WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria
|
|
- Maja Żurawska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wrocław University of Technology WYKŁAD 7 Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria autor: Maciej Zięba Politechnika Wrocławska
2 Testowanie modeli klasyfikacyjnych Dobór odpowiedniego kryterium: poprawność klasyfikacji nie zawsze jest wystarczającym kryterium; Konieczność stosowania pomocniczych kryteriów; Dobór odpowiedniej techniki testowania: nie można stosować do uczenia i testowania jakości tych samych danych; Zależy od liczności i stopnia skomplikowania danych którymi dysponujemy; 2/13
3 Poprawność klasyfikacji Poprawność klasyfikacji definiuje się następująco: Acc = 1 N N I(h(x n ) = y n ) Dla przykładu mamy więc: Acc = 6 10 Rzeczywista Predykowana ID Wartość Wartość Klasy Klasy /13
4 NALEŻY DO KLASY Macierz konfuzji Bardzo pomocnym narzędziem do oceny jakości modelu klasyfikacyjnego jest tzw. macierz konfuzji. Elementy macierzy definiuje następująco: n i,j = N I(y n = i) I(h(x n = j)) Macierz dostarcza pełnej wiedzy odnośnie testowania. ura macierzy konfuzji. KLASYFIKOWANY JAKO 1 2 C n 1,1 n 1,2 n 1,C 1 n 2,1 n 2,2 n 2,C 2 n C,1 n C,2 n C,C C 4/13
5 NALEŻY DO KLASY Macierz konfuzji Spośród 3 obiektów należących do klasy 3, dwa zostały zaklasyfikow klasy 3, a jeden błędnie do klasy 1 (trzeci wiersz). Na bazie macierzy konfuzji łatwo jest policzyć poprawność klasyfikacji za sumując wartości na przekątnej (poprawne klasyfikacje) i dzieląc przez nawykiem jest uczenie modelu klasyfikatora i testowanie go na tym samym elementów macierzy (wszystkie klasyfikacje). Dla rozpatrywanego przyk Rzeczywista Predykowana klasyfikacji wynosi 0.6. ID Wartość Wartość Klasy Klasy Macierz konfuzji dla przykładu: 1 1 Tabela 4 Uzupełniona tabela konfuzji na podstawie przykładowego zestawienia z Tabeli Tabela KLASYFIKOWANY JAKO Kluczowym elementem w testowaniu jakości klasyfikatora jest to, jakie o wybrać do 3 uczenia, a jakie powinny zostać wyselekcjonowane do testowa Jednym z głównych problemów klasyfikacji jest problem zbytniego dopasow uczącego (ang. overfitting). W praktyce oznacza to, że uczony mode 5/13
6 Zadanie Rzeczywista Predykowana ID Wartość Wartość Klasy Klasy Dla podanych danych: wyznacz poprawność klasyfikacji; wyznacz macierz konfuzji; 6/13
7 TP Macierz konfuzji dla dwóch TP rate = klas TP + FN. (1.19) Zaklasyfikowany Zaklasyfikowany do klasy pozytywnej do klasy negatywnej Należy do TP FN klasy pozytywnej (True positive) (False negative) Należy do FP TN klasy negatywnej (False positive) (True negative) Tabela 1.1: Macierz konfuzji dla dychotomicznego zadania klasyfikacji. TP (ang. true positive) - liczba obiektów z klasy pozytywnej poprawnie klasyfikowanych jako obiekty z klasy pozytywnej; Wartości TP (ang. true positive), FN (ang. false negative), FP (ang. false positive), TN (ang. true negative), stanowią elementy macierzy konfuzji (ang. confusion matrix, Tabela 1.1). Macierz konfuzji, nazywana również macierzą kontyngencji, określa, w jaki sposób TN (ang. true negative) - liczba obiektów z klasy negatywnej siępoprawnie w następujący sposób: klasyfikowanych jako obiekty z klasy negatywnej; klasyfikowane były obiekty z poszczególnych klas. Poszczególne pozycje macierzy definiuje TP = I(Ô(x n )=+1)I(y n =+1), (1.20) FP (ang. false positive) - liczba obiektów z klasy negatywnej błędnie klasyfikowanych jako obiekty z klasy pozytywnej; FN = FN (ang. false negative) - liczba obiektów z klasy pozytywnej I(Ô(x n )= 1) I(y n =+1), (1.21) błędnie klasyfikowanych jako obiekty z klasy negatywnej; FP = I(Ô(x n )=+1)I(y n = 1), (1.22) 7/13
8 Wskaźniki do oceny jakości ROZDZIAŁ klasyfikacji 1. WSTĘP dla dwóch klas poprawność klasyfikacji: T P + T N Acc = T P + T N + F P + F N gdzie TNrate oznacza wskaźnik specyficzności (znamienności, ang. specificity), nazyw również wskaźnikiem TN (ang. TN rate), i definiuje się go w następujący sposób: TN TNrate = TN + FP, (1 natomiast TPrate nazywany jest w literaturze wskaźnikiem czułości (ang. sensitivity), b też wskaźnikiem TP (ang. TP rate), i wyrażony jest wzorem: TP TPrate = TP + FN. (1 Czułość (wrażliwość): T P rate = Specyficzność: T N rate = T P T P + F N T N T N + F P Wartości TP (ang. true positive), FN (ang. false negative), FP (ang. false positive), (ang. true negative), stanowią elementy macierzy konfuzji (ang. confusion matrix, Ta 1.1). Macierz konfuzji, nazywana również macierzą kontyngencji, określa, w jaki spo klasyfikowane były obiekty z poszczególnych klas. Poszczególne pozycje macierzy defin Zaklasyfikowany Zaklasyfikowany do klasy pozytywnej do klasy negatywnej Należy do TP FN klasy pozytywnej (True positive) (False negative) Należy do FP TN klasy negatywnej (False positive) (True negative) Tabela 1.1: Macierz konfuzji dla dychotomicznego zadania klasyfikacji. się w następujący sposób: TP = I(Ô(xn) =+1)I(yn =+1), (1 FN = I(Ô(xn) = 1) I(yn =+1), (1 8/13
9 Wskaźniki do oceny jakości ROZDZIAŁ klasyfikacji 1. WSTĘP dla dwóch klas błąd I rodzaju: F P rate = błąd II rodzaju: F N rate = F P F P + T N F N F N + T P gdzie TNrate oznacza wskaźnik specyficzności (znamienności, ang. specificity), nazywa natomiast TPrate nazywany jest w literaturze wskaźnikiem czułości (ang. sensitivity), b również wskaźnikiem TN (ang. TN rate), i definiuje się go w następujący sposób: TN TNrate = TN + FP, (1. też wskaźnikiem TP (ang. TP rate), i wyrażony jest wzorem: TP TPrate = TP + FN. (1. Zaklasyfikowany Zaklasyfikowany do klasy pozytywnej do klasy negatywnej Należy do TP FN klasy pozytywnej (True positive) (False negative) Należy do FP TN klasy negatywnej (False positive) (True negative) Tabela 1.1: Macierz konfuzji dla dychotomicznego zadania klasyfikacji. GMean: GMean = T P rate T N rate Wartości TP (ang. true positive), FN (ang. false negative), FP (ang. false positive), T (ang. true negative), stanowią elementy macierzy konfuzji (ang. confusion matrix, Tab 1.1). Macierz konfuzji, nazywana również macierzą kontyngencji, określa, w jaki spo klasyfikowane były obiekty z poszczególnych klas. Poszczególne pozycje macierzy defini się w następujący sposób: TP = I(Ô(xn) =+1)I(yn =+1), (1. FN = I(Ô(xn) = 1) I(yn =+1), (1. 9/13
10 Krzywa ROC i wskaźnik AUC Krzywa ROC obrazuje zależność pomiędzy wskaźnikami T P rate i F P rate. Bardzo ważnym wskaźnikiem do oceny klasyfikatorów jest AUC. Posiada on interpretację pola pod krzywą ROC. Okazuje się, że da się ją wyznaczyć ze wzoru: AUC = 1 2 (T P rate + T N rate ) 10/13
11 Krzywa ROC i wskaźnik AUC Rzeczywista Predykowana ID Wartość Wartość Klasy Klasy Dla rozpatrywanych danych wyznacz: Acc; T P rate ; T N rate ; F P rate ; F N rate ; AUC; GMean; 11/13
12 Metodyka oceny jakości modeli klasyfikacyjnych Podział procentowy: Zakładamy, że pewien procent obserwacji przeznaczymy na testowanie; Losujemy obserwacje bez zwracania aby osiągnąć pożądany procent obserwacji; Model uczymy na pozostałych obserwacjach; Oceniamy jakość modelu na wylosowanych danych; Walidacja krzyżowa. Procedura leave-one-out: Szczególny przypadek walidacji krzyżowej z podziałem na tyle podzbiorów, ile jest obserwacji; 12/13
13 zbiorze sk adajπcym sií N 1czÍúci i przetestowaniu go na N-tej, nie wykor Íúci. Walidacja Istotπ tej metodyki krzyżowa testowania jest to, øe wkaødym kroku proces testowa j czíúci zbioru, a kaøda obserwacja ze zbioru bídzie dok adnie raz przetestowana Przyk ad dzia ania metody walidacji krzyøowej (dla 4 foldów) obrazuje rysunek wszym kroku () klasyfikator jest uczony z wykorzystaniem elementów 1,2,3 estowanie odbywa sií na elemencie 4 (kolor czerwony). W nastípnym kroku brany jest zbiór, który nie by jeszcze testowany, przyk adowo ten o indeksie 3 13/13
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta
Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Ocena dokładności diagnozy
Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy
ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F
ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 5 T 7 T 5 T 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator ZeroR będzie zawsze odpowiadał T niezależnie
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?
Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Wprowadzenie do klasyfikacji
Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa.
Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa. Kwadratowa analiza dyskryminacyjna Przykład analizy QDA Czasem nie jest możliwe rozdzielenie
Krzywe ROC i inne techniki oceny jakości klasyfikatorów
Krzywe ROC i inne techniki oceny jakości klasyfikatorów Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 20 maja 2009 1 2 Przykład krzywej ROC 3 4 Pakiet ROCR Dostępne metryki Krzywe
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Jakość procedury klasyfikacyjnej:
Jakość procedury klasyfikacyjnej: poglądowa interpretacja i szacowanie możliwości poprawy na podstawie charakterystyki ROC Maciej Górkiewicz mygorkie@cyf-kr.edu.pl Uniwersytet Jagielloński w Krakowie Collegium
KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA
KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Krzywa ROC (Receiver Operating Characteristic) jest narzędziem do
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska
Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska Wykład dla spec. Mgr TWO Poznań 2010 dodatek 1 Ocena wiedzy klasyfikacyjnej wykład dla
Eksploracja danych OCENA KLASYFIKATORÓW. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych OCENA KLASYFIKATORÓW Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 16 listopada 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
WYKŁAD 2. Problem regresji - modele liniowe
Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
Zastosowanie teorii detekcji sygnałów do analizy rzetelności systemu obserwacyjnego ARGOS Michał Modzelewski Jolanta Pisarek
Zastosowanie teorii detekcji sygnałów do analizy rzetelności systemu obserwacyjnego ARGOS Michał Modzelewski Jolanta Pisarek Instytut Badań Edukacyjnych Aplikacja komputerowa ARGOS przygotowana w oparciu
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
Modelowanie interakcji helis transmembranowych
Modelowanie interakcji helis transmembranowych Witold Dyrka, Jean-Christophe Nebel, Małgorzata Kotulska Instytut Inżynierii Biomedycznej i Pomiarowej, Politechnika Wrocławska Faculty of Computing, Information
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
2. Ocena dokładności modelu klasyfikacji:
Spis treści: 1. Klasyfikacja... 1 2. Ocena dokładności modelu klasyfikacji:...1 2.1. Miary dokładności modelu...2 2.2. Krzywe oceny...2 3. Wybrane algorytmy...3 3.1. Naiwny klasyfikator Bayesa...3 3.2.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Przykładowa analiza danych
Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór
OCENA KLASYFIKACYJNYCH MODELI DATA MINING (wybrane miary oceny algorytmów uczenia maszynowego)
OCENA KLASYFIKACYJNYCH MODELI DATA MINING (wybrane miary oceny algorytmów uczenia maszynowego) Miary oceny klasyfikacyjnych modeli uczenia maszynowego dzielimy przede wszystkim na parametry oceny oraz
ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH
Przetwarzanie dźwięków i obrazów ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH mgr inż. Kuba Łopatka, p. 628 klopatka@sound.eti.pg.gda.pl Plan wykładu 1. Wprowadzenie 2. Zasada rozpoznawania sygnałów 3. Parametryzacja
Barycentryczny układ współrzędnych
SkaiWD Laboratorium 2 Barycentryczny układ współrzędnych Iwo Błądek 21 marca 2019 1 Barycentryczny układ współrzędnych Podstawowa wiedza została przekazana na wykładzie. W tej sekcji znajdują się proste
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej
Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej Podstawy matlaba cz.ii Funkcje Dotychczas kod zapisany w matlabie stanowił skrypt który pozwalał na określenie kolejności wykonywania
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Wprowadzenie. Data Science Uczenie się pod nadzorem
Wprowadzenie Wprowadzenie Wprowadzenie Wprowadzenie Machine Learning Mind Map Historia Wstęp lub uczenie się z przykładów jest procesem budowy, na bazie dostępnych danych wejściowych X i oraz wyjściowych
Priorytetyzacja przypadków testowych za pomocą macierzy
Priorytetyzacja przypadków testowych za pomocą macierzy W niniejszym artykule przedstawiony został problem przyporządkowania priorytetów do przypadków testowych przed rozpoczęciem testów oprogramowania.
Popularne klasyfikatory w pakietach komputerowych
Popularne klasyfikatory w pakietach komputerowych Klasyfikator liniowy Uogólniony klasyfikator liniowy SVM aiwny klasyfikator bayesowski Ocena klasyfikatora ROC Lista popularnych pakietów Klasyfikator
ZESPOŁY KLASYFIKATORÓW SVM DLA DANYCH NIEZBALAN-
Politechnika Wrocławska Wydział Informatyki i Zarządzania Instytut Informatyki Rozprawa doktorska ZESPOŁY KLASYFIKATORÓW SVM DLA DANYCH NIEZBALAN- SOWANYCH Maciej Zięba Promotor: prof. dr hab. inż. Jerzy
Metody Odkrywania Wiedzy 12L Temat analityczny: Detekcja wczesnych stadiów raka piersi Dokumentacja projektu
Metody Odkrywania Wiedzy 12L Temat analityczny: Detekcja wczesnych stadiów raka piersi Dokumentacja projektu Tomasz Bawej Łukasz Trzaska 12 czerwca 2012 1 Opis zadania Niniejszy dokument dotyczy analitycznego
Statystyczna analiza Danych
Statystyczna analiza Danych Dla bioinformatyków Wykład pierwszy: O testowaniu hipotez Plan na dziś Quiz! Cele wykładu Plan na semestr Kryteria zaliczenia Sprawy organizacyjne Quiz (15 minut) Jakie znasz
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Metody eksploracji danych 4. Klasyfikacja
Metody eksploracji danych 4. Klasyfikacja Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Wprowadzenie Ocena klasyfiaktorów Regresja Logistyczna Zagadnienie klasyfikacji Dane: Zbiór uczący: D = {(x
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Laboratorium 4. Naiwny klasyfikator Bayesa.
Laboratorium 4 Naiwny klasyfikator Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Regresja logistyczna
Regresja logistyczna Zacznijmy od danych dotyczących tego czy studenci zostali przyjęci na studia. admissions
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Zaawansowana eksploracja danych: Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska
Zaawansowana eksploracja danych: Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska Wykład dla spec. Mgr TPD Poznań 2008 popr. 2010 1 Ocena
KATEDRA SYSTEMÓW MULTIMEDIALNYCH. Inteligentne systemy decyzyjne. Ćwiczenie nr 12:
KATEDRA SYSTEMÓW MULTIMEDIALNYCH Inteligentne systemy decyzyjne Ćwiczenie nr 12: Rozpoznawanie mowy z wykorzystaniem ukrytych modeli Markowa i pakietu HTK Opracowanie: mgr inż. Kuba Łopatka 1. Wprowadzenie
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody
Laboratorium 6. Indukcja drzew decyzyjnych.
Laboratorium 6 Indukcja drzew decyzyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Grupowanie stron WWW. Funkcje oceniające.
Eksploracja zasobów internetowych Wykład 6 Grupowanie stron WWW. Funkcje oceniające. mgr inż. Maciej Kopczyński Białystok 2015 Wstęp Rolą algorytmów grupujących jest pogrupowanie dokumentów na bazie ich
BADANIE JAKOŚCI PREDYKCYJNEJ SEGMENTACJI RYNKU
STUDIA INFORMATICA 2016 Volume 37 Number 1 (123) Łukasz PAŚKO, Galina SETLAK Politechnika Rzeszowska, Zakład Informatyki BADANIE JAKOŚCI PREDYKCYJNEJ SEGMENTACJI RYNKU Streszczenie. Celem pracy jest ocena
QualitySpy moduł persystencji
Projektowanie oprogramowania Instytut Informatyki, Automatyki i Robotyki, Politechnika Wrocławska QualitySpy moduł persystencji Testy akceptacyjne Nazwa pliku: /QualitySpy/modules/qualityspypersistence/src/test/java/pl/wroc/pwr/qualityspy/persistence
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Drzewa Decyzyjne, cz.2
Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Laboratorium 5. Adaptatywna sieć Bayesa.
Laboratorium 5 Adaptatywna sieć Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>.
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów
Odczarowujemy modele predykcyjne Teoria i Praktyka
Odczarowujemy modele predykcyjne Teoria i Praktyka Mariusz Gromada, MathSpace.PL mariuszgromada.org@gmail.com 1 Kilka słów o mnie 1999 2004 Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych
Uwaga: szarych kropek po pokolorowaniu nie uwzględniaj w klasyfikowaniu kolejnych szarych.
Inteligencja obliczeniowa stud. niestac. Laboratorium 4: Zadanie klasyfikacji poznanie trzech algorytmów klasyfikujących: knn, NaiveBayes, drzewo decyzyjne. Przy pomnijmy sobie bazę danych z irysami. Na
Część II. Zadanie 3.2. (0 3)
Zadanie 3.2. (0 3) Zdający opracowuje i przeprowadza wszystkie etapy prowadzące do otrzymania poprawnego rozwiązania problemu: od sformułowania specyfikacji problemu po testowa nie rozwiązania (5.7.).
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
PRZEDMIOTOWY SYSTEM OCENIANIA GEOGRAFIA 2017/2018
PRZEDMIOTOWY SYSTEM OCENIANIA GEOGRAFIA 2017/2018 Wiesława Polanin Przedmiotowy System Oceniania /geografia / PSO polega na rozpoznaniu przez nauczyciela poziomu postępów w opanowywaniu przez ucznia wiadomości
Zastosowanie rozmytych map kognitywnych do badania scenariuszy rozwoju jednostek naukowo-dydaktycznych
Konferencja Systemy Czasu Rzeczywistego 2012 Kraków, 10-12 września 2012 Zastosowanie rozmytych map kognitywnych do badania scenariuszy rozwoju jednostek naukowo-dydaktycznych Piotr Szwed AGH University
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp
Wstęp Problem uczenia się pod nadzorem, inaczej nazywany uczeniem się z nauczycielem lub uczeniem się na przykładach, sprowadza się do określenia przydziału obiektów opisanych za pomocą wartości wielu
Podstawowe modele probabilistyczne
Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH
Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest
PROJEKT Z BAZ DANYCH
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PROJEKT Z BAZ DANYCH System bazodanowy wspomagający obsługę sklepu internetowego AUTOR: Adam Kowalski PROWADZĄCY ZAJĘCIA: Dr inż. Robert Wójcik, W4/K-9 Indeks: