LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA)
|
|
- Zofia Smolińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA)
2 1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie krzywej płynięcia dla dwóch różnych elastomerów (NR oraz SBR) przy użyciu mikromieszarki firmy Brabender. 2. Wstęp teoretyczny: Reologia- jest nauką o właściwościach mechanicznych materiałów rzeczywistych. Właściwości te są określane przez związki między oddziaływaniami zewnętrznymi (siłami obciążającymi ciało) a wewnętrznymi reakcjami materiału (odkształceniami ciała). Innymi słowy reologia zajmuje się zagadnieniami związanymi z odkształceniami i płynięciem materiałów. Polimery są materiałami, które wykazują złożone właściwości ciał stałych i cieczy w skali czasu. Właściwości te ujawniają się praktycznie m.in. w procesach przetwórstwa polimerów. Właściwości reologiczne kauczuku czy mieszanek kauczukowych mają istotne znaczenie dla określania parametrów przetwórstwa w przemyśle gumowym, jak uplastycznianie, sporządzanie mieszanek kauczukowych, wytłaczanie, kalandrowanie, napełnianie form metodą prasowania, przetłaczania czy wtrysku. Płynięcie cieczy polega na przemieszczaniu jej cząstek pod wpływem przyłożonych sił. Siłą przeciwstawiającą się ruchowi cieczy jest tarcie wewnętrzne, tym większe, im większa jest szybkość wzajemnego przemieszczania cząstek. Prawo Newtona wyraża liniową zależność między naprężeniem stycznym a szybkością ścinania. Obowiązuje ona dla wielu płynów min.: dla powietrza (i w zasadzie wszystkich gazów), wody, benzyny, ciekłych metali. Ogólnie można stwierdzić, że ta zależność jest słuszna dla wszystkich gazów oraz cieczy i roztworów o małej masie cząsteczkowej. Wykres zależności τ=f(γ) nazwano krzywą płynięcia. W przypadku płynu newtonowskiego zależność ta jest prostoliniowa, przechodząca przez początek układu współrzędnych. Istnieje jednak wiele płynów, które nie wykazują takiej prostoliniowej zależności między naprężeniem stycznym a szybkością ścinania np.: stopione polimery, farby, lakiery, materiały budowlane (glina asfalt), żywność (sery, dżemy, czekolada). Układy tego typu nazywane są płynami nienewtonowskimi. Możemy podzielić je na dwie grupy: - płyny które nie mają granicy płynięcia, dla których krzywa płynięcia przechodzi przez początek układu współrzędnych ale nie jest linią prostą (np. stopione polimery)
3 - płyny które mają granicę płynięcia, które płyną dopiero po przekroczeniu pewnego granicznego naprężenia τ 0 a przy naprężeniach mniejszych zachowują się jak sprężyste ciała stałe. (np. zawiesiny polimerów, farby i lakiery, glina, asfalt) Płyny należące do pierwszej grupy można podzielić na dwa typy: - płyny rozrzedzane ścinaniem, dla których naprężenie styczne rośnie wolniej niż liniowo wraz ze zwiększeniem się szybkości ścinania. - płyny zagęszczane ścinaniem, dla których naprężenie styczne rośnie szybciej niż liniowo, ze zwiększeniem się szybkości ścinania. τ τ γ Krzywe płynięcia płynów nienewtonowskich: 1,2,3- płyny, które nie mają granicy płynięcia 1- newtonowski 2- rozrzedzany ścinaniem 3- zagęszczany ścinaniem 4,5,6- płyny, które mają granicę płynięcia τ 0 4- Binghama 5- rozrzedzany ścinaniem 6- zagęszczany ścinaniem Lepkość niektórych- stosunkowo rzadko spotykanych- układów polimerowych zależy też od czasu odkształcenia. Są to tzw. płyny reologicznie niestabilne, tiksotropowe lub antytiksotropowe. Zjawisko tiksotropii polega na tym, że w warunkach izotermicznego
4 przepływu płynu, który uprzednio znajdował się dłuższy czas w spoczynku, przy stałej szybkości ścinania, naprężenie styczne maleje odwracalnie z upływem czasu. Natomiast zjawisko antytiksotropii charakteryzuje się tym, że w tych samych warunkach naprężenie styczne zwiększa się odwracalnie z upływem czasu. Tak więc, lepkość płynów tiksotropowych maleje z upływem czasu, natomiast płynów antytiksotropowych zwiększa się. Charakterystyczną pętlę histerezy (rys ) dla układu tiksotropowego można otrzymać dokonując pomiaru zależności naprężenia stycznego od szybkości ścinania. Wykonuje się to stale zwiększając szybkość ścinania od zera do pewnej wartości maksymalnej i natychmiast po jej osiągnięciu, zmniejszając szybkość ścinania do zera. W wyniku przeprowadzenia podobnego pomiaru dla układów antytiksotropowych powstaje także histereza krzywej płynięcia, jednak jej przebieg będzie odmienny. Zjawisko tiksotropii jest związane ze zjawiskiem rozrzedzania ścinaniem, natomiast antytiksotropii ze zjawiskiem zagęszczania ścinaniem. Różnica polega na tym, że w przypadku płynów reologicznie niestabilnych osiąganie charakterystycznego dla danej szybkości ścinania stanu równowagi reologicznej (ustalenia się lepkości) zachodzi bardzo wolno, tak że nie można tego śledzić za pomocą dostępnych przyrządów. Polimery są w większości ciałami lepkosprężystymi, jednak wiele praktycznych zagadnień przetwórstwa tworzyw można rozwiązać traktując je jako ciała czysto lepkie, przy czym oczywiście nienewtonowskie i zazwyczaj rozrzedzane ścinaniem. Ciecze nienewtonowskie (czysto lepkie), których lepkość jest funkcją szybkości ścinania nazwano uogólnionymi cieczami newtonowskimi. Uogólnione prawo Newtona: τ = ηγ gdzie η =const.
5 Model potęgowy Ostwalda-de Waele Jednym z podstawowych modeli empirycznych jest model potęgowy Ostwalda-De Waele. Podstawą do opracowania tego modelu był fakt, że dla wielu tworzyw, w szerokim zakresie szybkości ścinania, w układzie podwójnie logarytmicznym, występuje liniowa zależność lepkości od szybkości ścinania. Najprostszym matematycznym modelem reologicznym, opisującym krzywą płynięcia płynów w zakresie pośrednich szybkości ścinania jest poniższe równanie: τ = kγ n gdzie: τ naprężenie styczne k- współczynnik konsystencji n- wykładnik płynięcia Lepkość można wyrazić natomiast następującym wzorem: η=kγ n-1 Model potęgowy Ostwalda-de Waele jest najprostszym modelem reologicznym uogólnionej cieczy newtonowskiej. Istotną jego wadą jest jego sprzeczność z wynikami badań reologicznych, przy bardzo małych i bardzo dużych szybkościach ścinania: η dla γ 0 η 0 dla γ Lepkosprężystość oznacza jednocześnie występowanie właściwości lepkich i sprężystych. Właściwości lepkie są związane z występowaniem odkształceń nieodwracalnych (przepływem), których stopień - pod działaniem siły - ciągle zwiększa się z upływem czasu. Lepkość jest miarą oporów stawianych przez materiał podczas przepływu. Właściwości sprężyste są związane z występowaniem odkształceń sprężystych (odwracalnych), które zanikają samorzutnie, natychmiast po ustaniu działania siły. Ogólnie można stwierdzić, że im szybsze jest odkształcenie tym materiał zachowuje się bardziej sprężyście, a im odkształcenie jest wolniejsze, tym materiał jest bardziej lepki. Właściwości lepkosprężyste polimerów ujawniają się i można je obserwować w wielu charakterystycznych zjawiskach:
6 Efekt Weissenberga Polega na nietypowym kształtowaniu się powierzchni swobodnej cieczy w przepływie Couette a. Jest to przepływ ścinający między dwoma współosiowymi cylindrami, z których jeden wykonuje ruch obrotowy. Podczas takiego przepływu obserwuje się w przypadku stopionych polimerów (rys.3.1.a), charakterystyczne podnoszenie powierzchni swobodnej przy obracającym się cylindrze wewnętrznym. To zjawisko pojawia się również np.: przy mieszaniu farb czy lakierów. Natomiast nie występuje w przypadku cieczy newtonowskiej, kiedy to powierzchnia swobodna przy pominięciu sił bezwładności- pozostaje płaska (rys.3.1.b). Efekt Weissenberga jest wynikiem generowania podczas przepływu ścinającego dodatkowych naprężeń, a mianowicie naprężeń normalnych. Widać to wyraźnie na rys. 3.2., na którym przedstawiono przepływ ścinający między równoległymi tarczami i towarzyszące temu przepływowi zjawisko nierównomiernego kształtowania się wysokości słupa cieczy w rurkach manometrycznych, dołączonych do jednej z tych tarcz. Efekt Barusa Polega na rozszerzaniu się strugi cieczy wypływającej z kapilary. Charakteryzowany jest on zwykle stosunkiem średnicy strugi d do średnicy kapilary D, czyli tzw. stopniem rozszerzenia B=d/D. Efekt Barusa (podobnie jak Weissenberga) jest w znacznym stopniu związany z występowaniem przy przepływie ścinającym niezerowych różnic naprężeń normalnych N1 i N2, czyli jest tzw. efektem naprężeń normalnych. Źródłem naprężeń normalnych są
7 odkształcenia kłębków makrocząsteczek w czasie płynięcia. W polimerze stopionym kłębki przyjmują rozmiary niezakłócone i przenikają się wzajemnie, powstają splątania łańcuchów. Podczas przepływu kłębki ulegają rozciągnięciu w kierunku ruchu i skurczeniu w kierunku prostopadłym. Po opuszczeniu ustnika siły normalne powodują rozszerzenie strugi, a równoległe kurczenie. Efekty czasowe (statyczne i dynamiczne) Odnoszą się do występowania zależności czasowej naprężenia i odkształcenia materiałów. Mogą się one pojawić w warunkach statycznych lub dynamicznych. Statyczne efekty czasowe - obejmują zjawiska zmiany z upływem czasu naprężenia materiału, przy stałym odkształceniu (relaksacja naprężeń) lub zmiany odkształcenia przy stałym naprężeniu (pełzanie odkształceń). Dynamiczne efekty czasowe - powstają przy dynamicznych (oscylacyjnych) obciążeniach (lub odkształceniach) materiału i polegają na występowaniu czasowej różnicy między obciążeniem i odkształceniem. Miarą lepkosprężystego zachowania się materiału w danym procesie przetwórczym jest stosunek czasu charakterystycznego materiału do czasu charakterystycznego tego procesu (czasu trwania). Określa to tzw. liczba Debory De=λ/t p gdzie: De - liczba Debory; λ czas charakterystyczny materiału; t p czas charakterystyczny procesu. Typowy polimer, którego czas charakterystyczny jest równy 1 s (λ = 1 s), będzie zachowywał się w procesie przetwórczym w różny sposób, w zależności od tego jak długo będzie trwał proces. Przy bardzo długim czasie charakterystycznym procesu (t p ), liczba Debory będzie dążyła do zera (De 0) i materiał będzie zachowywał się jak lepka ciecz. Natomiast przy bardzo krótkim czasie procesu (t p 0) liczba Debory będzie bardzo duża (De ) i ten sam materiał będzie zachowywał się jak sprężyste ciało stałe.
8 Czas charakterystyczny wielu przepływów w przetwórstwie tworzyw wynosi 0,1 1 s, co oznacza, że dla λ = 1 s De = Tak więc polimery wykazują w procesach przetwórczych zarówno właściwości lepkie, jak i sprężyste, a więc są lepkosprężyste. 3. Zasada działania i budowa urządzenia: Aparatura składa się z następujących części składowych stacja dokująca (zespół napędowy) mikromieszarka termostat komputer PC z oprogramowaniem Mikromieszarka składa się z: komory mieszania rotorów o zróżnicowanej geometrii typu Cam leja zasypowego tłoka dociskowego czujnika temperatury masy czujnika temperatury komory Komora mikromieszarki jest ogrzewana olejem silikonowym podawanym z termostatu. Urządzenie kontrolno pomiarowe wraz ze specjalistycznym oprogramowaniem umożliwia monitorowanie następujących parametrów: moment obrotowy, temperatura masy oraz temperatura komory. Zespół napędowy Lab-Station pozwala na płynną regulację prędkości obrotowej rotorów (od 0 do 275 obr/min) 4. Wykonanie pomiaru: 1. Włączyć stację główną Lab-Station 2. Włączyć mikromieszarkę 3. Włączyć termostat. 4. Włączyć komputer 5. Włączyć program WinMix 6. Ustalić temperaturę w programie WinMix (T= C) 7. Po ustaleniu się temperatury należy ustawić żądaną liczbę obrotów (100 obr/min)
9 8. Stopniowo wprowadzać próbkę kauczuku (m~60g) do komory mieszania. 9. Po wstępnym czasie uplastyczniania (t=10min) przystępujemy do pomiaru. 10. Odczytać wartości momentów obrotowych przy różnych szybkościach obrotowych rotora, przy v= 5,10,15, 20,30,45,60,75,100 obr/min. Jako wynik przyjąć wartość momentu obrotowego po 2 min pomiaru. 11. Po zakończeniu badania należy wyczyścić aparat (komorę mieszania, rotory oraz tłok dociskowy). Czynności te należy przeprowadzić przy użyciu narzędzi wykonanych z mosiądzu. 5. Opracowanie wyników badań. Należy obliczyć następujące wielkości ze wzorów: 40,8 36 1,14 M M v v gdzie: τ- naprężenie ścinające [Pa] η- lepkość pozorna [Pas] γ- szybkość ścinania [s -1 ] M- moment obrotowy [Nm] v- liczba obrotów rotora [obr/s] Następnie należy sporządzić wykres zależności τ=f(γ) i określić do jakiej kategorii reologicznej należy badany polimer. Sprawdzić czy własności reologiczne badanego polimeru można opisać równaniem Ostwalda-de Waele, sporządzając wykres zależności ln τ = f(ln γ)-krzywa płynięcia. Następnie sporządzić wykres zależności ln η = f(ln γ)- krzywa lepkości. Z wykresu zależności ln η=f(ln γ) wyznaczyć parametry reologiczne równania τ = kγ n n wykładnik płynięcia (miara nienewtonowskiego zachowania się płynu), k-współczynnik konsystencji (miara lepkości analizowanego materiału): n=1+a k=e b a - współczynnik kierunkowy funkcji ln η=f(ln γ)
10 b wyraz wolny funkcji ln η=f(ln γ) e - liczba Eulera ~ 2,72 Należy pamiętać, że dokładna ocena przebiegu krzywych płynięcia i lepkości, stanowi jedno z podstawowych źródeł informacji na temat przetwarzalności tworzyw polimerowych. 6. Sprawozdanie Sprawozdanie powinno zawierać wstęp teoretyczny, sposób wykonania ćwiczenia, opis budowy urządzenia, wyniki pomiarów, wnioski
Właściwości reologiczne
Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:
Bardziej szczegółowomodele ciał doskonałych
REOLOGIA - PODSTAWY REOLOGIA Zjawiska odkształcenia i płynięcia materiałów jako przebiegi reologiczne opisuje się przez przedstawienie zależności pomiędzy działającymi naprężeniami i występującymi przy
Bardziej szczegółowoPłyny newtonowskie (1.1.1) RYS. 1.1
Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w
Bardziej szczegółowodr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG
7.WŁAŚCIWOŚCI LEPKOSPRĘŻYSTE POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej
Bardziej szczegółowoWŁAŚCIWOŚCI REOLOGICZNE CIECZY NIENIUTONOWSKICH
Ćwiczenie 2: WŁAŚCIWOŚCI REOLOGICZNE CIECZY NIENIUTONOWSKICH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z budową i działaniem wiskozymetru rotacyjnego oraz wyznaczenie krzywych płynięcia wybranych
Bardziej szczegółowoRHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej
RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej Zadania w zakresie badań i rozwoju Roztwory polimerowe stosowane są w różnych
Bardziej szczegółowoRHEOTEST Medingen Reometr RHEOTEST RN - Artykuły farmaceutyczne i kosmetyczne.
RHEOTEST Medingen Reometr RHEOTEST RN - Artykuły farmaceutyczne i kosmetyczne. Zadania pomiarowe w pracach badawczo-rozwojowych Głównym przedmiotem zainteresowań farmacji i kosmetyki w tym zakresie są
Bardziej szczegółowoFizyczne właściwości materiałów rolniczych
Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka
Bardziej szczegółowoPOLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW
POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW PRZETWÓRSTWO TWORZYW SZTUCZNYCH I GUMY Lab 8. Wyznaczanie optimum wulkanizacji mieszanek kauczukowych na reometrze Monsanto oraz analiza
Bardziej szczegółowoĆWICZENIE. Oznaczanie szybkości relaksacji naprężeń wulkanizatów
ĆWICZENIE Oznaczanie szybkości relaksacji naprężeń wulkanizatów 1 1. CEL ĆWICZENIA Celem dwiczenia pn. Oznaczanie szybkości relaksacji naprężeo wulkanizatów jest określenie wpływu rodzaju węzłów w sieci
Bardziej szczegółowoSprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia
Sprawozdanie z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie Temat ćwiczenia Badanie właściwości reologicznych cieczy magnetycznych Prowadzący: mgr inż. Marcin Szczęch Wykonawcy
Bardziej szczegółowoProjektowanie elementów z tworzyw sztucznych
Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu
Bardziej szczegółowoPrędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
Bardziej szczegółowoLepkosprężystość. 2. Tłumik spełniający prawo Newtona element doskonale lepki T T
Kiedy materiał po przyłożeniu naprężenia lub odkształcenia zachowuje się trochę jak ciało elastyczne a trochę jak ciecz lepka to mówimy o połączeniu tych dwóch wielkości i nazywamy lepkospreżystością.
Bardziej szczegółowoParametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym
Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym Justyna Kołodziejska Zakład Technologii Postaci Leku
Bardziej szczegółowoZjawiska w sąsiedztwie krawędzi stożka Ustawienie stożka pomiarowego w stosunku do płytki REOMETRY KAPILARNE...
SPIS TREŚCI WYKAZ WAŻNIEJSZYCH OZNACZEŃ... 7 1. PRZEDMOWA... 9 2. WPROWADZENIE DO REOLOGII I REOMETRII... 11 2.1. Definicja reologii... 11 2.2. Historia reologii... 12 2.3. Kierunki badań reologicznych...
Bardziej szczegółowoZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,
Bardziej szczegółowoReologia w technologii farmaceutycznej
Reologia w technologii farmaceutycznej dr n. farm. Tomasz Osmałek Katedra i Zakład Technologii Postaci Leku Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu Podstawy reologii Panta rhei kai ouden
Bardziej szczegółowoNauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Bardziej szczegółowoRHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary
RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary Zadania pomiarowe w pracach badawczo-rozwojowych Właściwości reologiczne materiałów smarnych, które determinuje sama ich nazwa, mają główny
Bardziej szczegółowoPOLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
Bardziej szczegółowoWYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa
Bardziej szczegółowomożliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych
RHEOTEST Medingen Reometr RHEOTEST RN służący do reologicznej oceny systemów dwuskładnikowych na przykładzie lakierów i mas uszczelniających przy pomocy testów oscylacji Zadania podstawowe Systemy dwuskładnikowe
Bardziej szczegółowoMIESZANIE PŁYNÓW SPOŻYWCZYCH O WŁAŚCIWOŚCIACH REOLOGICZNYCH ZMIENNYCH W CZASIE
KATEDRA INŻYNIERII I APARATURY PRZEMYSŁU SPOŻYWCZEGO WYDZIAŁ TECHNOLOGII ŻYWNOŚCI UNIWERSYTET ROLNICZY IM. HUGONA KOŁŁĄTAJA W KRAKOWIE MIESZANIE PŁYNÓW SPOŻYWCZYCH O WŁAŚCIWOŚCIACH REOLOGICZNYCH ZMIENNYCH
Bardziej szczegółowoQ v ( ) f dr. Q d. Q dr. dv w , = n dr. v n. dv w. d n. v d
TECHNIKA I TECHNOLOGIA st. kpt. mgr inż. Joanna RAKOWSKA Zakład-Laboratorium Badań Chemicznych i Pożarowych ZJAWISKA REOLOGICZNE W PIANOTWÓRCZYCH ŚRODKACH GAŚNICZYCH Część II Metody badań właściwości reologicznych
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą
Bardziej szczegółowoWłaściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii)
Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii) 1. Cel ćwiczenia - poznanie metod badań reologicznych umożliwiających analizę zachowania się różnego rodzaju substancji
Bardziej szczegółowodr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG
3. POLIMERY AMORFICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego
Bardziej szczegółowoPEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,
Bardziej szczegółowoWłaściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii)
Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii) 1. Cel ćwiczenia - poznanie metod badań reologicznych umożliwiających analizę zachowania się różnego rodzaju substancji
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Bardziej szczegółowoOsteoarthritis & Cartilage (1)
Osteoarthritis & Cartilage (1) "Badanie porównawcze właściwości fizykochemicznych dostawowych Kwasów Hialuronowych" Odpowiedzialny naukowiec: Dr.Julio Gabriel Prieto Fernandez Uniwersytet León,Hiszpania
Bardziej szczegółowoAerodynamika i mechanika lotu
Płynem nazywamy ciało łatwo ulegające odkształceniom postaciowym. Przeciwieństwem płynu jest ciało stałe, którego odkształcenie wymaga przyłożenia stosunkowo dużego naprężenia (siły). Ruch ciała łatwo
Bardziej szczegółowoLaboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
Bardziej szczegółowoWykład 8: Lepko-sprężyste odkształcenia ciał
Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,
Bardziej szczegółowoReologiczne właściwości cieczy
Reologiczne właściwości cieczy Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Biomechaniczna przyczyna miażdżycy Jarosław Wasilewski, Tomasz Kiljański Reologia nauka zajmująca się badaniem
Bardziej szczegółowoDefi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Bardziej szczegółowoPOLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowoNieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoLaboratorium syntezy, charakteryzacji i przetwórstwa materiałów funkcjonalnych. Podstawy reologii ceramicznych mas lejnych
Laboratorium syntezy, charakteryzacji i przetwórstwa materiałów funkcjonalnych Podstawy reologii ceramicznych mas lejnych Warszawa 2011 1 1. Reologia Reologia (od greckich słów: rheo płynąć i logos nauka)
Bardziej szczegółowoMECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Bardziej szczegółowoPROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Bardziej szczegółowoKRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,
Bardziej szczegółowoOddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Bardziej szczegółowoMechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, Spis treści. Wykaz waŝniejszych oznaczeń 8 Przedmowa
Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, 2010 Spis treści Wykaz waŝniejszych oznaczeń 8 Przedmowa 1. POMIAR CIŚNIENIA ZA POMOCĄ MANOMETRÓW HYDROSTATYCZNYCH 11 1.1. Wprowadzenie 11 1.2.
Bardziej szczegółowoLepkosprężystość, Pełzanie i badania oscylacyjne. Zachowanie lepkosprężyste. Zachowanie lepkosprężyste. Powody lepkosprężystości
Lepkosprężystość, Pełzanie i badania oscylacyjne Szkolenie z reologii 1 Zachowanie lepkosprężyste Powody lepkosprężystości Splątanie Formowanie sieci Roztwory polimerów Roztopione polimery Emulsje Zawiesiny
Bardziej szczegółowoWYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
Bardziej szczegółowo. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Bardziej szczegółowoWykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
Bardziej szczegółowoMAGNETOREOLOGICZNE CIECZE ROBOCZE: MOŻLIWOŚCI KSZTAŁTOWANIA NIEKTÓRYCH WŁAŚCIWOŚCI UŻYTKOWYCH
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 12 14 maja 1999 r. Bogdan Wiślicki, Jan Holincki-Szulc Instytut Podstawowych Problemów Techniki PAN, Wojciech Lassota Instytut Pojazdów, Wydz. SiMR,
Bardziej szczegółowoLepkość asfaltów i europejskie metody jej badania
NAFTA-GAZ lipiec 2012 ROK LXVIII Elżbieta Trzaska Instytut Nafty i Gazu, Kraków Lepkość asfaltów i europejskie metody jej badania Wprowadzenie Mieszanki mineralno-asfaltowe stosowane do budowy nawierzchni
Bardziej szczegółowo[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
Bardziej szczegółowoSTATYCZNA PRÓBA ROZCIĄGANIA
STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowoTechnologia Materiałów Drogowych ćwiczenia laboratoryjne
Technologia Materiałów Drogowych ćwiczenia laboratoryjne prowadzący: dr inż. Marcin Bilski Zakład Budownictwa Drogowego Instytut Inżynierii Lądowej pok. 324B (bud. A2); K4 (hala A4) marcin.bilski@put.poznan.pl
Bardziej szczegółowoPodstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Bardziej szczegółowoSpis treści. Wprowadzenie... 9
Spis treści Wprowadzenie... 9 Rozdział pierwszy Wstęp... 14 Lepkość... 16 Lepkość w aspekcie reologii... 16 Reologia a ceramika... 17 Płynięcie... 17 Podsumowanie... 19 Rozdział drugi Podstawy reologii...
Bardziej szczegółowoWprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Bardziej szczegółowoZasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW
Zasady dynamiki Newtona. I. Jeżeli na ciało nie działają siły, lub działające siły równoważą się, to ciało jest w spoczynku lub porusza się ruchem jednostajnym. II. Jeżeli siły się nie równoważą, to ciało
Bardziej szczegółowoĆwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Bardziej szczegółowoTemat 1 (2 godziny): Próba statyczna rozciągania metali
Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności
Bardziej szczegółowo13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO
13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP
Bardziej szczegółowoWyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bardziej szczegółowoWYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,
Bardziej szczegółowoStatyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoPrzetwórstwo polimerów i reologia polskim oraz angielskim) Polymer processing and rheology Jednostka oferująca przedmiot
Nazwa pola Komentarz Nazwa (w języku Przetwórstwo polimerów i reologia polskim oraz angielskim) Polymer processing and rheology Jednostka oferująca przedmiot CBMiM PAN Liczba punktów ECTS 4 Sposób zaliczenia
Bardziej szczegółowoOleje smarowe - wyznaczanie charakterystyki reologicznej
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszyn Instrukcja do zajęć laboratoryjnych z przedmiotu: EKSPLOATACJA MASZYN Oleje smarowe - wyznaczanie charakterystyki reologicznej
Bardziej szczegółowoINSTRUKCJA DO CWICZENIA NR 5
INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić
Bardziej szczegółowoPomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i
Bardziej szczegółowoSpis treści. Wprowadzenie... 9
Spis treści Wprowadzenie... 9 Rozdział pierwszy Wstęp... 14 Lepkość... 16 Lepkość w aspekcie reologii... 16 Reologia a ceramika... 17 Płynięcie... 17 Podsumowanie... 19 Rozdział drugi Podstawy reologii...
Bardziej szczegółowo1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Bardziej szczegółowoBadania właściwości reologicznych wybranych powłok ochronnych stosowanych na formy i rdzenie piaskowe
ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 15 Special Issue 4/2015 47 52 10/4 Badania właściwości
Bardziej szczegółowoĆwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
Bardziej szczegółowoSpotkania z fizyka 2. Rozkład materiału nauczania (propozycja)
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.
Bardziej szczegółowoSTATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)
STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s
Bardziej szczegółowoSZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Bardziej szczegółowoM10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Bardziej szczegółowoJ. Szantyr Wykład 10 Stan naprężenia w płynie
J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych
Bardziej szczegółowoDYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Bardziej szczegółowoBADANIA WŁAŚCIWOŚCI REOLOGICZNYCH KEFIRÓW
Proceedings of ECOpole DOI: 10.2429/proc.2016.10(1)025 2016;10(1) Dorota MODZELEWSKA 1, Agnieszka DOŁHAŃCZUK-ŚRÓDKA 1 i Zbigniew ZIEMBIK 1 BADANIA WŁAŚCIWOŚCI REOLOGICZNYCH KEFIRÓW STUDIES OF KEFIR RHEOLOGICAL
Bardziej szczegółowoLepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Bardziej szczegółowoMateriały Reaktorowe. Właściwości mechaniczne
Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie
Bardziej szczegółowoMECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
Bardziej szczegółowoSPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
Bardziej szczegółowoLABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
Bardziej szczegółowoWYZNACZANIE LICZBY REYNOLDSA W POMIARACH REOMETRYCZNYCH. Arkadiusz Kloziński, Tomasz Sterzyński
Teka Kom. Bud. Ekspl. Masz. Elektrotech. Bud. OL PAN, 2008, 79 84 WYZNACZANIE LICZBY REYNOLDSA W POMIARACH REOMETRYCZNYCH Arkadiusz Kloziński, Tomasz Sterzyński Zakład Polimerów, Politechnika Poznańska
Bardziej szczegółowoWSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Bardziej szczegółowoLABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH
LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
Bardziej szczegółowoJ. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
Bardziej szczegółowoPUNKTY KRYTYCZNE W TECHNOLOGII KOSMETYKÓW 18 LISTOPAD 2014
PUNKTY KRYTYCZNE W TECHNOLOGII KOSMETYKÓW 18 LISTOPAD 2014 1 WPROWADZENIE Wczoraj i dziś wdrażania kosmetyków Lepsze maszyny Bardziej zaawansowane surowce Lepsze metody testowania Szybszy dostęp do wiedzy
Bardziej szczegółowoSTATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Bardziej szczegółowoPOLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Bardziej szczegółowoJ. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów
J. Szantyr -ykład Poważne wprowadzenie do Mechaniki Płynów Stany skupienia materii: ciała stałe płyny, czyli ciecze i gazy -Ciała stałe przenoszą obciążenia zewnętrzne w taki sposób, że ulegają deformacji
Bardziej szczegółowoPrawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo
Bardziej szczegółowo17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
Bardziej szczegółowo