Część A. Logika w zadaniach
|
|
- Seweryn Kaczor
- 7 lat temu
- Przeglądów:
Transkrypt
1 Część A. Logika w zadaniach
2 Rozdział I. Nazwy Rozdział I. I. Nazwy Nazwa to wyraz bądź wyrażenie nadające się na podmiot bądź orzecznik orzeczenia imiennego w zdaniu. Desygnat nazwy to każdy przedmiot, o którym można orzec zgodnie z prawdą. W zdaniu: Jan jest adwokatem wyrazy Jan i adwokat są nazwami. Jan to nazwa prosta, konkretna, indywidualna, jednostkowa, oznaczająca konkretną osobę. Adwokat to nazwa prosta, konkretna, generalna, ogólna. Każda nazwa posiada jakieś znaczenie. Jeżeli mówi się, że nazwa x to coś, co leży na biurku, to ma się na myśli desygnat, do którego dana nazwa się odnosi. Jeżeli zaś mówi się, że nazwa x oznacza to a to, to ma się na myśli treść danej nazwy (konotację). 1. Rodzaje nazw Biorąc pod uwagę różne kryteria podziału nazw, możemy je posegregować według: liczby wyrazów składowych, ilości desygnatów, struktury desygnatów itp. 1) Ze względu na liczbę wyrazów składowych nazwy dzieli się na nazwy: a) proste składające się z jednego wyrazu, zwane nazwami jednowyrazowymi (np. dziecko, książka, biblioteka); b) złożone składające się z więcej niż jednego wyrazu, zwane nazwami wielowyrazowymi (np. grzeczne dziecko, ulubiona książka, Biblioteka Narodowa). 2) Z uwagi na ilość desygnatów nazwy dzieli się na nazwy: a) puste niemające żadnego desygnatu (np. syn bezdzietnej kobiety, żonaty kawaler); b) jednostkowe których zakres obejmuje tylko jeden desygnat (np. moja mama); zaliczamy do nich np. nazwy miast, rzek, państw oraz imiona; c) ogólne posiadają w swym zakresie więcej niż jeden desygnat (np. dziecko, książka, biblioteka). 3) Ze względu na to, do czego nazwy się odnoszą, dzieli się je na nazwy: a) konkretne odnoszące się do rzeczy (np. biblioteka), osoby (np. człowiek) lub czegoś, co sobie jako rzecz lub osobę wyobrażamy (np. Kopciuszek); b) abstrakcyjne nie posiadają bytów, nie odnoszą się ani do rzeczy, ani do osób, ani do czegoś, co sobie jako rzecz lub osobę wyobrażamy; wskazują pewne cechy, właściwości, zdarzenia, zależności, relacje zachodzące pomię- T. Widła, D. Zienkiewicz, Logika, Ćwiczenia Becka
3 Część A. Logika w zadaniach dzy przedmiotami, osobami zjawiskami (np. radość, przyjaźń, miłość, sprawiedliwość). 4) Ze względu na sposób wskazania desygnatu wyróżnia się nazwy: a) indywidualne wskazują na konkretny desygnat bez względu na cechy tego desygnatu; są to zazwyczaj imiona własne mogą być one nadawane zarówno przedmiotom rzeczywistym (np. nazwy geograficzne, imiona i nazwiska, nazwy miast), jak i wyimaginowanym (np. postaci literackie); nazwa indywidualna wynika z pewnej konwencji, przysługuje desygnatowi, niezależnie od właściwości desygnatu, jest zawsze nazwą jednostkową, gdyż jest to przymiot przypisany konkretnemu desygnatowi, bez względu na jego cechy; nie zawsze natomiast nazwa jednostkowa jest nazwą indywidualną, np. Warszawa to nazwa zarówno indywidualna, jak i jednostkowa, a wskazanie desygnatu powyższej nazwy przy pomocy cech, używając określenia obecna stolica Polski, zmienia kryterium sposobu wskazania desygnatu w wyniku przeobrażenia powstała nazwa jednostkowa, ale już nie indywidualna; b) generalne wskazują desygnat ze względu na jego cechy, np. kwadrat jest nazwą generalną, ponieważ nazwa ta przypisana jest desygnatowi ze względu na posiadane cechy kwadratem jest figura o bokach równych i kątach prostych, a gdyby desygnat nie posiadał danych cech, nazwa ta by mu nie przysługiwała. 5) Z uwagi na strukturę desygnatów można wskazać nazwy: a) zbiorowe których desygnatami nie są poszczególne rzeczy, lecz przedmioty, które stanowią zbiór poszczególnych rzeczy (np. biblioteka, stado, puzzle); b) niezbiorowe których desygnatami są pojedyncze rzeczy, a nie zbiór, np. książka. 6) Z uwagi na wyrazistość wskazania desygnatu wyróżnia się nazwy: a) ostre których zakres nazwy w sposób obiektywnie jednoznaczny można określić, tzn. że treść nazwy jest na tyle wyraźna, że desygnaty danej nazwy można odróżnić od innych przedmiotów nieobjętych zakresem tej nazwy (np. taboret, szklanka); b) nieostre które nie posiadają obiektywnej i jednoznacznej granicy umożliwiającej oddzielenie zakresu desygnatów tej nazwy (np. przystojny, egoista); nazw nieostrych nie należy mylić z nazwami wieloznacznymi, które posiadają wiele znaczeń, np. pokój w znaczeniu pomieszczenia albo w znaczeniu stanu bezpieczeństwa. T. Widła, D. Zienkiewicz, Logika, Ćwiczenia Becka
4 Rozdział I. Nazwy 2. Supozycja Nazwa generalna może występować w trzech różnych supozycjach. Supozycja to rola znaczeniowa danego wyrazu. Wyróżniamy supozycję: 1) prostą, 2) materialną, 3) formalną. Supozycja prosta (suppositio simplex) wskazuje jeden konkretny desygnat. Supozycja materialna (suppositio materialis) wskazuje na wyraz. W supozycji materialnej wyraz jest znakiem dla siebie samego. Supozycja formalna (suppositio formalis) wskazuje cały zakres desygnatów. W supozycji formalnej mowa jest o całym gatunku, obejmującym swym zakresem zbiór wszystkich desygnatów danej nazwy. 3. Stosunki między zakresami nazw Zakres nazwy to zbiór desygnatów danej nazwy. Zależności (stosunki między zakresami nazw) przedstawia się w klasie uniwersalnej lub nazewniczej. Klasa uniwersalna jest zbiorem desygnatów wszystkich istniejących nazw, inaczej mówiąc, klasa uniwersalna to wszechświat wszystko, co istniej wokół nas. Klasa nazewnicza to wspólne, najbliższe określenie dla nazw, których zakresy przedstawiamy. Klasa nazewnicza lub uniwersalna zostanie umownie przedstawiana za pomocą odcinka, zobrazowanego w następujący sposób: Stosunki między zakresami dwóch nazw mogą stanowić: 1) zamienność która zachodzi wówczas, gdy każde S jest P i każde P jest S. Inaczej mówiąc, nie ma takiego S, które nie byłoby P i nie ma takiego P, które nie byłoby S. Jeżeli za S uzna się abakan, a za P miękką rzeźbę z tkaniny, to zakresy tych nazw utworzą zamienność; S P T. Widła, D. Zienkiewicz, Logika, Ćwiczenia Becka
5 Część A. Logika w zadaniach 2) podrzędność zachodzi wówczas, gdy każde S jest P, ale nie każde P jest S. Inaczej mówiąc, istnieją takie P, które są S oraz takie P, które nie są S, ale nie ma takiego S, które nie byłoby P. W stosunku podrzędności pozostaje nazwa adwokat względem nazwy prawnik. Każdy adwokat jest prawnikiem, ale nie każdy prawnik jest adwokatem; S P 3) nadrzędność jest to stosunek odwrotny do podrzędności. Nadrzędność zachodzi wówczas, gdy istnieją takie S, które są P oraz takie S, które nie są P, ale nie ma takiego P, które nie byłoby S. Inaczej mówiąc, każde P musi być S, ale nie każde S jest P. W stosunku nadrzędności pozostaje nazwa prawnik względem nazwy adwokat. Istnieją prawnicy, którzy są adwokatami oraz istnieją prawnicy, którzy nie są adwokatami, ale nie ma adwokatów, którzy nie byliby prawnikami; S P 4) krzyżowanie polega na tym, że istnieją desygnaty nazwy S, które są desygnatami nazwy P i istnieją desygnaty nazwy S, które nie są desygnatami nazwy P, a jednocześnie istnieją desygnaty nazwy P, które nie są desygnatami nazwy S. Jeżeli zakresy nazw S i P nie wyczerpują całej klasy, mamy do czynienia z niezależnością; jeżeli natomiast wyczerpują klasę, to krzyżowanie przybiera postać podprzeciwieństwa. Przykładem nazw, które pozostają w stosunku niezależności są nazwy nauczyciel, kobieta; niezależność podprzeciwieństwo nauczyciel książka kobieta nie-podręcznik T. Widła, D. Zienkiewicz, Logika, Ćwiczenia Becka
6
7 Część C. Przykładowe zestawy pytań egzaminacyjnych
8 Jeżeli zrozumiałeś przerobiony materiał spróbuj rozwiązać poniższe zestawy egzaminacyjne. Na końcu znajdziesz odpowiedzi do trzech pierwszych zestawów egzaminacyjnych, co pozwoli skontrolować Ci tok swojego rozumowania. Jeżeli rozwiążesz zadania prawidłowo możesz przejść do dalszego rozwiązywania zestawów pytań egzaminacyjnych nie szukając już żadnych podpowiedzi.
9 Część C. Przykładowe zestawy pytań egzaminacyjnych Zestaw Szef CBA podejrzewał, że mogło dojść do wycieku informacji ze śledztwa w sprawie afery sopockiej i zawiadomił prokuraturę. Określ role syntaktyczne (wskaż funktory i argumenty) składników całości wypowiedzi napisanej wytłuszczonym drukiem. W jakiej supozycji użyto nazwy oznaczonej kursywą? 2. Jeżeli prawda Was nie wyzwoliła, to znaczy, że jej nie poznaliście; z tego wynika, że. Przyjąwszy, że powyższa wypowiedź to fragment zdania aspirującego do rangi prawa logicznego (lewa część możliwej funkcji), kierując się wskazaniami transpozycji prostej zbuduj prawą część (będącą mottem CIA). Jak brzmi całość? Poprawność działań sprawdź przez zbudowanie funkcji wyrażającej całość zbudowanej wypowiedzi i jej sprawdzenie (metodą matrycową). 3. Przesłanka mniejsza jest obwersją zdania: żaden student nie jest nie-człowiekiem. Wniosek jest kontrapozycją zdania: każdy nie-posiadający zdolności prawnej jest nie-studentem. Wykorzystując znajomość reguł kwadratu logicznego, zasad przekształcania i dyrektyw poprawności sylogizmu kategorycznego znajdź brakującą przesłankę większą (rozumowanie rozpisz symbolicznie a poszukiwane zdanie także zapisz słownie). 4. W rozumieniu art. 2 ustawy o Rzeczniku Praw Dziecka, dzieckiem jest każda istota ludzka od poczęcia do osiągnięcia pełnoletniości. Definiendum zawarte w tej definicji jest orzecznikiem przesłanki mniejszej. Przesłanka mniejsza jest zdaniem zbudowanym z podmiotu: niepełnoletni. Przesłanka większa głosi, że: żadne dziecko nie jest własnością rodziców. Akceptując definicję dziecka zawartą w ustawie o Rzeczniku Praw Dziecka odbuduj przesłankę mniejszą słownie i symbolicznie oraz wyprowadź odpowiedni wniosek (rozumowanie rozpisz symbolicznie a poszukiwane zdania także słownie). 5. Podaj przykład relacji nontranzytywnej. T. Widła, D. Zienkiewicz, Logika, Ćwiczenia Becka 137
10 Część C. Przykładowe zestawy pytań egzaminacyjnych Zestaw Mercedes, pierwsza właścicielka, po wypadku, przód w dobrym stanie wyczytała zdezorientowana miłośniczka południowoamerykańskich seriali. Jaka przyczyna dezorientacji kryje się w wypowiedzi zapisanej kursywą. W zdaniu zapisanym kursywą określ kategorie syntaktyczne. 2. Jeżeli dzisiaj jest Dzień Durina, to jeżeli drozd zastuka, to ostatni promień dnia wskaże ukryte drzwi do Ereboru; z tego wynika, że. Zbuduj prawą część funkcji wyrażającej to rozumowanie na zasadzie importacji/eksportacji i sprawdź (metodą matrycową), poprawność swoich działań w odniesieniu do całości. 3. Czy ten ptak gniazdo kala, co je kala; czy też ten je kala, co mówić o tym nie pozwala. Zdając sobie sprawę z istoty sprzeczności, wyrażonej przez C. K. Norwida i pamiętając o istocie wynikania (weź to pod uwagę dostosowując szyk lub postać implikacji), spróbuj ustalić wartość logiczną tej wypowiedzi. Zatem zbuduj funkcję wyrażającą tę wypowiedź i sprawdź (metodą matrycową), czy zasadne są aspiracje tej funkcji do rangi prawa logicznego. 4. Jak brzmi przesłanka mniejsza entymematu, którego wniosek jest kontrapozycją zupełną zdania: Każdy nie-śmiertelny jest nie-człowiekiem; a przesłanka większa zdaniem sprzecznym do zdania: Niektóre ssaki nie są śmiertelne. Wykorzystując znajomość reguł kwadratu logicznego, zasad przekształcania i dyrektyw poprawności sylogizmu kategorycznego znajdź brakującą przesłankę (rozumowanie rozpisz symbolicznie a poszukiwane zdanie zapisz także słownie). 5. Jeżeli jakaś czynność ma być wykonana niezwłocznie, to znaczy, że należy ją wykonać bez zwłoki orzekł Sąd Najwyższy Jak nazywamy taki błąd w przekazie informacji o znaczeniu nazwy (podaj jej logiczną istotę i nazwij ją). 138 T. Widła, D. Zienkiewicz, Logika, Ćwiczenia Becka
Ćwiczenia Becka. Tadeusz Widła Dorota Zienkiewicz. zadania testy pytania egzaminacyjne. Wydawnictwo C.H.Beck. 2. wydanie. Logika
Ćwiczenia Becka Tadeusz Widła Dorota Zienkiewicz Logika zadania testy pytania egzaminacyjne 2. wydanie Wydawnictwo C.H.Beck Ćwiczenia Becka Logika W sprzedaży: E. Nieznański LOGIKA Podręczniki Prawnicze
mgr Anna Dziuba Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa mgr Anna Dziuba
Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa POJĘCIE NAZWY NAZWĄ jest wyrażenie, które w zdaniu podmiotowo orzecznikowym nadaje się na podmiot lub orzecznik S (podmiot) jest P (orzecznik) Kasia
Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół
Nazwa spełnia istotną rolę w języku, gdyŝ umoŝliwia proces identyfikowania róŝnych obiektów i z tego powodu nazwa jest podstawowym składnikiem wypowiedzi. Nazwa jest to wyraz albo wyraŝenie rozumiane jednoznacznie,
Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach
Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Krótkie wprowadzenie, czyli co
Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje
Wykład 4 Logika dla prawników Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Nazwy Nazwą jest taka częśd zdania, która w zdaniu może pełnid funkcję podmiotu lub orzecznika. Nazwami mogą
Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20
Przedmowa Wykaz skrótów XIII XV Część A. Wprowadzenie Rozdział I. Rys historyczny 1 1. Początki logiki jako nauki 1 2. Średniowiecze 2 3. Czasy nowożytne i współczesne 4 Rozdział II. Podstawowe prawa myślenia
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 WydziałPrawa, Administracji i Stosunków Miedzynarodowych Kierunek
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Metodologia prowadzenia badań naukowych Semiotyka, Argumentacja
Semiotyka, Argumentacja Grupa L3 3 grudnia 2009 Zarys Semiotyka Zarys Semiotyka SEMIOTYKA Semiotyka charakterystyka i działy Semiotyka charakterystyka i działy 1. Semiotyka Semiotyka charakterystyka i
Wykład 8. Definicje. 1. Definicje normalne/równościowe i nierównościowe. Np.: Studentem jest człowiek posiadający ważny indeks wyższej uczelni
Wykład 8. Definicje I. Podział definicji 1. Definicje normalne/równościowe i nierównościowe. Np.: Studentem jest człowiek posiadający ważny indeks wyższej uczelni Składa się z trzech członów Definiendum
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną
Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb
ćwiczenia 15 zaliczenie z oceną
Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb
TESTY LOGIKA. redakcja naukowa ZBIGNIEW PINKALSKI
TESTY LOGIKA redakcja naukowa ZBIGNIEW PINKALSKI Warszawa 2012 Spis treści Wykaz skrótów i symboli... 7 Wprowadzenie... 9 Rozdział I Nazwy... 11 Rozdział II Kategorie syntaktyczne... 17 Rozdział III Pytania...
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Kultura logiczna Elementy sylogistyki
Kultura logiczna Elementy sylogistyki Bartosz Gostkowski bgostkowski@gmail.com Kraków 15 III 2010 Plan wykładu: Podział wnioskowań Sylogizmy Poprawność sylogizmów i niezawodność trybów PODZIAŁ WNIOSKOWAŃ
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ
LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ Robert Trypuz Katedra Logiki KUL 18 grudnia 2013 Robert Trypuz (Katedra Logiki) Wnioskowanie 18 grudnia 2013 1 / 12 Zarys 1 Wnioskowanie Definicja Schemat wnioskowania
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie
WSTĘP ZAGADNIENIA WSTĘPNE
27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).
Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:
1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość
Logika dla socjologów Część 2: Przedmiot logiki
Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne
PODZIAŁ LOGICZNY. Zbiór Z. Zbiór A. Zbiór B
Fragment książki Jarosława Strzeleckiego Logika z wyobraźnią. Wszelki uwagi merytoryczne i stylistyczne proszę kierować pod adres jstrzelecki@uwm.edu.pl PODZIAŁ LOGICZNY I. DEFINICJA: Podziałem logicznym
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 ZĘŚĆ 1. JĘZYK POLSKI ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIEIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek zawartych
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Podstawy. logiki. w przykładach. i zadaniach
Podstawy logiki w przykładach i zadaniach WYŻSZA SZKOŁA ADMINISTRACYJNO-SPOŁECZNA W WARSZAWIE Beata Witkowska-Maksimczuk Podstawy logiki w przykładach i zadaniach Warszawa 2013 Rada naukowa: Eugeniusz
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018
EGZMIN W KLSIE TRZECIEJ GIMNZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 1. JĘZYK POLSKI ZSDY OCENINI ROZWIĄZŃ ZDŃ RKUSZ GH-P8 KWIECIEŃ 2018 Zadanie 1. (0 1) Zadanie 2. (0 1) C Zadanie 3. (0 1) 3. Świadomość językowa.
Znak, język, kategorie syntaktyczne
Składnia ustalone reguły jakiegoś języka dotyczące sposobu wiązania wyrazów w wyrażenia złożone. Językoznawstwo zajmuje się m.in. opisem składni poszczególnych języków, natomiast przedmiotem syntaktyki
Rachunek logiczny. 1. Język rachunku logicznego.
Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były
Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P2 KWIECIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek
Kultura logiczna Nazwy
Kultura logiczna Nazwy Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 II 2010 Plan: (i) pojęcie zbioru w sensie dystrybutywnym i mereologicznym (ii) pojęcie nazwy (iii) własności nazw (iv) stosunki
Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki
Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Co dzisiejsza historia mieć będzie wspólnego z Arystotelesem? 2 Plan gry:
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIECIEŃ 2019 Zadanie 1. (0 1) PF Zadanie 2. (0 1) II. Analiza i interpretacja
Rodzaje argumentów za istnieniem Boga
Rodzaje argumentów za istnieniem Boga Podział argumentów argument ontologiczny - w tym argumencie twierdzi się, że z samego pojęcia bytu doskonałego możemy wywnioskować to, że Bóg musi istnieć. argumenty
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Wstęp do logiki. Semiotyka cd.
Wstęp do logiki Semiotyka cd. Semiotyka: język Ujęcia języka proponowane przez językoznawców i logików różnią się istotnie w wielu punktach. Z punktu widzenia logiki każdy język można scharakteryzować
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 JĘZYK POLSKI
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 2) wyszukuje w wypowiedzi potrzebne informacje [ ]. PP Zadanie
Wstęp do logiki. Semiotyka cd.
Wstęp do logiki Semiotyka cd. DEF. 4 (Nazwa w sensie szerokim). Nazwą nazywamy dowolne wyrażenie, które może wystąpić w roli podmiotu lub orzecznika w zdaniu podmiotowo-orzecznikowym, czyli zdaniu o budowie:
Lekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron (zadania
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Skrypt 23. Przygotowanie do egzaminu Pierwiastki
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości
Operacjonalizacja zmiennych
Metodologia badań naukowych - wykład 2 Operacjonalizacja zmiennych Pojęcie zmiennej Definiowanie zmiennych w planie badania Mierzenie. Skale mierzenia Pojęcie wskaźnika. Dobór wskaźnika dla zmiennej Kryteria
Sylabus dla przedmiotu Logika i ogólna metodologia nauk
Sylabus dla przedmiotu Logika i ogólna metodologia nauk 1. Definicja pojęcia logika Wprowadzenie w tematykę przedmiotu (szkic czym jest logika, jak należy ją rozumieć, przedmiot logiki, podział logika
MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut
Miejsce na naklejkę z kodem szkoły OKE ŁÓDŹ CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 1 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut
Miejsce na naklejkę z kodem szkoły OKE ŁÓDŹ CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR 1 Czas pracy 10 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut
Miejsce na naklejkę z kodem szkoły OKE ŁÓDŹ CKE MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
Miejsce na identyfikację szkoły PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ZGODNY Z WYMOGAMI NA 015 ROK POZIOM PODSTAWOWY CZERWIEC 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy
Matematyka ETId Elementy logiki
Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA Lekcja 8 Wprowadzenie do logiki ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Które z poniższych zdań
Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
Wprowadzenie do logiki Język jako system znaków słownych
Wprowadzenie do logiki Język jako system znaków słownych Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl język system znaków słownych skoro system, to musi być w tym jakiś porządek;
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIECIEŃ 2016 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek
PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI
PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI (niniejsze opracowanie jest nieznacznie skróconą wersją opracowania zawartego w książce Zygmunta Ziembińskiego Logika pragmatyczna. (wyd. XIX, s. 95 99). Polecam lekturę
Kultura logiczna Klasyczny rachunek zdań 1/2
Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe
LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
Wstęp do logiki. Semiotyka cd.
Wstęp do logiki Semiotyka cd. Gramatyka kategorialna jest teorią formy logicznej wyrażeń. Wyznacza ją zadanie sporządzenia teoretycznego opisu związków logicznych takich jak wynikanie, równoważność, wzajemna
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Arkusz I Czas pracy 10 minut ARKUSZ I GRUDZIEŃ ROK 004 Instrukcja dla zdającego
trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów.
Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Funkcje trygonometryczne dla kątów ostrych to stosunki długości odpowiednich dwóch boków trójkąta prostokątnego.
3. Spór o uniwersalia. Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016
3. Spór o uniwersalia Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Nieco semiotyki nazwa napis lub dźwięk pojęcie znaczenie nazwy desygnat nazwy każdy
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną
Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Administracja Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): I stopnia Tryb studiów:
mgr Anna Dziuba Uniwersytet Wrocławski mgr Anna Dziuba
Uniwersytet Wrocławski Podział definicji Ze względu na to, do czego się odnoszą: Definicje realne dot. rzeczy (przedmiotu, jednoznaczna charakterystyka jakiegoś przedmiotu np. Telefon komórkowy to przedmiot,
Klasyczny rachunek zdań 1/2
Klasyczny rachunek zdań /2 Elementy logiki i metodologii nauk spotkanie VI Bartosz Gostkowski Poznań, 7 XI 9 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe
OCENIANIE WYPOWIEDZI PISEMNYCH
1 OCENIANIE WYPOWIEDZI PISEMNYCH KRYTERIA OCENIANIA: KRÓTKI TEKST UŻYTKOWY DŁUŻSZY TEKST UŻYTKOWY WYPOWIEDŹ PISEMNA Przedstawiony materiał zawiera szczegółowe uwagi dotyczące oceniania prac pisemnych z
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki
0 1 Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 2. W następujących dwóch prawach wyróżnić wyrażenia specyficznie matematyczne i wyrażenia z zakresu logiki (do
Przewodnik do ćwiczeń z logiki dla prawników
Przewodnik do ćwiczeń z logiki dla prawników redakcja naukowa Andrzej Malinowski Andrzej Malinowski, Michał Pełka, Radosław Brzeski Zamów książkę w księgarni internetowej SERIA AKADEMICKA 6. WYDANIE WARSZAWA
Podmioty na prawach strony w postępowaniu administracyjnym.
Podmioty na prawach strony w postępowaniu administracyjnym. Strona jest obligatoryjnym uczestnikiem postępowania administracyjnego, jest podmiotem stosunku procesowego, bez strony postępowanie toczyć się
Logika SYLOGISTYKA. Robert Trypuz. 27 listopada Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada / 40
Logika SYLOGISTYKA Robert Trypuz Katedra Logiki KUL 27 listopada 2013 Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada 2013 1 / 40 Plan wykładu 1 Wprowadzenie Arystoteles w sztuce Arystotelesa życiorys
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ: GH-P2 KWIECIEŃ 2017 Zadanie 1. (0 1) FP Zadanie 2. (0 1) B Zadanie 3. (0 1)
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Uwaga: jeżeli za wypowiedź przyznano 0 pkt w kryterium Realizacja tematu wypowiedzi, we wszystkich pozostałych kryteriach przyznaj e się 0 pkt.
Kryteria oceny pisemnych form wypowiedzi w klasach 7-8 szkoły podstawowej 1. Realizacja tematu wypowiedzi wypowiedź jest zgodna z formą wskazaną w poleceniu, w wypowiedzi ujęte zostały wszystkie kluczowe
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P2 KWIECIEŃ 2016 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz
Funkcja rzeczownika w zdaniu
Funkcja rzeczownika w zdaniu 1. Cele lekcji a) Wiadomości Uczeń: zna definicję rzeczownika, wie, jaką pełni funkcję w zdaniu, zna definicję pojęć: podmiot, przydawka, orzecznik, dopełnienie, okolicznik.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P8 KWIECIEŃ 2016 Zadanie 1. (0 1) 2) wyszukuje w wypowiedzi potrzebne informacje
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ: GH-P7 KWIECIEŃ 2017 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek
Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
Logika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
Logika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Notatki z zajęd: od 1 do 4
Notatki z zajęd: od 1 do 4 Niniejsze notatki obejmują pojęcia omówione/przedstawione na slajdach. Zalecam, mimo to, przeczytanie podręcznika Z. Ziembioskiego rozdziały od 1 do 4. Zajęcia nr 1 1. Znakiem
Klucz odpowiedzi do testu z języka polskiego dla uczniów gimnazjów /etap szkolny/ Liczba punktów możliwych do uzyskania: 63.
Klucz odpowiedzi do testu z języka polskiego dla uczniów gimnazjów /etap szkolny/ Liczba punktów możliwych do uzyskania: 63 Zadania zamknięte Zad.1 Zad.4 Zad.6 Zad.8 Zad.9 Zad.11 Zad.13 Zad.14 Zad.16 Zad.18
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
WYMAGANIA EDUKACYJNE Z JĘZYKA POLSKIEGO DLA UCZNIÓW KLASY VI ZGODNE Z PROGRAMEM NAUCZANIA JĘZYKA POLSKIEGO SŁOWA NA START W KLASIE VI
WYMAGANIA EDUKACYJNE Z JĘZYKA POLSKIEGO DLA UCZNIÓW KLASY VI ZGODNE Z PROGRAMEM NAUCZANIA JĘZYKA POLSKIEGO SŁOWA NA START W KLASIE VI Uczniowie z obniżoną sprawnością intelektualną OCENA NIEDOSTATECZNA
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.
Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność
Analiza wyników egzaminu gimnazjalnego 2013 r. Test humanistyczny język polski Test GH-P1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test humanistyczny język polski Test GH-P1-132 Zestaw zadań egzaminacyjnych z zakresu języka polskiego posłużył do sprawdzenia poziomu opanowania wiedzy i