Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu. Generowanie obrazu rastrowego 2D. Przyk"ad próbkowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu. Generowanie obrazu rastrowego 2D. Przyk"ad próbkowania"

Transkrypt

1 Próbkowanie (ang. sampling) - kwantyzacja Rastrowa reprezentacja obrazu! Próbkowanie - proces zamiany ci!g"ego sygna"u f(x) na sko#czon! liczb$ warto%ci opisuj!cych ten sygna".! Kwantyzacja - proces zamiany ci!g"ej warto%ci na warto%& dyskretn!.! Rekonstrukcja - zamiana dyskretnych próbek na ci!g"! funkcj$ f(x). Rados"aw Mantiuk Wydzia" Informatyki Zachodniopomorski Uniwersytet Technologiczny kwantyzacja próbkowanie Courtesy of MIT (Lecture Notes 6.837) Generowanie obrazu rastrowego 2D Przyk"ad próbkowania! Idealny obraz 2D opisany jest ci!g"! funkcj! F(x,y), przyjmuje ona warto%ci koloru dla dowolnych parametrów (po"o'enia) x,y. Courtesy of MIT (Lecture Notes 6.837) Funkcja ci!g"a F(x,y) Funkcja próbkuj!ca Obraz rastrowy Obraz komputerowy jest macierz! warto%ci koloru. Uzyskujemy j! poprzez spróbkowanie ci!g"ej funkcji F(x,y). Punkty macierzy to piksele. Próbkowanie ci!g"ej funkcji obrazu: grafika komputerowa oblicza próbki (piksele) obrazu. Cyfrowy aparat fotograficzny ca"kuje (integruje) obszar obrazu odpowiadaj!cy wielko#ci punktu sensora. Z jak! cz$stotliwo%ci! trzeba próbkowa& F(x,y), aby móc pó(niej odtworzy& oryginalny przebieg funkcji? Images from ACM SIGGRAPH education materials.

2 Cz$stotliwo%& próbkowania Cz$stotliwo%& próbkowania musi by& dwa razy wi$ksza od cz$stotliwo%ci sygna"u, aby by"a mo'liwo%& rekonstrukcji oryginalnego sygna"u (prawo Nyguista). Obraz 2D a grafika komputerowa Do próbkowania lub integracji/ca"kowania obrazu mog! s"u$y& np. czujniki #wiat"oczu"e (CCD, CMOS). W grafice komputerowej generuje si% spróbkowan! posta& obrazu. Liczba próbek musi by& taka, aby mo$liwa by"a rekonstrukcja sygna"u obrazu. Wi%ksza liczba próbek to wi%cej oblicze'. Idealna cz%stotliwo#& odpowiada podwójnej cz%stotliwo#ci widzialnej fali elektromagnetycznej. zbyt ma"a cz$stotliwo%& próbkowania Graniczn! maksymaln! cz%stotliwo#ci! mo$e by& rozdzielczo#& ludzkiego oka. Cz"owiek widzi okre#lon! liczb% cykli na stopie' k!towy (percepcja). W praktyce warto#ci! graniczn! s! mo$liwo#ci monitorów rastrowych. From Robert L. Cook, "Stochastic Sampling and Distributed Ray Tracing", An Introduction to Ray Tracing, Andrew Glassner, ed., Academic Press Limited, 1989 Reprezentacja cz$stotliwo%ciowa obrazu Obraz jest z"o'eniem sygna"ów okresowych (sinusoidalnych) o okre%lonych cz$stotliwo%ciach i amplitudach. Dziedzina cz$stotliwo%ci: Transformata Fourier'a Ka$dy obraz ma swoj! reprezentacj% w dziedzinie cz%stotliwo#ci. Transformata Fourier a - konwersja pomi$dzy dziedzin! normaln! a dziedzin! cz$stotliwo%ci. Ka'dy sygna" okresowy mo'na wyrazi& jako sum$ sygna"ów sinusoidalnych. Obraz jest dwuwymiarowym sygna"em okresowym. Okresowo%& sygna"u symulowana jest poprzez powielenie obrazów do niesko#czono%ci. Courtesy of George Wolberg, Columbia University

3 Reprezentacja cz$stotliwo%ciowa Dziedzina cz$stotliwo%ci (1) Obraz w przestrzeni cz$stotliwo%ci sk"ada si$ z cz%sci fazowej i amplitudowej (warto%& piksela zamieniana jest na liczb$ zespolon!). amplituda faza Cze%& amplitudowa pokazuje jakie cz$stotliwo%ci wyst$puj! w obrazie. Dziedzina cz$stotliwo%ci (2) Dziedzina cz$stotliwo%ci (3) Cz$%& amplitudowa mówi o tym jakie cz$stotliwo%ci wyst$puj! w obrazie, cz$%& fazowa gdzie s! one po"o'one. Efekt brzegowy Brak zmiany wykresu amplitudowego pomimo zmiany fazy.

4 Dziedzina cz$stotliwo%ci (4) Dziedzina cz$stotliwo%ci (5) Niskie cz$stotliwo%ci na %rodku obrazu. Prawy obraz rozmyty horyzontalnie - wykres amplitud sygna"u cz$stotliwo%ciowego wskazuje na zmniejszenie wyst$powania wysokich cz$stotliwo%ci w kierunku horyzontalnym. Po"o'enie kraw$dzi decyduje o kierunku pasm na wykresie aplitudy. Kierunek pasm na wykresie aplitudy. Wiele elementów o jednakowych rozmiarach Dziedzina cz$stotliwo%ci (6) Dziedzina cz$stotliwo%ci (7) Lena Pasmo od kapelusza Filtr dolnoprzepustowy Filtr górnoprzepustowy

5 Dziedzina cz$stotliwo%ci (8) Rekonstrukcja obrazu w monitorze Monitory dokonuj! rekonstrukcji sygna"u obrazu: piksel ma niesko'czenie ma"e rozmiary, dzi%ki filtrowi zyskuje pewien wymiar (równy np. wielko#ci plamki monitora), obraz jest próbkowany ze zbyt ma"! cz%stotliwo#ci!, nale$y wi%c przefiltrowa& go filtrem dolnoprzepustowym (rozmy&). Monitory maj! wbudowane filtry dolnoprzepustowe. Filtr wyostrzaj!cy Monitor wy%wietla piksel w postaci punktu o malej!cej intensywno%ci. Spadek intesywno%ci odpowiada funkcji Gaussa. Aliasing (ang. spatial aliasing) (1) Efekt powstaj!ca na skutek braku mo'liwo%ci zarejestrowania i wy%wietlenia sygna"u z odpowiedni! cz$stotliwo%ci! (pliki graficzne nie mog! by& zbyt du'e, monitor ma ograniczon! rozdzielczo%&). Aliasing - b"$dy (2) Artefakty wywo"ana zbyt ma"! cz$stotliwo%ci! próbkowania. Poszarpane brzegi (ang. jaggies) Znikanie szczegó"ów Don Mitchel Zmniejszenie rozdzielczo#ci k!towej. Za ma"o próbek na dany k!t. Images from ACM SIGGRAPH education materials.

6 Aliasing - b"$dy (3) Artefakty wywo"ana zbyt ma"! cz$stotliwo%ci! próbkowania. B"$dy teksturowania Antialiasing (1) metoda najbli'szego s!siada (ang. nearest neighbour) Filtr prostok!tny (ang. box filter) aproksymuje wy%wietlane warto%ci na podstawie warto%ci danego piksela. Filtr ten powinien odpowiada& cz$stotliwo%ci dwa razy mniejszej od cz$stotliwo%ci próbkowania. Antyaliasing - ograniczanie efektu aliasingu Dziedzina obrazu. Taki filtr powoduje efekt blokowy (aliasing). Tzn. nawet dostateczna cz%stotliwo#& próbkowania nie gwarantuje poprawno#ci odtworzenia sygna"u. Images from ACM SIGGRAPH education materials. Antialiasing (2) Filtr sinc Idealny filtr dolnoprzepustowy. Antialiasing (3) Interpolacja dwuliniowa (ang. bilinear interpolation) Filtr trójk!tny (ang. triangle filter lub tent filter). O warto#ci punktu decyduj! piksele z najbli$szego otoczenia danego piksela. Rozci!ga si$ do niesko#czono%ci (zak"ada powtarzalno%& obrazów) - ograniczenie prowadzi do powstania efektu Gibbs a (ringing artifacts). Nawet ograniczony do jednego obrazu wymaga zsumowania wszystkich pikseli obrazu w celu obliczenia warto%ci danego punktu. Kompromis pomi$dzy dok"adno%ci! i liczb! oblicze#.

7 Literatura Andrew S. Glassner, "Principles of Digital Image Synthesis", The Morgan Kaufmann Series in Computer Graphics, 2 Volume Set, ISBN-10: , 1st edition 1995 Materia"y edukacyjne organizacji ACM SIGGRAPH Ryszard Radeusiewicz, Przemys"aw Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Post$pu Telekomunikacji, Kraków 1997 J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips, Wprowadzenie do grafiki komputerowej, WNT, Warszawa 1995, ISBN

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja Próbkowanie (ang. sampling) - kwantyzacja Rastrowa reprezentacja obrazu 2D Próbkowanie - proces zamiany ciągłego sygnału f(x) na skończoną liczbę wartości opisujących ten sygnał. Kwantyzacja - proces zamiany

Bardziej szczegółowo

Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz

Bardziej szczegółowo

Aparat widzenia człowieka (ang. Human Visual System, HVS) Budowa oka. Komórki światłoczułe. Rastrowa reprezentacja obrazu 2D.

Aparat widzenia człowieka (ang. Human Visual System, HVS) Budowa oka. Komórki światłoczułe. Rastrowa reprezentacja obrazu 2D. 1/9 Aparat widzenia człowieka (ang. Human Visual System, HVS) Rastrowa reprezentacja obrazu 2D Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Courtesy of

Bardziej szczegółowo

Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela. Rysowanie linii: Kod programu

Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela. Rysowanie linii: Kod programu Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa Rados!aw Mantiuk Wydzia! Informatyki Zachodniopomorski Uniwersytet Technologiczny Zamiana ci!g"ej funkcji 2D na funkcj# dyskretn! (np.

Bardziej szczegółowo

Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela

Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa Rados!aw Mantiuk Wydzia! Informatyki Zachodniopomorski Uniwersytet Technologiczny Zamiana ci!g"ej funkcji 2D na funkcj# dyskretn! (np.

Bardziej szczegółowo

Wprowadzenie do grafiki komputerowej

Wprowadzenie do grafiki komputerowej Wprowadzenie do grafiki komputerowej Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz rastrowy 2D Obraz rastrowy - dwuwymiarowa macierz pikseli (bitmapa)

Bardziej szczegółowo

Grafika komputerowa (ang. computer graphics) Wprowadzenie do grafiki komputerowej. Grafika komputerowa - Zastosowania (2) Grafika komputerowa - Geneza

Grafika komputerowa (ang. computer graphics) Wprowadzenie do grafiki komputerowej. Grafika komputerowa - Zastosowania (2) Grafika komputerowa - Geneza (ang. computer graphics) Potok graficzny (ang. graphics pipeline) Wprowadzenie do grafiki komputerowej Rados#aw Mantiuk Dane wej"ciowe scena Algorytmy grafiki komputerowej (Rendering) Dane wyj"ciowe obraz

Bardziej szczegółowo

Obraz realistyczny. Realizm w grafice komputerowej. Realizm modelu: z!o#one siatki wielok$tów. Realizm modelu geometrycznego. Realizm modelu: spline'y

Obraz realistyczny. Realizm w grafice komputerowej. Realizm modelu: z!o#one siatki wielok$tów. Realizm modelu geometrycznego. Realizm modelu: spline'y Obraz realistyczny Zbli!ony jako"ci# do obrazów / animacji obserwowanych przez cz$owieka. Realizm w grafice komputerowej Rados!aw Mantiuk Zachodniopomorski Uniwersytet Technologiczny Obraz realistyczny

Bardziej szczegółowo

Podstawy grafiki komputerowej

Podstawy grafiki komputerowej Podstawy grafiki komputerowej Krzysztof Gracki K.Gracki@ii.pw.edu.pl tel. (22) 6605031 Instytut Informatyki Politechniki Warszawskiej 2 Sprawy organizacyjne Krzysztof Gracki k.gracki@ii.pw.edu.pl tel.

Bardziej szczegółowo

Grafika Komputerowa Wykład 1. Wstęp do grafiki komputerowej Obraz rastrowy i wektorowy. mgr inż. Michał Chwesiuk 1/22

Grafika Komputerowa Wykład 1. Wstęp do grafiki komputerowej Obraz rastrowy i wektorowy. mgr inż. Michał Chwesiuk 1/22 Wykład 1 Wstęp do grafiki komputerowej rastrowy i wektorowy mgr inż. 1/22 O mnie mgr inż. michalchwesiuk@gmail.com http://mchwesiuk.pl Materiały, wykłady, informacje Doktorant na Wydziale Informatyki Uniwersytetu

Bardziej szczegółowo

Filtrowanie tekstur. Kinga Laurowska

Filtrowanie tekstur. Kinga Laurowska Filtrowanie tekstur Kinga Laurowska Wprowadzenie Filtrowanie tekstur (inaczej wygładzanie) technika polegająca na 'rozmywaniu' sąsiadujących ze sobą tekseli (pikseli tekstury). Istnieje wiele metod filtrowania,

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia" Obliczenie koloru powierzchni (ang. Lighting)

Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia Obliczenie koloru powierzchni (ang. Lighting) Zbiór trójwymiarowych danych wej$ciowych wykorzystywanych do wygenerowania obrazu wyj$ciowego 2D. Cieniowanie (ang. Shading) Rados"aw Mantiuk Wydzia" Informatyki Zachodniopomorski Uniwersytet Technologiczny

Bardziej szczegółowo

Grafika komputerowa. Obraz w informatyce

Grafika komputerowa. Obraz w informatyce Grafika komputerowa Obraz w informatyce Grafika komputerowa dziedzina informatyki (dyscyplina?)zajmująca się wykorzystaniem technik komputerowych do wizualizacji realnych lub wyimaginowanych procesów.

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę

Bardziej szczegółowo

Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty

Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty Grafika komputerowa Opracowali: dr inż. Piotr Suchomski dr inż. Piotr Odya Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Czerwony czopek

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Propagacja w przestrzeni swobodnej (dyfrakcja)

Propagacja w przestrzeni swobodnej (dyfrakcja) Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

WYKORZYSTANIE ANALIZY CEPSTRALNEJ DO IDENTYFIKACJI SK ADOWYCH WIDMA SYGNA U U YTECZNEGO

WYKORZYSTANIE ANALIZY CEPSTRALNEJ DO IDENTYFIKACJI SK ADOWYCH WIDMA SYGNA U U YTECZNEGO Bartosz OSTAPKO Politechnika Koszaliska WYKORZYSTANIE ANALIZY CEPSTRALNEJ DO IDENTYFIKACJI SKADOWYCH WIDMA SYGNAU UYTECZNEGO 1. Wstp Analiza cepstralna wie si bezporednio z poszukiwaniem widma sygnau,

Bardziej szczegółowo

Ćwiczenie 11. Wprowadzenie teoretyczne

Ćwiczenie 11. Wprowadzenie teoretyczne Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG Cechy formatu JPEG Schemat blokowy kompresora Transformacja koloru Obniżenie rozdzielczości chrominancji Podział na bloki

Bardziej szczegółowo

Filtracja obrazów w dziedzinie Fouriera

Filtracja obrazów w dziedzinie Fouriera Filtracja obrazów w dziedzinie Fouriera Filtracj mo na zinterpretowa jako mno enie punktowe dwóch F-obrazów - jednego pochodz cego od filtrowanego obrazu i drugiego b d cego filtrem. Wykres amplitudy F-

Bardziej szczegółowo

Laboratorium grafiki i multimediów

Laboratorium grafiki i multimediów Ozajęciach Program Laboratorium grafiki i multimediów Michał Matuszak gruby@mat.umk.pl 22-02-2010 Ozajęciach Ozajęciach Program Wymiar zajęć: 45h Forma: laboratorium Zaliczenie na ocenę Obecność: obowiązkowa

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

Reprezentacje danych multimedialnych - grafika. 1. Terminologia 2. Obrazy czarno-białe 3. Obrazy kolorowe 4. Paleta 5.

Reprezentacje danych multimedialnych - grafika. 1. Terminologia 2. Obrazy czarno-białe 3. Obrazy kolorowe 4. Paleta 5. Reprezentacje danych multimedialnych - grafika 1. Terminologia 2. Obrazy czarno-białe 3. Obrazy kolorowe. Paleta 5. Formaty graficzne Grafika - terminologia Wywietlanie monitor rastrowy Piksel najmniejszy

Bardziej szczegółowo

Zaawansowana Grafika Komputerowa

Zaawansowana Grafika Komputerowa Zaawansowana Komputerowa Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Luty 2017 Michał Chwesiuk Zaawansowana Komputerowa 28 Luty 2017 1/11 O mnie inż.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Model oświetlenia Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obliczenie koloru powierzchni (ang. Lighting) Światło biegnie od źródła światła, odbija

Bardziej szczegółowo

Dynamika Uk adów Nieliniowych 2009 Wykład 11 1 Synchronizacja uk adów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda.

Dynamika Uk adów Nieliniowych 2009 Wykład 11 1 Synchronizacja uk adów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda. Dynamika Ukadów Nieliniowych 2009 Wykład 11 1 Synchronizacja ukadów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda. Wtedy była to synchronizacja stanów periodycznych. Wiecej na ten

Bardziej szczegółowo

dr inż. Piotr Odya dr inż. Piotr Suchomski

dr inż. Piotr Odya dr inż. Piotr Suchomski dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

POBÓR MOCY MASZYN I URZDZE ODLEWNICZYCH

POBÓR MOCY MASZYN I URZDZE ODLEWNICZYCH Eugeniusz ZIÓŁKOWSKI, 1 Roman WRONA 2 Wydział Odlewnictwa AGH 1. Wprowadzenie. Monitorowanie poboru mocy maszyn i urzdze odlewniczych moe w istotny sposób przyczyni si do oceny technicznej i ekonomicznej

Bardziej szczegółowo

M wiersz,kolumna. = [m ij. Wektor. Przekszta!cenia geometryczne w grafice wektorowej. Dzia!ania na wektorach. Uk!ad wspó!rz&dnych.

M wiersz,kolumna. = [m ij. Wektor. Przekszta!cenia geometryczne w grafice wektorowej. Dzia!ania na wektorach. Uk!ad wspó!rz&dnych. Przekszta!cenia geometrczne w grafice wektorowej Rados!aw Mantiuk Zachodniopomorski Uniwerstet Technologiczn w Szczecinie Wektor Dla danej n-wmiarowej przestrzeni Euklidesowej wektor równ jest: v 0 v v

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne

Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią

Bardziej szczegółowo

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel

Bardziej szczegółowo

Operatory mapowania tonów

Operatory mapowania tonów Operatory mapowania tonów (ang. Tone Mapping Operators) Radosław Mantiuk rmantiuk@wi.zut.edu.pl 1 Operatory Tonów (TMO - tone mapping operator) Kompresja luminancji obrazów HDR Dostosowanie zakresu dynamiki

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Image Based Lighting. Image Based Lighting. Image Based Lighting - Rezultaty syntezy obrazów. Image Based Lighting - Rezultaty syntezy obrazów

Image Based Lighting. Image Based Lighting. Image Based Lighting - Rezultaty syntezy obrazów. Image Based Lighting - Rezultaty syntezy obrazów Wykorzystanie obrazów HDR jako $róde#!wiat#a, które o!wietlaj" syntezowan" scen%. Obliczanie o!wietlenia bazuj"ce na wykorzystaniu obrazów Rados#aw Mantiuk radoslaw.mantiuk@gmail.com Obrazy HDR stosowane

Bardziej szczegółowo

Akwizycja obrazów. Zagadnienia wstępne

Akwizycja obrazów. Zagadnienia wstępne Akwizycja obrazów. Zagadnienia wstępne Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 A. Przelaskowski, Techniki Multimedialne,

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Program do konwersji obrazu na cig zero-jedynkowy

Program do konwersji obrazu na cig zero-jedynkowy Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Rezonans szeregowy (E 4)

Rezonans szeregowy (E 4) POLITECHNIKA LSKA WYDZIAŁINYNIERII RODOWISKA I ENERGETYKI INSTYTT MASZYN I RZDZE ENERGETYCZNYCH Rezonans szeregowy (E 4) Opracował: mgr in. Janusz MDRYCH Zatwierdził: W.O. . Cel wiczenia. Celem wiczenia

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

6. Transmisja i generacja sygnałów okresowych

6. Transmisja i generacja sygnałów okresowych 24 6. Transmisja i generacja sygnałów okresowych Cele ćwiczenia Zapoznanie ze środowiskiem programistycznym Code Composer Studio. Zapoznanie z urządzeniem TMX320C5515 ezdsp. Zapoznanie z podstawami programowania

Bardziej szczegółowo

Rysunek 1. Piramida obrazów

Rysunek 1. Piramida obrazów ZASTOSOWANIE PIRAMIDY OBRAZÓW DO ODSZUMIANIA MGR IN. G. SARWAS 1. Wst p Otaczaj cy nas ±wiat ma struktur wieloskalow. To co widzimy zale»y od tego w jakim powi kszeniu oraz rozdzielczo±ci ogl damy dany

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r. Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia

Bardziej szczegółowo

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów. Karol Czapnik

Cyfrowe Przetwarzanie Obrazów. Karol Czapnik Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja

Bardziej szczegółowo

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ Hybrid Images Imię i nazwisko: Anna Konieczna Kierunek studiów: Informatyka Stosowana Rok studiów: 4 Przedmiot: Analiza i Przetwarzanie Obrazów Prowadzący przedmiot:

Bardziej szczegółowo

Bartosz Bazyluk GRAFIKA KOMPUTEROWA Wprowadzenie. Warunki zaliczenia. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk GRAFIKA KOMPUTEROWA Wprowadzenie. Warunki zaliczenia. Grafika Komputerowa, Informatyka, I Rok GRAFIKA KOMPUTEROWA Wprowadzenie. Warunki zaliczenia. Grafika Komputerowa, Informatyka, I Rok O MNIE mgr inż. bartosz@bazyluk.net http://bazyluk.net/zpsb Wykłady, zadania, materiały, informacje Czym się

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Grafika Komputerowa Wybrane definicje. Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow.

Grafika Komputerowa Wybrane definicje. Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow. Grafika Komputerowa Wybrane definicje Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow.pl Spis pojęć Grafika komputerowa Grafika wektorowa Grafika rastrowa

Bardziej szczegółowo

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej GRAFIKA RASTROWA WYKŁAD 1 Wprowadzenie do grafiki rastrowej Jacek Wiślicki Katedra Informatyki Stosowanej Grafika rastrowa i wektorowa W grafice dwuwymiarowej wyróżnia się dwa rodzaje obrazów: rastrowe,

Bardziej szczegółowo

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów Dla klasy 3 i 4 technikum 1. Klasa 3 34 tyg. x 3 godz. = 102 godz. Szczegółowy rozkład materiału: I. Definicje sygnału: 1. Interpretacja

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Zabawa z grak z programem Scilab. Jacek Tabor

Zabawa z grak z programem Scilab. Jacek Tabor Zabawa z grak z programem Scilab Jacek Tabor Rozdziaª 1 Zmiana skali Na dobry pocz tek: http://wwwtheinvisiblegorillacom/gorilla_experimenthtml 11 CIE 1931 Color Matching Functions Sposób w jaki widzimy

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Zaawansowane teksturowanie wprowadzenie Próbkowanie i rekonstrukcja sygnału Granica Nyquista Filtry do rekonstrukcji Antyaliasing tekstur

Bardziej szczegółowo

Próbkowanie sygnałów (ang. sampling) PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE. Literatura. Cyfrowe Przetwarzanie Sygnałów

Próbkowanie sygnałów (ang. sampling) PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE. Literatura. Cyfrowe Przetwarzanie Sygnałów Cyfrowe Przetwarzanie Sygnałów Literatura Dr inż. Jakub Gałka C2-419, jgalka@agh.edu.pl Tel. wew. AGH 50-68 Konsultacje, poniedziałek, 11:30-12:30 1. Alan V. Oppenhei, Ronald W.Schafer: Cyfrowe przetwarzanie

Bardziej szczegółowo

INSTYTUT TECHNIKI Zakad Elektrotechniki i Informatyki mdymek@univ.rzeszow.pl COREL PHOTO-PAINT

INSTYTUT TECHNIKI Zakad Elektrotechniki i Informatyki mdymek@univ.rzeszow.pl COREL PHOTO-PAINT COREL PHOTO-PAINT Laboratorium nr 1 Podstawowe informacje o grafice rastrowej i formatach plików Grafika rastrowa W grafice rastrowej obrazy tworzone s$ z poo&onych regularnie, obok siebie pikseli. Posiadaj$

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA Computer Graphics Forma studiów: studia

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. XI

Pracownia komputerowa. Dariusz Wardecki, wyk. XI Pracownia komputerowa Dariusz Wardecki, wyk. XI Grafika rastrowa Grafika rastrowa Standardowe i wektorowa formaty plików i wektorowa Grafika rastrowa i wektorowa Grafika rastrowa i wektorowa Grafika rastrowa

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Technologie Informacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności April 11, 2016 Technologie Informacyjne Wprowadzenie : wizualizacja obrazów poprzez wykorzystywanie technik komputerowych.

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

Grafika komputerowa. Dla DSI II

Grafika komputerowa. Dla DSI II Grafika komputerowa Dla DSI II Rodzaje grafiki Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji

Bardziej szczegółowo

Systemy przetwarzania sygnałów

Systemy przetwarzania sygnałów Systemy przetwarzania sygnałów x(t) y(t)? x(t) System przetwarzania sygnałów y(t) 23 P. Strumiłło 1 Systemy przetwarzania sygnałów sygnał cigły x(t) y(t)=h(x(t)) System czasu cigłego y(t) np. megafon -

Bardziej szczegółowo

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne Ćwiczenie Przetwarzanie graficzne plików Wprowadzenie teoretyczne ddytywne składanie kolorów (podstawowe barwy R, G, ) arwy składane addytywnie wykorzystywane są najczęściej w wyświetlaczach, czyli stosuje

Bardziej szczegółowo

prof. Paweł Strumiłło dr hab. Michał Strzelecki tel , p. 216, godz. przyj: poniedziałek 12-13, wtorek 15-16

prof. Paweł Strumiłło dr hab. Michał Strzelecki tel , p. 216, godz. przyj: poniedziałek 12-13, wtorek 15-16 prof. Paweł Strumiłło dr hab. Michał Strzelecki tel. 631 26 31, p. 216, mstrzel@p.lodz.pl godz. przyj: poniedziałek 12-13, wtorek 15-16 Strumillo, Strzelecki Literatura: 1. Notatki i materiały wykładowe

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

samopodobnym nieskończenie subtelny

samopodobnym nieskończenie subtelny Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne

Bardziej szczegółowo

Przetwarzanie sygnaªów

Przetwarzanie sygnaªów Przetwarzanie sygnaªów Wykªad 8 - Wst p do obrazów 2D Marcin Wo¹niak, Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 27 Plan wykªadu 1 Informacje wstepne 2 Przetwarzanie obrazu 3 Wizja komputerowa

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ANALIZA I PRZETWARZANIE OBRAZÓW CYFROWYCH Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Programowanie aplikacji internetowych Rodzaj zajęć: wykład, laboratorium

Bardziej szczegółowo

ZESTAW MONITORINGU HYBRYDA HDMI KAMERA TUBOWA 900LINII DYSK 1TB UTP/FTP

ZESTAW MONITORINGU HYBRYDA HDMI KAMERA TUBOWA 900LINII DYSK 1TB UTP/FTP Dane aktualne na dzień: 20-03-2017 12:06 Link do produktu: http://www.itchome.pl/zestaw-monitoringu-hybryda-hdmi-kamera-tubowa-900linii-dysk-1tb-utpftpp-2325.html ZESTAW MONITORINGU HYBRYDA HDMI KAMERA

Bardziej szczegółowo

Proste metody przetwarzania obrazu

Proste metody przetwarzania obrazu Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo