Technika sensorowa. Wiadomości wstępne, charakterystyki czujników. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Technika sensorowa. Wiadomości wstępne, charakterystyki czujników. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel."

Transkrypt

1 Technika sensorowa Wiadomości wstępne, charakterystyki czujników dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

2 Literatura, źródła S.M. Sze, Semiconductor Sensors, John Wiley & Sons, Inc., 1994 J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors, MEMS and Smart Devices, John Wiley & Sons, LTD, 2001 W. Göpel, J. Hesse, J.N. Zemel, Sensors A Comprehensive Survey, VCH Verlagsgesellschaft mbh, 1989 T. Pisarkiewicz, Mikrosensory gazów, Wydawnictwa AGH, Kraków 2007 Wybrane sensory gazów. Przewodnik multimedialny: Materiały na stronie www laboratorium: 2

3 Organizacja zajęć Wykład - 30 h Laboratorium - 30 h prowadzący zajęcia: dr inż. Andrzej Brudnik dr inż. Wojciech Maziarz 3

4 Wykłady - terminy Wykład Temat Data 1 Zajęcia organizacyjne, wiadomości wstępne (definicje, charakterystyki, parametry, przykłady czujników itp) Kondycjonowanie sygnału sensorowego, interfejsy czujnikowe Czujniki wielkości mechanicznych Czujniki piezorezystancyjne Czujniki mikromechaniczne Czujniki płynów (przepływu, poziomu) Czujniki wilgotności Czujniki gazów Czujniki temperatury Czujniki optyczne Czujniki magnetyczne Bioczujniki

5 Laboratorium Strona www: Login: Hasło: (np. dostęp do dodatkowych materiałów) 5

6 Laboratorium - terminy Laborat orium Temat Data 1 Sprawdzian nr 1: 2 ćwiczenia z 1 serii Sala H-24, 7:45 rano! 2 Pierwsze ćwiczenie z 1 serii Drugie ćwiczenie z 1 serii Sprawdzian nr 2: 2 ćwiczenia z 2 serii Sala H-24, 7:45 rano! 5 Pierwsze ćwiczenie z 2 serii Drugie ćwiczenie z 2 serii Odrabianie zajęć Strona www: Potrzebna lista studentów! 6

7 Czujnik - definicja Sensor (czujnik) - urządzenie, które odpowiada na fizyczny lub chemiczny czynnik pobudzający (np. ciepło, światło, dźwięk, ciśnienie, pole magnetyczne) i przekazuje wynikający z tego oddziaływania sygnał. Sygnał ten może być zmierzony lub użyty do sterowania. Sensor odbiera sygnał wejściowy i zamienia go na sygnał wyjściowy, przetwarza jeden rodzaj energii w drugi. Przykłady: czujnik rezystancyjny, optyczny, fizyczny, chemiczny, bioczujnik itd. 7

8 Transducer - definicje Transducer (łac. transducere) - urządzenie, które przekazuje energię z jednego układu do drugiego w tej samej lub innej formie. Urządzenie, które przekształca wielkość fizyczną w wielkość elektryczną. Urządzenie, którego zasadą pomiaru jest przekształcenie wielkość fizycznej w elektryczną, a relacje między jego we/wy oraz wy/we są przewidywalne z określoną dokładnością w określonych warunkach środowiskowych. Przykłady: termopara, tr. piezo-elektryczny, magnetostrykcyjny, pojemnościowy, indukcyjny, LDR (Light Dependent Resistor), LVDT (Linear Variable Differential Transformer) 8

9 Sensor czy Transducer? Oba określenie używane często synonimicznie, ale Każdy czujnik jest transducerem (przetwornikiem) ale Nie każdy transducer jest czujnikiem 9

10 Czujnik a system pomiarowy czujnik Obwód kondycjonowania Urządzenie końcowe (np. wyświetlacz) LUB czujnik Obwód przesyłania informacji Układ manipulacji na danych Układ konwersji danych 10

11 Klasyfikacja czujników Kryterium 1: Rodzaj sygnału wyjściowego parametryczne (bierne) sygnał wyjściowy jest parametrem elektrycznym związanym ze zmianą wielkości mierzonej np. fotoelektryczne pojemnościowe rezystancyjne generacyjne (czynne) wytwarzana jest energia związana z działaniem wielkości mierzonej np. fotowoltaiczne termoelektryczne piezoelektryczne 11

12 Klasyfikacja czujników Kryterium 2: Stosowana technika wytwarzania technika konwencjonalna grubowarstwowa półprzewodnikowa i cienkowarstwowa mikromechaniczna światłowodowa biotechnologie inne 12

13 Klasyfikacja czujników Kryterium 3: Stosowane materiały Nieorganiczne Organiczne Przewodniki Izolatory Półprzewodniki Ciekłe, gazowe, plazma Substancje biologiczne Inne 13

14 Przetwarzanie energii w czujnikach ENERGIA RADIACYJNA ENERGIA CHEMICZNA ENERGIA MECHANICZNA ENERGIA MAGNETYCZNA ENERGIA TERMICZNA SYGNAŁ ELEKTRYCZNY Energia biologiczna Rodzaje energii przetwarzane w czujniku na sygnał elektryczny 14

15 Przetwarzanie energii w czujnikach Wielkość mierzona Chemiczna (związki: elementy, koncentracje, stany) Akustyczna (amplituda fali, faza, polaryzacja, widmo, prędkość) Biologiczna (biomasa: elementy, koncentracje, stany) Elektryczna (ładunek, natężenie prądu, potencjał, napięcie, pole elektryczne, przewodnictwo, przenikalność) Optyczna (amplituda fali, faza, polaryzacja, widmo, prędkość) Magnetyczna (pole magnetyczne: amplituda, faza, polaryzacja, strumień magnetyczny, przenikalność magnetyczna) Mechaniczna (położenie: liniowe lub kątowe, prędkość, przyspieszenie, siła, naprężenie, ciśnienie, odkształcenie, masa, gęstość, moment siły, przepływ, szybkość transportu masy, nierówności powierzchni, orientacja, sztywność, lepkość) Radiacyjna (rodzaj, energia, natężenie) Termiczna (temperatura, strumień ciepła, ciepło właściwe, przewodnictwo termiczne) R. M. White, A sensor classification scheme, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., UFFC-34, (1987):

16 Technologiczne aspekty czujników Czułość Zakres pomiarowy Stabilność (krótko i długoterminowa) Rozdzielczość Selektywność Szybkość odpowiedzi Dopuszczalne warunki środowiskowe Dopuszczalne wartości graniczne Czas życia Postać sygnału wyjściowego Cena, rozmiar, waga itd. R. M. White, A sensor classification scheme, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., UFFC-34, (1987):

17 Zastosowania czujników Ilość produkowanych sensorów i ich różnorodność ciągle rosną. rolnictwo budownictwo, inżynieria środowiska procesy przemysłowe zapewnienie jakości w produkcji (miernictwo) motoryzacja, transport lotnictwo i przestrzeń kosmiczna medycyna i ochrona zdrowia ochrona środowiska, meteorologia elektronika osobista telekomunikacja, informatyka urządzenia domowe, przetwarzanie/odzysk energii gospodarka morska przestrzeń kosmiczna, badania naukowe 17

18 Wymagania odnośnie współczesnych sensorów: niska cena odporność na uszkodzenia odporność na zakłócenia (EMC) małe rozmiary niezawodność możliwość produkcji wielkoseryjnej Wymagania te spełniają technologie: mikromechanika + mikroelektronika Wytwarza się tzw. struktury MEMS (Micro-Electro-Mechanical Systems) 18

19 Rynek MEMS dla motoryzacji (WTC report, 2007) Obroty na rynku akcelerometrów MEMS do poduszek powietrznych w mln dol. i mln sztuk (Frost & Sullivan) 19

20 Firmy wytwarzające układy MEMS ranking 2006 (wg WTC Wicht Technologie Consulting) Źródło: 20

21 Miejsce czujnika w procesie pomiaru X WIELKOŚĆ MIERZONA CZUJNIK UKŁAD POŚREDNICZĄCY (W ZM., TRANS., IMP., PRZETWORNIKI A/C) UKŁAD WSKAZ.- REJESTR. Y OBRÓBKA DANYCH ZASILANIE Czujnik (sensor) - blok funkcjonalny (element), odwzorowujący w sposób jednoznaczny wartość wielkości fizycznej jednego rodzaju na sygnał fizyczny innego rodzaju. Inne określenia: przetwornik, detektor, próbnik, sonda 21

22 Funkcja przetwarzania czujnika Funkcje monotoniczne f(x) f(x) f. ściśle rosnąca f. rosnąca x x Funkcja rosnąca nie odwzorowuje w sposób jednoznaczny! 22

23 Blok funkcjonalny czujnika x y = f (x ) Blok funkcjonalny czujnika Czujnik z pojedynczym przetwarzaniem Czujnik rzeczywisty realizuje funkcję: y x y f(x) - funkcja ciągła i ściśle monotoniczna y f ( x ) 1( x ) 2( z ) 1 ( x ) - wpływ nie przewidziany przez producenta 2 ( z ) - wpływ zakłóceń 23

24 Funkcja przetwarzania f(x) - przykład Źródło: Infineon, KP125 Absolute Pressure Sensor, Datasheet rev

25 Blok funkcjonalny czujnika x 1 x 2 x 2 = f 1 (x 1 ) y = f 2 (x 2 ) y Sygnał elektryczny y = f (x 1 ) x 1 1 x 2 2 y Czujnik z podwójnym przetwarzaniem Przykład : czujnik światłowodowy 25

26 Wpływ zakłóceń na czujnik - przykłady Rezystancyjny czujnik tensometryczny (ang. strain gauge) R = R+ DR DR pochodzi od: - zmian R na skutek naprężeń (sygnał pożądany) - zmian R na skutek zmian temperatury (sygnał zakłócający) Termistor sygnał wyjściowy: rezystancja R Sygnał pożądany: zmiana R pod wpływem temperatury Zakłócenia: zmiana R pod pływem światła, naprężeń 26

27 Wpływ zakłóceń metoda eliminacji x 1 x 2 x 3.. x n y = f (x) x = {x 1, x 2,..., x n } y = {y 1, y 2,..., y m } f = {f 1, f 2,..., f m } x y m n y 1 y 2 y m Wpływ zakłóceń można ograniczyć wieloparametrową metodą pomiaru Aby wyznaczyć x 1 rozwiązuje się układ równań: y 1 = f 1 (x 1...x n ) y 2 = f 2 (x 1...x n ).. y m = f m (x 1...x n ) W praktyce trudności związane są bardziej z identyfikacją funkcji przetwarzania f m niż z wektorem zakłóceń x. Rozwój techniki mikroprocesorowej sprzyja pomiarom wieloparametrowym w miejsce eliminowania wpływu parametrów w czujniku. 27

28 Wpływ temperatury i wilgotności przykład Charakterystyki czujnika gazów palnych TGS 813 firmy Figarosensor Inc. 28

29 Czujniki inteligentne Smart Sensor Istotne cechy czujnika inteligentnego: Czujnik Analogowy układ pomiarowy A / C P integracja z układem pomiarowym samotestowanie charakterystyka kształtowana cyfrowo wieloparametrowa kompensacja zakłóceń sygnał wyjściowy w standardzie Interfejs Szyna komunikacyjna czujnika 29

30 Bloki funkcjonalne czujnika - przykład OBD On Board Diagnostics Źródło: Infineon, KP125 Absolute Pressure Sensor, Datasheet rev

31 Statyczne charakterystyki czujników Określają działanie czujnika w normalnych warunkach otoczenia: - dla niezmiennej wielkości wejściowej lub - przy bardzo powolnych zmianach wielkości wejściowej. Istotne zagadnienia: kalibracji histerezy powtarzalności/precyzji liniowości czułości rozdzielczości selektywności progu działania dryfu, dryfu zera impedancji wejściowej, wpływu obciążenia 31

32 Statyczne charakterystyki czujników Zakresy sygnału Omax Zakres sygnału wejściowego: Imax - Imin Zakres sygnału wyjściowego: Omax - Omin ZERO Omin Imin Imax 32

33 Statyczne charakterystyki czujników Zakres pomiarowy, zero Zakres pomiarowy: przedział mierzonej wielkości wyjściowej Omax - Omin Zero: Poziom sygnału na wyjściu przy zerowym sygnale wejściowym 33

34 Statyczne charakterystyki czujników Dokładność, błąd charakterystyki 2 DY Zakres błędu określenia wielkości związany z konkretnym wykonaniem czujnika Pasma błędu określane ze statystyki (f. gęstości) 34

35 Statyczne charakterystyki czujników Kalibracja y wartości zmierzone wartości znane z góry x Przyrząd jest kalibrowany w określonej ilości punktów poprzez zadanie znanych wartości sygnału na wejściu i zmierzenie odpowiedzi wyjściowej układu 35

36 Statyczne charakterystyki czujników Histereza y Z P D- Maksymalna różnica na wyjściu przy określonym sygnale wejściowym. [ % PZP ( FSO-ang. ) ] D FSO Full Scale Output PZP Pełny Zakres Pomiarowy x 36

37 Statyczne charakterystyki czujników Powtarzalność charakterystyki y Cykl 1 Cykl 2 D D- Maksymalna różnica odczytów dla tego samego kierunku [ % PZP ] Zdolność czujnika do wskazywania takiej samej wielkości wyjściowej w identycznych warunkach. Lepszą miarę uzyskuje się dla dużej ilości cykli x 37

38 Statyczne charakterystyki czujników Czułość y a b dy S x dx x X D y D x a D x b x Dla dużej czułości błąd pomiaru Dx wielkości X przy danym błędzie Dy może być pomijalnie mały. Odwrotność czułości C x = 1/S x nazywana jest stałą przyrządu. 38

39 Statyczne charakterystyki czujników Liniowość charakterystyki y PZP Miara zbliżenia charakterystyki rzeczywistej do określonej linii prostej y =ax+b Charakterystykę można kształtować po stronie cyfrowej (przy przetwarzaniu cyfrowym). x 39

40 Statyczne charakterystyki czujników Offset i dryf sygnału Offset (bias) sygnału: przesunięcie między sygnałem mierzonym a rzeczywistym (po kompensacjach) Przykład: R czujnika TGS 813 dla 1000 ppm CH 4 w powietrzu: 5-15kW Dryf: Szybkość zmiany wyjścia w czasie (nie związana z wielkością wejściową) 40

41 Statyczne charakterystyki czujników Rozdzielczość y D Najmniejsza wykrywalna zmiana sygnału na wejściu, która może być wykryta na wyjściu. Wielkość stała dla czujnika. x Jest to wielkość skokowej zmiany na wyjściu w % PZP przy ciągłej zmianie wielkości wejściowej. 41

42 Statyczne charakterystyki czujników Próg y D Próg x Jest to zmiana wielkości wejściowej niezbędna do uzyskania zauważalnej zmiany wielkości wyjściowej. 42

43 Charakterystyki czujnika - przykład Źródło: Infineon, KP125 Absolute Pressure Sensor, Datasheet rev

44 Dynamiczne charakterystyki czujników Jeśli układ przetwarzający składa się z liniowych elementów dyssypacyjnych i akumulacyjnych, to zależność między pobudzeniem x i sygnałem wyjściowym y można zapisać w postaci A 0 y + A 1 y (1) + A 2 y (2) A n y (n) = k (B 0 x + B 1 x (1) + B 2 x (2) +... B m x (m) ) (1) y (1) 1-sza pochodna czasowa k statyczna czułość przetwornika m n Równanie (1) można poddać całkowemu przekształceniu Laplace`a gdzie s = σ + jω F st ( s) L e f ( t) dt f ( t) 0 (2) 44

45 Dynamiczne charakterystyki czujników Całkując (2) przez części łatwo wykazać, że df ( t) L dt sl f ( t) f (0) Poddając równanie (1) przekształceniu Laplace`a i stosując powyższą własność (przy zerowych warunkach początkowych) uzyskuje się transmitancję operatorową czujnika: 2 Y( s) 1 B1s B2s K( s) k 2 X ( s) 1 A s A s B m... A n s s m n W rezultacie od równań różniczkowych przechodzi się do równań algebraicznych. Analiza transmitancji operatorowej jest szczególnie dogodna w przypadku, gdy przetwornik tworzy łańcuch pomiarowy. Odpowiedź y(t) uzyskuje się stosując odwrotne przekształcenie Laplace`a. 45

46 Pobudzenie skokiem jednostkowym x(t) x(t) = 1(t) 1 0 1(t) = 0 dla t < 0 1 dla t t Odpowiedź układu sensorowego zależy od jego rodzaju. Może to np. być układ inercyjny, który składa się z elementów akumulacyjnych jednego rodzaju (akumulujących energię kinetyczną lub potencjalną) oraz elementów dyssypacyjnych. 46

47 Pobudzenie skokiem jednostkowym Czas odpowiedzi Czas stabilizacji odpowiedzi 47

48 Przykład przetwornika inercyjnego Termometr rezystancyjny wstawiony do cieczy o wyższej temperaturze Analog elektryczny L{1(t)} = X(s) = 1/s 1 k 1 Y( s) K( s) s 1 s s element inercyjny I-go rzędu 48

49 49 s s k s ) ( f s s / / s s e / s e s / dt e dt e k s ) / ( f dt ) e k( e dt ) ( t f e s ) ( f )t / s ( st ) / t st ( st / t st st Element inercyjny I-go rzędu, obliczanie transmitancji operatorowej s k s / s ) Y( s ) K( 1 1 A zatem

50 Czasowa odpowiedź elementu inercyjnego I-go rzędu na skok jednostkowy y( t) L t / Y ( s) k(1 e ) 1 y(t) k 0.63k τ - stała czasowa, miara bezwładności sensora; τ t Dla analogu elektrycznego τ = RC y( k( 11/ e) k co oznacza: dla t = τ mamy 63% wartości ustalonej. dla t = 3τ mamy 95% wartości ustalonej. 50

51 Umieszczenie termometru w osłonie powoduje, że staje się on elementem inercyjnym wyższego rzędu y(t) k 95% 90% 63% t 95-95% czas odpowiedzi Δt = t 90 t 10 czas narastania τ = t 63 stała czasowa 10% 0 t 10 t 90 t 95 t Odpowiedź na skok jednostkowy elementu inercyjnego wyższego rzędu 51

52 Odpowiedź układu oscylacyjnego na skok jednostkowy y(t) 1 K pseudooscylacje 2 tłumienie krytyczne 3 tłumienie nadkrytyczne 0 t Przetwornik mający charakter układu oscylacyjnego zawiera elementy akumulacyjne obu rodzajów oraz elementy dyssypacyjne. Analogiem mechanicznym jest tłumione wahadło sprężynowe (sprężyna akumuluje energię potencjalną, masa energię kinetyczną, tarcie energię rozprasza). Analogiem elektrycznym jest obwód RLC. 52

53 R S L y m k S u(t) R C u 1 (t) q = CU 1 (t) = ku 1 (t) F(t) Analog mechaniczny Analog elektryczny y Rs m y 1 mk s y F( t m ) 2 q 2q q LC R 2L 0 2 Cu( t) 0 53

54 0 Transmitancja układu oscylacyjnego 2 2 Mianownik wyrażenia na transmitancję może mieć: 1) Dwa pierwiastki rzeczywiste K( s) s 2 k 2s 0 s 2 2 1,2 0 tłumienie nadkrytyczne 2) Jeden pierwiastek rzeczywisty s 3) Dwa pierwiastki zespolone tłumienie krytyczne s 1,2 j 2 2 t y( t) k 1 e sin( t ) 0 j Po odwrotnym przekształceniu Laplace`a otrzymuje się: drgania tłumione (pseudooscylacje) 54

Sensory w systemach wbudowanych

Sensory w systemach wbudowanych Sensory w systemach wbudowanych Charakterystyki współczesnych czujników dr inż. Wojciech Maziarz Wydział IET, Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Kontakt: Wojciech.Maziarz@agh.edu.pl 1 Czujnik

Bardziej szczegółowo

Statyczne charakterystyki czujników

Statyczne charakterystyki czujników Statyczne charakterytyki czujników Określają działanie czujnika w normalnych warunkach otoczenia przy bardzo powolnych zmianach wielkości wejściowej. Itotne zagadnienia: kalibracji hiterezy powtarzalności

Bardziej szczegółowo

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki piezorezystancyjne dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki działające w oparciu o efekt Tensometry,

Bardziej szczegółowo

Technika sensorowa. Czujniki wielkości mechanicznych. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki wielkości mechanicznych. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki wielkości mechanicznych dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 1 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki wielkości mechanicznych Wielkości mechaniczne

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

Sensoryka i pomiary przemysłowe Kod przedmiotu

Sensoryka i pomiary przemysłowe Kod przedmiotu Sensoryka i pomiary przemysłowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Sensoryka i pomiary przemysłowe Kod przedmiotu 06.0-WE-AiRD-SiPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Sensory w systemach wbudowanych

Sensory w systemach wbudowanych Sensory w systemach wbudowanych Wiadomości wstępne dr inż. Wojciech Maziarz Wydział IET, Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Kontakt: Wojciech.Maziarz@agh.edu.pl 1 Czujniki: Literatura, źródła

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

(zwane również sensorami)

(zwane również sensorami) Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Pomiary elektryczne wielkości nieelektrycznych Electrical measurements

Bardziej szczegółowo

Mikrosystemy Wprowadzenie. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.

Mikrosystemy Wprowadzenie. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Mikrosystemy Wprowadzenie Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII

Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Pomiary przemysłowe Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Efekty kształcenia: Ma uporządkowaną i pogłębioną wiedzę z zakresu metod pomiarów wielkości fizycznych w przemyśle. Zna

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011 ĆWICZENIE 1: Pomiary temperatury 1. Wymagane wiadomości 1.1. Podział metod pomiaru temperatury 1.2. Zasada działania czujników termorezystancyjnych 1.3. Zasada działania czujników termoelektrycznych 1.4.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów zmiana sygnału pomiarowego będącego wielkością nieelektryczną na elektryczny sygnał pomiarowy dopasowanie sygnału do warunków dobrego przekazywania na odległość dopasowanie sygnału

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-1EZ2-1002-s2 Pomiary elektryczne wielkości Nazwa modułu nieelektrycznych_e2n Electrical measurements of non-electrical Nazwa modułu w języku angielskim quantities

Bardziej szczegółowo

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016 Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Przetwornik temperatury RT-01

Przetwornik temperatury RT-01 Przetwornik temperatury RT-01 Wydanie LS 13/01 Opis Głowicowy przetwornik temperatury programowalny za pomoca PC przetwarzający sygnał z czujnika Pt100 na skalowalny analogowy sygnał wyjściowy 4 20 ma.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Imię i nazwisko (e mail) Grupa:

Imię i nazwisko (e mail) Grupa: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail) Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 12: Przetworniki analogowo cyfrowe i cyfrowo analogowe budowa i zastosowanie. Ocena: Podpis

Bardziej szczegółowo

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE:

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE: M-1TI PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA Konwersja sygnału z czujnika temperatury (RTD, TC), rezystancji (R) lub napięcia (U) na sygnał pętli prądowej 4-20mA Dowolny wybór zakresu

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Układy akwizycji danych. Komparatory napięcia Przykłady układów Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne)

Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Pomiary prędkości (kątowej, liniowej) Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Różniczkowanie numeryczne W dziedzinie czasu (ilorazy różnicowe) W dziedzinie częstotliwości.

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Aktory

Mechatronika i inteligentne systemy produkcyjne. Aktory Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

Temat: POMIAR SIŁ SKRAWANIA

Temat: POMIAR SIŁ SKRAWANIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Metrologia Studia I stopnia, kier Elektronika i Telekomunikacja, sem. 2 Ilustracje do wykładu

Bardziej szczegółowo

Spis treści. 1. Wprowadzenie 15. Wstęp 13. 1.1. Definicja pomiaru i terminów z nim związanych 15 1.2. Podstawowe pojęcia 19

Spis treści. 1. Wprowadzenie 15. Wstęp 13. 1.1. Definicja pomiaru i terminów z nim związanych 15 1.2. Podstawowe pojęcia 19 Wstęp 13 1. Wprowadzenie 15 1.1. Definicja pomiaru i terminów z nim związanych 15 1.2. Podstawowe pojęcia 19 1.2.1. Aparatura pomiarowa 19 1.2.2. Przyrząd pomiarowy 19 1.2.3. Systemy pomiarowe 22 1.2.4.

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

DATAFLEX. Miernik momentu obrotowego DATAFLEX. Aktualizowany na bieżąco katalog dostępny na stronie www.ktr.com

DATAFLEX. Miernik momentu obrotowego DATAFLEX. Aktualizowany na bieżąco katalog dostępny na stronie www.ktr.com 307 Spis treści 307 Opis urządzenia 309 Typ 16/10, 16/30, 16/50 310 Akcesoria: RADEX -NC sprzęgło do serwonapędów 310 Typ 22/20, 22/50, 22/100 311 Akcesoria: RADEX -NC sprzęgło do serwonapędów 311 Typ

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

ТТ TECHNIKA TENSOMETRYCZNA

ТТ TECHNIKA TENSOMETRYCZNA ТТ TECHNIKA TENSOMETRYCZNA Czujniki tensometryczne wagowe СТ5 Czujniki tensometryczne wagowe CT5 są przeznaczone do pomiaru sił i obciążeń w różnych dziedzinach inżynierii i przemysłu. Czujniki wykonane

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych. Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Czujniki i urządzenia pomiarowe

Czujniki i urządzenia pomiarowe Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna

Bardziej szczegółowo