-62/2015(3181),
gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10)
5.5. Wyznaczanie zer wielomianów 79 gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) gdzie stopieñ wielomianu p 1(x) jest mniejszy lub równy n, przy
Odpowiedzi na pytania zadane do zapytania ofertowego nr EFS/2012/05/01
Odpowiedzi na pytania zadane do zapytania ofertowego nr EFS/2012/05/01 1 Pytanie nr 1: Czy oferta powinna zawierać informację o ewentualnych podwykonawcach usług czy też obowiązek uzyskania od Państwa
OCHRONA DRZEW NA TERENACH INWESTYCYJNYCH
OCHRONA DRZEW NA TERENACH INWESTYCYJNYCH Teren budowy jest miejscem, gdzie występują liczne zagrożenia dla żywotności i stanu sanitarnego drzew i krzewów w postaci bezpośrednich uszkodzeń mechanicznych
ROZDZIA XII WP YW SYSTEMÓW WYNAGRADZANIA NA KOSZTY POZYSKANIA DREWNA
Hubert Szramka Uniwersytet Przyrodniczy w Poznaniu Wy sza Szko³a Zarz¹dzania Œrodowiskiem w Tucholi ROZDZIA XII WP YW SYSTEMÓW WYNAGRADZANIA NA KOSZTY POZYSKANIA DREWNA WSTÊP Koszty pozyskania drewna stanowi¹
Witold Bednarek. Konkurs matematyczny w gimnazjum Przygotuj siê sam!
Witold Bednarek Konkurs matematyczny w gimnazjum Przygotuj siê sam! OPOLE Wydawnictwo NOWIK Sp.j. 2012 Spis treœci Od autora......................................... 4 Rozgrzewka.......................................
Konkurs matematyczny dla uczniów gimnazjum
Stanis³aw Zieleñ Konkurs matematyczny dla uczniów gimnazjum Zadania z Wojewódzkiego Konkursu Matematycznego dla uczniów gimnazjów województwa opolskiego z lat 2001 2011 OPOLE Wydawnictwo NOWIK Sp.j. 2012
Prezentacja dotycząca sytuacji kobiet w regionie Kalabria (Włochy)
Prezentacja dotycząca sytuacji kobiet w regionie Kalabria (Włochy) Położone w głębi lądu obszary Kalabrii znacznie się wyludniają. Zjawisko to dotyczy całego regionu. Do lat 50. XX wieku przyrost naturalny
Zadania ćwiczeniowe do przedmiotu Makroekonomia I
Dr. Michał Gradzewicz Zadania ćwiczeniowe do przedmiotu Makroekonomia I Ćwiczenia 3 i 4 Wzrost gospodarczy w długim okresie. Oszczędności, inwestycje i wybrane zagadnienia finansów. Wzrost gospodarczy
DALSZE BADANIA NAD ZMIENNOŚCIĄ Z WIEKIEM WŁAŚCIWYCH LICZB KSZTAŁTU DĘBU ORAZ ZALEŻNOŚCIĄ POMIĘDZY NIMI A NIEKTÓRYMI CECHAMI WYMIAROWYMI DRZEW
SCIENTIARUM POLONORUMACTA Silv. Colendar. Rat. Ind. Lignar. 4(2) 2005, 123-133 DALSZE BADANIA NAD ZMIENNOŚCIĄ Z WIEKIEM WŁAŚCIWYCH LICZB KSZTAŁTU DĘBU ORAZ ZALEŻNOŚCIĄ POMIĘDZY NIMI A NIEKTÓRYMI CECHAMI
Rekompensowanie pracy w godzinach nadliczbowych
Rekompensowanie pracy w godzinach nadliczbowych PRACA W GODZINACH NADLICZBOWYCH ART. 151 1 K.P. Praca wykonywana ponad obowiązujące pracownika normy czasu pracy, a także praca wykonywana ponad przedłużony
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
1. Od kiedy i gdzie należy złożyć wniosek?
1. Od kiedy i gdzie należy złożyć wniosek? Wniosek o ustalenie prawa do świadczenia wychowawczego będzie można składać w Miejskim Ośrodku Pomocy Społecznej w Puławach. Wnioski będą przyjmowane od dnia
Techniki korekcyjne wykorzystywane w metodzie kinesiotapingu
Techniki korekcyjne wykorzystywane w metodzie kinesiotapingu Jak ju wspomniano, kinesiotaping mo e byç stosowany jako osobna metoda terapeutyczna, jak równie mo e stanowiç uzupe nienie innych metod fizjoterapeutycznych.
Wp³yw czasu wygaœniêcia na w³asnoœæ opcji kupna o uwarunkowanej premii Wp³yw czasu wygaœniêcia na w³asnoœci opcji kupna o uwarunkowanej premii
Ewa Dziawgo * Ewa Dziawgo Wp³yw czasu wygaœniêcia na w³asnoœæ opcji kupna o uwarunkowanej premii Wp³yw czasu wygaœniêcia na w³asnoœci opcji kupna o uwarunkowanej premii Wstêp Rosn¹ca zmiennoœæ warunków
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny
RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie
RZECZPOSPOLITA POLSKA Warszawa, dnia 11 lutego 2011 r. MINISTER FINANSÓW ST4-4820/109/2011 Prezydent Miasta na Prawach Powiatu Zarząd Powiatu wszystkie Zgodnie z art. 33 ust. 1 pkt 2 ustawy z dnia 13 listopada
Sytuacja na rynkach zbytu wêgla oraz polityka cenowo-kosztowa szans¹ na poprawê efektywnoœci w polskim górnictwie
Materia³y XXVIII Konferencji z cyklu Zagadnienia surowców energetycznych i energii w gospodarce krajowej Zakopane, 12 15.10.2014 r. ISBN 978-83-62922-37-6 Waldemar BEUCH*, Robert MARZEC* Sytuacja na rynkach
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Dziennik Ustaw Nr 229 14531 Poz. 1916 ROZPORZÑDZENIE MINISTRA FINANSÓW. z dnia 12 grudnia 2002 r.
Dziennik Ustaw Nr 229 14531 Poz. 1916 1916 ROZPORZÑDZENIE MINISTRA FINANSÓW z dnia 12 grudnia 2002 r. zmieniajàce rozporzàdzenie w sprawie wzorów deklaracji podatkowych dla podatku od towarów i us ug oraz
Szkoła Podstawowa nr 1 w Sanoku. Raport z ewaluacji wewnętrznej
Szkoła Podstawowa nr 1 w Sanoku Raport z ewaluacji wewnętrznej Rok szkolny 2014/2015 Cel ewaluacji: 1. Analizowanie informacji o efektach działalności szkoły w wybranym obszarze. 2. Sformułowanie wniosków
DOCHODY I EFEKTYWNOŒÆ GOSPODARSTW ZAJMUJ CYCH SIÊ HODOWL OWIEC 1. Bogdan Klepacki, Tomasz Rokicki
ROCZNIKI NAUK ROLNICZYCH, SERIA G, T., Z. 1, 1 DOCHODY I EFEKTYWNOŒÆ GOSPODARSTW ZAJMUJ CYCH SIÊ HODOWL OWIEC 1 Bogdan Klepacki, Tomasz Rokicki Katedra Ekonomiki i Organizacji Gospodarstw Rolniczych SGGW
Regulator ciœnienia ssania typu KVL
Regulator ciœnienia ssania typu KVL Wprowadzenie jest montowany na przewodzie ssawnym, przed sprê ark¹. KVL zabezpiecza silnik sprê arki przed przeci¹ eniem podczas startu po d³u szym czasie postoju albo
Zawory elektromagnetyczne typu PKVD 12 20
Katalog Zawory elektromagnetyczne typu PKVD 12 20 Wprowadzenie Charakterystyka Dane techniczne Zawór elektromagnetyczny PKVD pozostaje otwarty przy ró nicy ciœnieñ równej 0 bar. Cecha ta umo liwia pracê
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
CZĘSTOŚĆ WYSTĘPOWANIA WAD KOŃCZYN DOLNYCH U DZIECI I MŁODZIEŻY A FREQUENCY APPEARANCE DEFECTS OF LEGS BY CHILDREN AND ADOLESCENT
Zeszyty Naukowe Wyższej Szkoły Pedagogiki i Administracji w Poznaniu Nr 3 2007 Grażyna Szypuła, Magdalena Rusin Bielski Szkolny Ośrodek Gimnastyki Korekcyjno-Kompensacyjnej im. R. Liszki w Bielsku-Białej
VOLUME INCREMENT INDEXES AND THEIR VARIATION IN A 35-YEAR OLD PINE STAND
SCIENTIARUM POLONORUMACTA Silv. Colendar. Rat. Ind. Lignar. 5(2) 2006, 123-134 VOLUME INCREMENT INDEXES AND THEIR VARIATION IN A 35-YEAR OLD PINE STAND Mieczysław Turski Agricultural University of Poznań
TAH. T³umiki akustyczne. w wykonaniu higienicznym
T³umiki akustyczne w wykonaniu higienicznym TH test Higieniczny: HK/B/0375/01/2010 T³umik akustyczny TH z wyjmowanymi kulisami. TH s¹ przeznaczone do t³umienia ha³asu przenoszonego przez przewody prostok¹tne
Rozdzia³ IX ANALIZA ZMIAN CEN PODSTAWOWYCH RÓDE ENERGII W LATACH ZE SZCZEGÓLNYM UWZGLÊDNIENIEM DREWNA OPA OWEGO
Krzysztof Adamowicz Wy sza Szko³a Zarz¹dzania Œrodowiskiem w Tucholi Rozdzia³ IX ANALIZA ZMIAN CEN PODSTAWOWYCH RÓDE ENERGII W LATACH 1995-2005 ZE SZCZEGÓLNYM UWZGLÊDNIENIEM DREWNA OPA OWEGO Praca powsta³a
POMIAR STRUMIENIA PRZEP YWU METOD ZWÊ KOW - KRYZA.
POMIAR STRUMIENIA PRZEP YWU METOD ZWÊ KOW - KRYZA. Do pomiaru strumienia przep³ywu w rurach metod¹ zwê kow¹ u ywa siê trzech typów zwê ek pomiarowych. S¹ to kryzy, dysze oraz zwê ki Venturiego. (rysunek
RAPORT. Przedszkole Szkoła klasa 0 PRZYGOTOWANIE DO EDUKACJI SZKOLNEJ
PRACOWNIA ZARZĄDZANIA I DIAGNOZY EDUKACYJNEJ ODN W ZIELONEJ GÓRZE RAPORT Przedszkole Szkoła klasa 0 PRZYGOTOWANIE DO EDUKACJI SZKOLNEJ Czerwiec - 2008 Na omówienie wyników testu zapraszamy: 24 września
4.3. Warunki życia Katarzyna Gorczyca
4.3. Warunki życia Katarzyna Gorczyca [w] Małe i średnie w policentrycznym rozwoju Polski, G.Korzeniak (red), Instytut Rozwoju Miast, Kraków 2014, str. 88-96 W publikacji zostały zaprezentowane wyniki
Udzia dochodów z dzia alno ci rolniczej w dochodach gospodarstw domowych z u ytkownikiem gospodarstwa rolnego w 2002 r.
UWAGI ANALITYCZNE Udzia dochodów z dzia alno ci rolniczej w dochodach gospodarstw domowych z u ytkownikiem gospodarstwa rolnego w 2002 r. W maju 2002 r. spisano 76,4 tys. gospodarstw domowych z u ytkownikiem
BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM
dr in. Marek GOŒCIAÑSKI, dr in. Bart³omiej DUDZIAK Przemys³owy Instytut Maszyn Rolniczych, Poznañ e-mail: office@pimr.poznan.pl BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII
Nawiewnik NSL 2-szczelinowy.
Nawiewniki i wywiewniki szczelinowe NSL NSL s¹ przeznaczone do zastosowañ w instalacjach wentylacyjnych nisko- i œredniociœnieniowych, o sta³ym lub zmiennym przep³ywie powietrza. Mog¹ byæ montowane w sufitach
Krótka informacja o instytucjonalnej obs³udze rynku pracy
Agnieszka Miler Departament Rynku Pracy Ministerstwo Gospodarki, Pracy i Polityki Spo³ecznej Krótka informacja o instytucjonalnej obs³udze rynku pracy W 2000 roku, zosta³o wprowadzone rozporz¹dzeniem Prezesa
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK 10107 Szanowni Nauczyciele, Serdecznie dziêkujemy wszystkim nauczycielom za pomoc w organizacji kolejnej edycji olimpiad dla najm³odszych, które zosta³y
na dostawę licencji na oprogramowanie przeznaczone do prowadzenia zaawansowanej analizy statystycznej
Warszawa, dnia 16.10.2015r. ZAPYTANIE OFERTOWE na dostawę licencji na oprogramowanie przeznaczone do prowadzenia zaawansowanej analizy statystycznej Do niniejszego postępowania nie mają zastosowania przepisy
Zwi¹zki miêdzy wybranymi cechami drzewa a niektórymi w³aœciwoœciami drewna m³odocianego sosny zwyczajnej (Pinus sylvestris L.)
DOI: 10.2478/frp-2014-0023 ORYGINALNA PRACA NAUKOWA Leœne Prace Badawcze (Forest Research Papers), Wrzesieñ (September) 2014, Vol. 75 (3): 237 244 Zwi¹zki miêdzy wybranymi cechami drzewa a niektórymi w³aœciwoœciami
Uchwalenie miejscowego planu
PRAKTYCZNE ASPEKTY OKREŒLANIA WSKA NIKÓW RYNKOWYCH W PROGNOZIE SKUTKÓW FINANSOWYCH MIEJSCOWEGO PLANU ZAGOSPODAROWANIA PRZESTRZENNEGO Janusz Andrzejewski Rzeczoznawca Maj¹tkowy Nr 115 Wstêp Uchwalenie miejscowego
REGULAMIN STYPENDIALNY FUNDACJI NA RZECZ NAUKI I EDUKACJI TALENTY
REGULAMIN STYPENDIALNY FUNDACJI NA RZECZ NAUKI I EDUKACJI TALENTY Program opieki stypendialnej Fundacji Na rzecz nauki i edukacji - talenty adresowany jest do młodzieży ponadgimnazjalnej uczącej się w
INSTRUKCJA OBS UGI KARI WY CZNIK P YWAKOWY
INSTRUKCJA OBS UGI KARI WY CZNIK P YWAKOWY Wydanie paÿdziernik 2004 r PRZEDSIÊBIORSTWO AUTOMATYZACJI I POMIARÓW INTROL Sp. z o.o. ul. Koœciuszki 112, 40-519 Katowice tel. 032/ 78 90 000, fax 032/ 78 90
System wizyjny do wyznaczania rozp³ywnoœci lutów
AUTOMATYKA 2007 Tom 11 Zeszyt 3 Marcin B¹ka³a*, Tomasz Koszmider* System wizyjny do wyznaczania rozp³ywnoœci lutów 1. Wprowadzenie Lutownoœæ okreœla przydatnoœæ danego materia³u do lutowania i jest zwi¹zana
Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstw z branży 42
Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstw z branży 42 Anna Salata 0 1. Zaproponowanie strategii zarządzania środkami pieniężnymi. Celem zarządzania środkami pieniężnymi jest wyznaczenie
Przetwornica napiêcia sta³ego DC2A (2A max)
9 Warszawa ul. Wolumen 6 m. tel. ()596 email: biuro@jsel.pl www.jselektronik.pl Przetwornica napiêcia sta³ego DA (A max) DA W AŒIWOŒI Napiêcie wejœciowe do V +IN V, V6, V, V, 5V, 6V, 7V5, 9V, V, V wejœcie
PRODUKTYWNOή WYBRANYCH MLECZARNI LUBELSZCZYZNY I PODLASIA ORAZ JEJ UWARUNKOWANIA
496 Jan Zuba STOWARZYSZENIE EKONOMISTÓW ROLNICTWA I AGROBIZNESU Roczniki Naukowe l tom XI l zeszyt 1 Jan Zuba Uniwersytet Przyrodniczy w Lublinie PRODUKTYWNOŒÆ WYBRANYCH MLECZARNI LUBELSZCZYZNY I PODLASIA
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
Matematyka na szóstke
Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy V Opole Wydawnictwo NOWIK Sp.j. 2012 Wstêp...5 1. Liczby naturalne...7 Rachunek pamiêciowy...7 1. Dodawanie i odejmowanie...7
Rys Mo liwe postacie funkcji w metodzie regula falsi
5.3. Regula falsi i metoda siecznych 73 Rys. 5.1. Mo liwe postacie funkcji w metodzie regula falsi Rys. 5.2. Przypadek f (x), f (x) > w metodzie regula falsi 74 V. Równania nieliniowe i uk³ady równañ liniowych
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
TABLICOWE MIERNIKI ELEKTROMAGNETYCZNE TYPU EA16, EB16, EA17, EA19, EA12. PKWiU Amperomierze i woltomierze ZASTOSOWANIE
TABLICOWE MIERNIKI ELEKTROMAGNETYCZNE Amperomierze i woltomierze TYPU EA16, EB16, EA17, EA19, EA12 PKWiU 33.20.43-30.37 EA12 EA19 EA17 EA16 EB16 ZASTOSOWANIE Tablicowe mierniki elektromagnetyczne typu
TEST dla stanowisk robotniczych sprawdzający wiedzę z zakresu bhp
TEST dla stanowisk robotniczych sprawdzający wiedzę z zakresu bhp 1. Informacja o pracownikach wyznaczonych do udzielania pierwszej pomocy oraz o pracownikach wyznaczonych do wykonywania działań w zakresie
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
Podstawa prawna: Ustawa z dnia 15 lutego 1992 r. o podatku dochodowym od osób prawnych (t. j. Dz. U. z 2000r. Nr 54, poz. 654 ze zm.
Rozliczenie podatników podatku dochodowego od osób prawnych uzyskujących przychody ze źródeł, z których dochód jest wolny od podatku oraz z innych źródeł Podstawa prawna: Ustawa z dnia 15 lutego 1992 r.
Steelmate - System wspomagaj¹cy parkowanie z oœmioma czujnikami
Steelmate - System wspomagaj¹cy parkowanie z oœmioma czujnikami Cechy: Kolorowy i intuicyjny wyœwietlacz LCD Czujnik wysokiej jakoœci Inteligentne rozpoznawanie przeszkód Przedni i tylni system wykrywania
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK 20735 Szanowni Nauczyciele, Serdecznie dziêkujemy wszystkim nauczycielom za pomoc w organizacji kolejnej edycji olimpiad dla najm³odszych, które zosta³y
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK 22137 Szanowni Nauczyciele, Serdecznie dziêkujemy wszystkim nauczycielom za pomoc w organizacji kolejnej edycji olimpiad dla najm³odszych, które zosta³y
TABLICOWE MIERNIKI ELEKTROMAGNETYCZNE TYPU EA16, EB16, EA17, EA19, EA12. PKWiU Amperomierze i woltomierze DANE TECHNICZNE
TABLICOWE MIERNIKI ELEKTROMAGNETYCZNE Amperomierze i woltomierze TYPU EA16, EB16, EA17, EA19, EA12 PKWiU 33.20.43-30.37 DANE TECHNICZNE Klasa dok³adnoœci 1, Zakresy pomiarowe, moc pobierana, wymiary ramki
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK. sesja zimowa
OPRACOWANIE WYNIKÓW OGÓLNOPOLSKIch OLIMPIAD OLIMPUSEK sesja zimowa 10685 Szanowni Nauczyciele, OGÓLNOPOLSKie olimpiady OLIMPUSEK sesja zimowa Serdecznie dziêkujemy wszystkim nauczycielom za pomoc w organizacji
III. INTERPOLACJA Ogólne zadanie interpolacji. Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj.
III. INTERPOLACJA 3.1. Ogólne zadanie interpolacji Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj. Definicja 3.1. Zadanie interpolacji polega na okreœleniu parametrów tak, eby dla n +
Ćwiczenie: "Ruch harmoniczny i fale"
Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
Regulamin. rozliczania kosztów centralnego ogrzewania i kosztów podgrzewania wody użytkowej w lokalach Spółdzielni Mieszkaniowej Domy Spółdzielcze
Załącznik do uchwały Rady Nadzorczej nr 76/05 z dnia 15.12.2005 r. ze zmianą uchwałą nr 31/06 z dnia 21.06.2006 roku Regulamin rozliczania kosztów centralnego ogrzewania i kosztów podgrzewania wody użytkowej
Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07
Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 2 Podatek przemysłowy (lokalny podatek od działalności usługowo-wytwórczej) Podatek przemysłowy (lokalny podatek
INDATA SOFTWARE S.A. Niniejszy Aneks nr 6 do Prospektu został sporządzony na podstawie art. 51 Ustawy o Ofercie Publicznej.
INDATA SOFTWARE S.A. Spółka akcyjna z siedzibą we Wrocławiu, adres: ul. Strzegomska 138, 54-429 Wrocław, zarejestrowana w rejestrze przedsiębiorców Krajowego Rejestru Sądowego pod numerem KRS 0000360487
INSTRUKCJA EWIDENCJI I KONTROLI DRUKÓW ŚCISŁEGO ZARACHOWANIA Głogowskiego Centrum Edukacji Zawodowej w Głogowie
Załącznik Nr 5 do Zarządzenia Nr 01/06 /2012 z dnia 18. czerwca 2012 roku Dyrektora GCEZ INSTRUKCJA EWIDENCJI I KONTROLI DRUKÓW ŚCISŁEGO ZARACHOWANIA Głogowskiego Centrum Edukacji Zawodowej w Głogowie
NAPRAWDÊ DOBRA DECYZJA
KARTA SERWISOWA NAPRAWDÊ DOBRA DECYZJA Gratulujemy! Dokonali Pañstwo œwietnego wyboru: nowoczesne drewniane okna s¹ ekologiczne, a tak e optymalne pod wzglêdem ekonomicznym. Nale ¹ do najwa niejszych elementów
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA DLA PRZETARGU NIEOGRANICZONEGO CZĘŚĆ II OFERTA PRZETARGOWA
Powiat Wrocławski z siedzibą władz przy ul. Kościuszki 131, 50-440 Wrocław, tel/fax. 48 71 72 21 740 SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA DLA PRZETARGU NIEOGRANICZONEGO CZĘŚĆ II OFERTA PRZETARGOWA
Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania).
Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). W momencie gdy jesteś studentem lub świeżym absolwentem to znajdujesz się w dobrym momencie, aby rozpocząć planowanie swojej ścieżki
ROZDZIA IV STRUKTURA BIOMASY NADZIEMNEJ SOSNY ZWYCZAJNEJ W ODNOWIENIACH SPONTANICZNYCH NA PRZYK ADZIE NADLEŒNICTWA W OC AWEK
Anna Kannenberg Wy sza Szko³a Zarz¹dzania Œrodowiskiem w Tucholi ROZDZIA IV STRUKTURA BIOMASY NADZIEMNEJ SOSNY ZWYCZAJNEJ W ODNOWIENIACH SPONTANICZNYCH NA PRZYK ADZIE NADLEŒNICTWA W OC AWEK WSTÊP Jednym
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO
Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:
Regulamin Krêgów Harcerstwa Starszego ZHR
Biuro Naczelnictwa ZHR 1 Regulamin Krêgów Harcerstwa Starszego ZHR (za³¹cznik do uchwa³y Naczelnictwa nr 196/1 z dnia 30.10.2007 r. ) 1 Kr¹g Harcerstwa Starszego ZHR - zwany dalej "Krêgiem" w skrócie "KHS"
Instalacja. Zawartość. Wyszukiwarka. Instalacja... 1. Konfiguracja... 2. Uruchomienie i praca z raportem... 4. Metody wyszukiwania...
Zawartość Instalacja... 1 Konfiguracja... 2 Uruchomienie i praca z raportem... 4 Metody wyszukiwania... 6 Prezentacja wyników... 7 Wycenianie... 9 Wstęp Narzędzie ściśle współpracujące z raportem: Moduł
Doœwiadczalne wyznaczenie wielkoœci (objêtoœci) kropli ró nych substancji, przy u yciu ró - nych zakraplaczy.
26. OD JAKICH CZYNNIKÓW ZALE Y WIELKOŒÆ KROPLI? 1. Realizowane treœci podstawy programowej Przedmiot Matematyka Fizyka Chemia Realizowana treœæ podstawy programowej Uczeñ: 9.1 interpretuje dane przedstawione
Innym wnioskiem z twierdzenia 3.10 jest
38 Innym wnioskiem z twierdzenia 3.10 jest Wniosek 3.2. Jeœli funkcja f ma ci¹g³¹ pochodn¹ rzêdu n + 1 na odcinku [a, b] zawieraj¹cym wêz³y rzeczywiste x i (i = 0, 1,..., k) i punkt x, to istnieje wartoœæ
Dr inż. Andrzej Tatarek. Siłownie cieplne
Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 3 Sposoby podwyższania sprawności elektrowni 2 Zwiększenie sprawności Metody zwiększenia sprawności elektrowni: 1. podnoszenie temperatury i ciśnienia
Postanowienia ogólne. Wysokość Stypendium wynosi 1 000 zł miesięcznie.
Regulamin przyznawania stypendiów motywacyjnych za wyniki w nauce na studiach odbywanych w ramach realizowanego przez Wydział Biologii i Ochrony Środowiska projektu konkursowego Zwiększenie liczby absolwentów
TAP TAPS. T³umiki akustyczne. do prostok¹tnych przewodów wentylacyjnych
T³umiki akustyczne do prostok¹tnych przewodów wentylacyjnych TAP TAPS Atest Higieniczny: HK/B/0284/01/2015 TAP i TAPS s¹ przeznaczone do t³umienia ha³asu przenoszonego przez przewody prostok¹tne instalacji
Model wzrostu dla modrzewia europejskiego (Larix decidua Mill.) wykorzystuj¹cy cechy taksacyjne drzewostanu
DOI: 0.478/v0-0-0009-6 Leœne Prace Badawcze (Forest Research Papers), Vol. 7 (): 77 8. ORYGIALA PRACA AUKOWA Arkadiusz Bruchwald, El bieta Dmyterko, Rafa³ Wojtan 3 Model wzrostu dla modrzewia europejskiego
2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta
2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta Pieniężny Pomiar Korzyści z Handlu Możesz kupić tyle benzyny ile chcesz, po cenie 2zł za litr. Jaka jest najwyższa cena, jaką zapłacisz za 1 litr benzyny?
PL-LS.054.24.2015 Pani Małgorzata Kidawa Błońska Marszałek Sejmu RP
Warszawa, dnia 04 września 2015 r. RZECZPOSPOLITA POLSKA MINISTER FINANSÓW PL-LS.054.24.2015 Pani Małgorzata Kidawa Błońska Marszałek Sejmu RP W związku z interpelacją nr 34158 posła Jana Warzechy i posła
SCRIBA JUNIOR SCRIBA JUNIOR I
INSTRUKCJA SCRIBA JUNIOR Wprowadzenie: Scriba junior to dwie gry słowne, w których mogą uczestniczyć dzieci młodsze i starsze. Pierwsza z nich - Scriba junior I (z klaunem) - skierowana jest przede wszystkim
Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 16(2) 2017,
SCIENTIARUM POLONORUMACTA Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 16(2) 2017, 131 140 FORESTRY AND WOOD TECHNOLOGY www.forestry.actapol.net pissn 1644-0722 eissn 2450-7997 ORIGINAL PAPER http://dx.doi.org/10.17306/j.afw.2017.2.13
Elektryczne ogrzewanie podłogowe fakty i mity
Elektryczne ogrzewanie podłogowe fakty i mity Ogrzewanie podłogowe staje się coraz bardziej docenianym systemem podnoszącym komfort użytkowników mieszkań, apartamentów i domów jednorodzinnych. Niestety