EuCARD-PUB European Coordination for Accelerator Research and Development PUBLICATION
|
|
- Mateusz Kamiński
- 9 lat temu
- Przeglądów:
Transkrypt
1 EuCARD-PUB European Coordination for Accelerator Research and Development PUBLICATION Advanced Photonic and Electronic Systems for HEP Experiments, Astroparticle Physics, Accelerator Technology, FELs and Fusion; 2013 WILGA Symposium (January) Romaniuk, R S (Warsaw University of Technology) 04 June 2013 The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no This work is part of EuCARD Work Package 2: DCO: Dissemination, Communication & Outreach. The electronic version of this EuCARD Publication is available via the EuCARD web site < or on the CERN Document Server at the following URL : < EuCARD-PUB
2 Lasery rentgenowskie LCLS i LCLS II SLAC prof. dr hab. inż. Ryszard S.Romaniuk Politechnika Warszawska, Instytut Systemów Elektronicznych Laboratorium SLAC Artykuł dotyczy akceleratorowo-laserowej infrastruktury badawczej i użytkowej LCLS SLAC. Infrastruktura służy jako laboratorium rozwojowe techniki akceleratorowo laserowej oraz jako narzędzie badawcze w innych dziedzinach nauki. Jednym z Narodowych Laboratoriów Departamentu Energii (DoE) jest Narodowe Laboratorium Akceleratorowe (SLAC) prowadzone dla i pod nadzorem DoE przez Uniwersytet Stanforda w kampusie w Menlo Park w Kalifornii. Laboratorium SLAC, utworzone w roku 1962, prowadzi badania w zakresie eksperymentów i teorii cząstek elementarnych wykorzystując wiązki elektronowe. Zakres badań obejmuje fizykę atomową, ciała stałego, chemię, biologię i medycynę. Źródłem wiązek elektronowych jest synchrotron (SSRL) oraz laser na swobodnych elektronach (LCLS). Dodatkowo Laboratorium SLAC dysponuje akceleratorową infrastrukturą badawczą przeznaczoną do testów nowych i zaawansowanych technik akceleracyjnych FACET (Facility for Advanced Accelerator Experimental Tests). Najpotężniejszy obecnie na świecie, Amerykański Laser Rentgenowski LCLS (Liniac Coherent Ligt Source), czyli liniakowe koherentne źródło światła, działa od roku 2009, jako urządzenie badawcze i użytkowe, i jest dalej rozwijane do postaci LCLS II na terenie narodowego Amerykańskiego laboratorium SLAC przy uniwersytecie Stanforda, zlokalizowanego w miejscowości Menlo Park w Kalifornii. W pewnym sensie LCLS II jest odpowiedzią na budowę maszyny EXFEL. Jest to źródło światła piątej generacji. Przewiduje się uruchomienie EXFEL w latach 2015/16, kosztem znacznie ponad 1 mld Euro. LCLS II, którego projekt rozpoczął się w 2010, będzie uruchomiony w roku Lasery LCLS, LCLS II oraz EXFEL, wykorzystują metody SASE oraz SEED do generacji światla i są zasilane liniakami elektronowymi, LCLS ciepłym a EX- FEL zimnym, o energii kilkanaście GeV i długości ponad 2 km. Liniak EXFEL wykorzystuje technologię nadprzewodzącą SRF TESLA o częstotliwości 1,3 GHz. Prototypem maszyny EXFEL jest laser FLASH. Laboratorium SLAC korzysta z ponad 50-letniego doświadczenia budowy i eksploatacji liniowych akceleratorów elektronowych. W roku 2009 fragment największego, 3 km elektronowego akceleratora liniowego SLAC został wykorzystany do budowy maszyny LCLS. Dla maszyny LCLS II budowana jest nowa infrastruktura dla dwóch nowych wiązek laserowych. W badaniach i budowie największych światowych akceleratorów liniowych i pierścieniowych oraz laserów FEL takich jak LCLS (Stanford), EXFEL (DESY) i CEBAF (JLab) biorą udział specjaliści i młodzi uczeni z Polski. Laser FEL LCLS 66 Obecnie infrastruktura LCLS posiada następujące parametry: 1 km liniak, energia wiązki elektronowej 2 14 GeV, undulator 100 m, zakres energii fotonów 250 ev 10 kev, długość impulsu fs, liczba fotonów w impulsie , ilość koherentnych fotonów w impulsie 10 9, energia w impulsie 6 mj/imp, timing pomiędzy impulsem optycznym i X 10 fs, metoda generacji wiązki X SS-SASE, impulsy X limitowane transformatą, pełna koherencja impulsu wzdłużna i poprzeczna, współdzielenie wiązki, 6 różnych specjalizowanych stacji eksperymentalnych, średnio 600 użytkowników na rok z 30 krajów, akceptacja średnio 1 z 4 wniosków o grant na czas wiązki. Pierwszy na świecie laser Angstromowy LCLS Linac Coherent Light Source został skonstruowany, i uruchomiony w kwietniu 2009 r., na terenie ośrodka badawczego techniki akceleratorowej SLAC przez konsorcjum trzech laboratoriów: SLAC National Accelerator Laboratory, Stanford, California; Lawrence Livermore National Laboratory, Livermore, Kalifornia; Argonne National Laboratory, Argonne, Illinois. Ośrodek SLAC jest prowadzony przez Uniwersytet Stanforda i w znacznej mierze finansowany przez Departament Energii DoE USA. Laser wykorzystuje trzy kilometrowy liniak elektronowy jako źródło energii dla undulatora. Oprócz liniaka, i lasera LCLS, SLAC dysponuje również dużym synchrotronowym źródłem światła trzeciaj generacji SSRL (Stanford Synchrotron Radiation Lightsource). LCLS jest laserem typu FEL wykorzystującym ok. 1/3 długości 3 km liniaka SLAC. Laser generuje koherentną wiązkę promieniowania w zakresie rentgenowskim miękkim i twardym. Szczytowa jasność wiązki jest ok. dziesięć rzędów wielkości większa od synchrotronowych źródeł konwencjonalnych. Czas trwania impulsu jest zmienny w zakresie fs. Przy pomocy takiej wiązki to źródło światła może obrazować strukturę i dynamikę materii na wymiarowym i czasowym poziomie atomowym. Źródło światła czwartej generacji pracuje w zakresie 1 22 Å i jest skorelowane z kilkoma laboratoriami użytkowymi pracującymi w obszarach biologii, inżynierii materiałowej, i innych. Wiązka laserowa jest dzielona w podziale czasowym pomiędzy te laboratoria. Dostępność laserów FEL, a w szczególności unikalnej maszyny LCLS, która w wielu obszarach parametrów technicznych była pierwszą na świecie (koherencja czasowa i przestrzenna, natężenie wiązki i długość fali), otworzyła nową erę badań oddziaływania pomiędzy twardym promieniowaniem rentgenowskim o wielkim natężeniu a materią. Wiele aplikacji praktycznych promieniowania rentgenowskiego wymaga dokładnego zrozumienia jak elektrony w materii oddziaływają z intensywnym promieniowaniem X. Badania prowadzone na maszynie LCLS ujawniają naturę odpowiedzi elektronowej swobodnego atomu na promieniowanie rentgenowskie o ekstremalnych wartościach natężenia, długości fali i fluencji: odpowiednio I = W cm 2, oraz λ = nm, a także F~10 5 fotonów rentgenowskich na Å 2. Dla takich wartości fluencji, podczas naświetlania tarczy neonowej pojedynczym rentgenowskim impulsem femtosekundowym, absorpcja kilku fotonów jonizuje atom całkowicie. Fotoejekcja elektronów z wewnętrznych powłok atomowych wymusza chwilową całkowitą (indukowaną) przezroczystość tarczy gazowej. Taka przezroczystość, spowodowana wakancjami wewnętrznych powłok, może być indukowana we wszystkich układach materialnych, dla takich wartości natężeń i fluencji wiązki rentgenowskiej. Ilościowe porównania teoretyczne i pomiędzy materiałami o strukturze atomowej, cząsteczkowej i złożonej krystalicznej oraz amorficznej, pozwala na dokładne określanie parametrów wiązki (fluencja i czas trwania impulsu) i charakterystyk materiałów. Rozszerzenie modelowania oddziaływania promieniowania X na systemy złożone jest niezbędne w zastosowaniach biologicznych. Obrazowanie w wymiarowej (angstromowej) i czasowej (femtosekundowej) skali atomowej jest wykonywane przy pomocy laserowej femtokamery. Sekwencjonowane są obrazy z różnych faz oddziaływania impulsu laserowego z nano-obiektem. Powstaje rodzaj filmu molekularnego pokazującego ruch molekuły podczas jej przemian chemicznych. W ramach tych badań poznawane są dokładne mechanizmy fotosyntezy oraz struktury wirusów. Opanowanie sztucznej fotosyntezy może prowadzić do nowych metod gromadzenia i dysponowania energią oraz do produkcji żywności. Poznanie przemian struktury wi- Elektronika 5/2013
3 rusów w czasie rzeczywistym prowadzi do poznania budowy ich odporności na antybiotyki, a także ich rolę w powstawaniu nowotworów. Krystalografia białek jest przedmiotem intensywnych badań przy pomocy laserów FEL. Roger Kornberg z Uniwersytetu Stanford dostał za te badania nagrodę Nobla z biologii w 2006 r. Określił on z obrazu dyfrakcyjnego (plamek Lauego) strukturę polimerazy RNA (położenia pojedynczych atomów, których w cząsteczce jest 30 tys.). Dostępność wiązki rentgenowskiej o parametrach LCLS otwiera zupełni nową drogę do badań cząstek biologicznych, które nie poddają się krystalizacji. Infrastruktura lasera LCLS zawiera laboratoria użytkowe: AMO optyka atomowa i molekularna; CXI koherentne obrazowanie rentgenowskie; MEC materia w warunkach ekstremalnych; SXR inżynieria materiałowa miękkiego promieniowania rentgenowskiego; XCS rentgenowska spektroskopia korelacyjna; XPP rentgenowska technika pompa-próbka. Laboratoria użytkowe szukają odpowiedzi na pytania podstawowe. Jak atomy i pojedyncze molekuły reagują na promieniowanie rentgenowskie? Jak powstają właściwości elektryczne i magnetyczne właściwości w materiałach złożonych oraz jak przebiega ewolucja reakcji chemicznych na powierzchniach? Jak reagują atomy i kompleksy chemiczne na pobudzenie? Czy możliwe jest rozwiązanie dokładnych struktur atomowych kompleksów biologicznych (w ich naturalnym stanie), które nie mogą być skrystalizowane i które łatwo ulegają zniszczeniu podczas dłuższej ekspozycji radiacyjnej? Czy możliwe jest zaobserwowanie i zarejestrowanie ruchu atomów w materiałach nieuporządkowanych i cieczach podczas zmiany stanu ich równowagi? Jak zmieniają się właściwości materii, gdy jest ona doprowadzona do stanu bardzo dalekiego od równowagi? Laboratorium AMO korzysta z impulsowej wiązki miękkiego promieniowania rentgenowskiego lasera LCLS. Gazowy, atomowy, molekularny lub nanocząsteczkowy (kryształy białkowe, wirusy) rejon interakcji jest naświetlany wiązką impulsową. Region podlega spektroskopii elektronowej i jonowej. Stosowane są detektory wielkopowierzchniowe do rentgenowskich pomiarów dyfrakcyjnych. Prowadzone są badania nad czasowo rozdzielczą fotojonizacją, rentgenowską dyfrakcją nanokryształów oraz jednoimpulsowym obrazowaniem obiektów niereprodukowalnych. Laboratorium CXI korzysta z impulsowej wiązki twardego promieniowania rentgenowskiego lasera LCLS. Obrazowane są pojedyncze cząstki sub-mikronowe i określa się strukturę biomolekuł z użyciem nano-kryształów. Prawie pełna poprzeczna koherencja wiązki lasera LCLS pozwala na obrazowanie pojedynczych cząstek ze znaczną rozdzielczością. Krótki czas trwania impulsu obrazującego ogranicza zniszczenie radiacyjne, którego nie można zredukować pry użyciu źródeł synchrotronowych. Próbki są wprowadzane we wiązkę lasera statycznie lub dynamicznie przy pomocy iniektora w strumieniu płynu. Do badań obrazujących i nanokrystalograficznych stosowana jest metoda koherentnego obrazowania dyfrakcyjnego. Laboratorium MEC bada zjawiska przejściowe w materii w warunkach ekstremalnych pod wpływem przestrajanego w długości fali impulsu rentgenowskiego. Badane jest jednoczesne oddziaływanie kilku wiązek laserowych, głównej z lasera FEL i pomocniczych z optycznych laserów konwencjonalnych wielkiej mocy i wielkiego natężenia. Aparatura pomiarowa obejmuje: rentgenowski spektrometr rozproszeniowy Thomsona, spektrometr XUV o znacznej rozdzielczości, interferometr Fourierowski, oraz system VISAR. Komora próżniowa posiada znaczną objętość, co daje laboratorium znaczną elastyczność w badaniach fizyki gęstej i gorącej materii, badaniach wysoko ciśnieniowych, badania fal uderzeniowych oraz fizyki wielkich gęstości energii. Przewiduje się także badania nieliniowych właściwości próżni. Laboratorium SXR działa w obszarze miękkiego promieniowania rentgenowskiego. Badania dotyczą emisji promieniowania rentgenowskiego, obrazowania koherentnego, rozpraszania rezonansowego, spektroskopię fotoelektronową. Badania obejmują zjawiska katalizy, magnetyzmu, materiały korelowane, astrofizykę laboratoryjną oraz struktury biologiczne. Linia eksperymentalna SXR jest wyposażona w monochromator dla zakresu energii fotonów od 0,5 do 2keV. Taki zakres energii obejmuje krawędzi K i L wzbudzeń rezonansowych pierwiastków drugiego i trzeciego rzędu. Monochromator dostarcza również promieniowanie nie monochromatyczne. Laboratorium SXR jest połączone z laboratorium AMO w szereg i próbki mogą być badane najpierw w XAS w modzie transmisyjnym. Laboratorium XCS rentgenowskiej spektroskopii korelacyjnej pozwala na obserwacje dynamicznych zmian dużych grup atomów w systemach materii skondensowanej w szerokiej skali czasowej. Obserwacje są prowadzone przy pomocy metod koherentnego rozpraszania rentgenowskiego, oraz spektroskopii korelacyjnej fotonu rentgenowskiego. Badana jest dynamika stanów równowagi i nierównowagi w materiałach nieuporządkowanych i modulowanych. Laboratorium XPP służy do generacji i badania przejściowych stanów materii wzbudzanej krótkotrwałym impulsem z lasera optycznego. Impuls twardego promieniowania rentgenowskiego próbkuje taki stan materii, a w szczególności jej dynamikę strukturalną zainicjowaną impulsem optycznym. Pompa optyczna jest przestrajana w szerokim zakresie przestrzeni, czasu, profili, częstotliwości, energii, natężenia i fluencji w celu wywołania wymaganych stanów wzbudzonych. Indukowane laserem zmiany strukturalne są badane przy pomocy metod rozpraszania rentgenowskiego. Tor sprzętowy obejmuje: generację i dostarczenie impulsów optycznych i rentgenowskich do próbki, przygotowanie stanu wzbudzonego w próbce, detekcja wzoru rozproszenia rentgenowskiego. Infrastruktura LCLS wspiera programy badawcze czterech ogólnych kategorii: wiązki elektronowe, wiązki rentgenowskie, lasery konwencjonalne, stacje końcowe laboratoria użytkowe. Badania wiązek są związane z ich generacją, diagnostyką oraz manipulacją. Badania nad laserami konwencjonalnymi dotyczą rozszerzenia zakresu spektralnego w kierunku UV i THz, a także diagnostyki timingu. Badania nad laboratoriami końcowymi dla wiązek dotyczą technik dostarczania próbek do regionu ekspozycji, detektorów i analizy danych. Dotychczasowe osiągnięcia programu badawczego z wykorzystaniem infrastruktury LCLS, uruchomionej w 2009 r., dotyczyły wprowadzenia nowej i skutecznej rentgenowskiej techniki samo posiewu (self seeding) zastępującej konwencjonalną technikę SASE bez posiewu. X-Ray SS SASE pozwoliła na kilkudziesięciokrotną redukcję pasma fotonu oraz na poprawę stabilności energetycznej fotonu o dwa rzędy wielkości. Inną skutecznie wprowadzoną techniką była korelacja wzajemna pomiędzy impulsami optycznymi i rentgenowskimi. Taka korelacja o wysokiej dokładności, obecnie wynosząca ok. 10 fs, jest konieczna w technice pompa (optyczna) próbka (rentgenowska) oraz w technikach nanokrystalograficznych. Wykorzystywany jest wspólny monochromator diamentowy, z podwójnym kryształem i znacznym offsetem, dla obu wiązek fotonowych. Rozwój infrastruktury badawczej i użytkowej LCLS Laser LCLS II Badania akceleratorów i wiązek Prowadzonych jest szereg równoległych projektów rozwojowych infrastruktury rozpisanych na najbliższą pięciolatkę Projekt o synonimie CATHO jest ukierunkowany na poprawę niezawodności fotokatody w dziale elektronowym RF. Projekt XT- CAV dotyczy poprzecznej transmisyjnej wnęki rezonansowej dla pasma X, która działa efektywnie jako ultraszybka kamera śladowa, zapewniająca informację z impulsu na impuls o strukturze czasowej promieniowania rentgenowskiego. Rozwijane techniki kross korelacji zapewniają synchronizację impulsów optycznych i rentgenowskich. Inne projekty dotyczą samo posiewu twardego promieniowania rentgenowskiego, samo-posiewu miękkiego Elektronika 5/
4 promieniowania rentgenowskiego, spektrometrii pojedynczego impulsu twardego promieniowania rentgenowskiego, timingu laserowo-rentgenowskiego, wielozgęstkowych impulsów rentgenowskich, undulatora typu DELTA, undulatora stożkowego dla promieniowania dużej mocy, dzielenia promienia rentgenowskiego twardego, i inne. Podstawowym celem badań jest uzyskanie impulsowej wiązki rentgenowskiej o znacznie poprawionych parametrach, niż tylko duże natężenie i krótkość impulsu. Konieczna jest stabilizacja natężenia, kontrolowanie długości impulsu, uzyskanie znacznej rozdzielczości energetycznej, polaryzacji, oraz dostępność wielokolorowych impulsów o zmiennym opóźnieniu. Te kierunki badań i rozwoju dla laserów i wiązek rentgenowskich podążają podobną ścieżką jak jakiś czas temu dla wiązek optycznych i laserów konwencjonalnych. Poprawa jakości impulsów rentgenowskich prowadzi przez dokładną kontrolę przestrzeni fazowej we wiązce fotonowej. Zasiew spontaniczny nie daje takiej kontroli. Konieczny jest samo zasiew, bowiem zasiew zewnętrzny dla promieniowania X jest obecnie nie stosowany. Wiązka powinna być koherentna wzdłużnie, wówczas jest określana jako ograniczona transformatą i w impulsie jest ograniczona niepewność pomiędzy jego długością a energią. Taki impulsy są tworzone w procesie SS SASE. Odrębnym zagadnieniem jest polaryzacja wiązki miękkiego promieniowania rentgenowskiego. Polaryzacja, np. kołowa, jest tworzona w undulatorze o specjalnej konstrukcji DELTA. Inne projekty rozwoju infrastruktury dotyczą generacji wielokrotnych impulsów rentgenowskich metodą powielania oraz zwiększenie mocy lasera do poziomu TW. Maszyna TWFEL wymaga dodatkowych undulatorów. Badania laserowe Zastosowanie infrastruktury LCLS do badań laserowych prowadzi w dwóch kierunkach: rozszerzenie zakresu spektralnego generacji laserowej oraz diagnostyka timingu laserów. Infrastruktura LCLS posiada trzy źródła: generator częstotliwości różnicowych DFG dający falę o częstotliwości terahercowej THz (20 15 µm), rektyfikatory optyczne na niobianie litu LiNbO 3 dla pasma 1,0 1,5 THz, oraz na DAST dla pasma 2,0 2,5 THz. W układzie z materiałem DAST uzyskano natężenie pola większe od 1 MV/cm. Materiał DAST jest pompowany w zakresie MIR i wymaga zastosowania OPA a także linii transmisyjnej fali THz, ogniskowania i diagnostyki wiązki oraz nakładania wiązki THz z wiązką rentgenowską. Badania dotyczą zwiększenia efektywności konwersji, kontroli pasma generacji oraz przestrajania długości fali. Rozszerzenie pasma generacji dotyczy mev od strony fal THz, a także dziesiątków ev od strony fal UV i EUV. Badania timingu dotyczą możliwości generacji impulsów attosekundowych. Badania detektorów Prowadzone są badania nad nowymi generacjami detektorów. Opracowywane są prototypy detektorów o małych pikselach i bardzo niskich szumach zdolne do rekonstrukcji pojedynczych fotonów. Takie detektory są przewidziane do rentgenowskiej fotonowej spektroskopii korelacyjnej, budowy krystalicznych spektroskopów rentgenowskich, oraz do ogólnych celów obrazowania do energii fotonów 2 kev. Dalszy rozwój detektorów wymaga znacznego zwiększenia częstości zliczania na impuls na piksel z utrzymaniem wysokiej czułości dla pojedynczego fotonu. Detektory wielko-sygnałowe są konieczne do budowy dyfrakcyjnego systemu pomiarowego dla celów nano-krystalografii. W zakresie miękkiego promieniowania rentgenowskiego niezbędny jest uniwersalny detektor zdolny do dyskryminacji pojedynczych fotonów aż do krawędzi węglowej. Oprócz pojedynczych detektorów budowane są kamery pikselowe o dużej rozdzielczości kątowej oraz timingu sub nanosekundowym dla miękkich elektronów. Składanie detektorów w matrycę odbywa się z minimalnymi odstępami między nimi. 68 Techniki dostarczania próbek do wiązki Systemy podawania próbek w obszar oddziaływania wiązki rentgenowskiej są przedmiotem obszernych studiów. Próbki stałe, ciekłe i gazowe są wstrzykiwane we wiązkę w standaryzowany sposób. Targety gazowe obejmują nanokryształy białkowe, spreje, aerozole materii biologicznej. Targety ciekłe obejmują np. roztwory ciekłe systemów molekularnych. Próbki są dostarczane w większości przypadków w obszar próżni, co znacznie komplikuje system podawania. Utworzono grupę projektową której celem jest uproszczenie i wysoka standaryzacja systemów dostarczania próbek gazowych, ciekłych i stałych. LCLS II 2025 Pierwsze światło z infrastruktury LCLS-II zostanie wygenerowane w roku 2018 i rozwój infrastruktury jest dokładnie rozpisany do roku Rozwój infrastruktury przewiduje budowę drugiego iniektora i niezależnego liniaka o długości 1 km. Dwa nowe undulatory dostarczają jednocześnie miękkie i twarde promieniowanie rentgenowskie do nowej hali eksperymentalnej zawierającej jedną stację eksperymentalną. Łącznie nowa hala eksperymentalna będzie posiadać sześć stacji. Dalszy rozwój przewiduje dodanie nowego undulatora dla twardego promieniowania rentgenowskiego i nowych stacji eksperymentalnych do maszyny LCLS-I. Podsumowując, modernizacja infrastruktury LCLS do roku 2025 przewiduje, w porównaniu z stanem obecnym: dwa niezależne iniektory dające elastyczność pracy maszyny, potrojenie liczby źródeł ondulatorowych łącznie do 4, potrojenie liczby niezależnych stacji eksperymentalnych do 12, uniezależnienie pracy w modach twardym i miękkim, rozszerzenie zakresu spektralnego fotonów 250 ev 18 kev, impulsy twarde i miękkie z samo posiewu, poprawa parametrów impulsów 10 3 w jasności, 10 2 mniejsze pasmo, 10 1 zwiększenie mocy; pełna kontrola polaryzacji promieniowanie miękkiego, manipulacja impulsem rentgenowskim rozdzielanie, opóźnienie, łącznie, wiele kolorów); poprawa detektorów rentgenowskich czułość na pojedynczy foton, zakres dynamiczny, liczba i wymiary pikseli, timing systemu pompa próbka 10 fs. Priorytetowe kierunki badań przewidziane obecnie dla infrastruktury LCLS-II są następujące: nowe zjawiska w materiałach zaawansowanych nazywanych także materiałami kwantowymi, badania atomowe, elektronowe i spinowe w zakresie miękkiego promieniowania rentgenowskiego, dynamika reakcji chemicznych naturalnych i sztucznych zaprojektowanych, molekularne transformacje fotochemiczne, badania atomowe i elektronowe w zakresie twardego promieniowania rentgenowskiego, struktura nanokryształów białkowych oraz struktura białek niekrystalizujących, techniki nanokrystalizacji i badania atomowe, zaawansowane badania dyfrakcyjne systemów pozornie nieuporządkowanych. Materiały kwantowe W materii skondensowanej można otrzymywać stabilne egzotyczne stany kwantowe poprzez kontrolę składu chemicznego i zastosowanych pól oddziaływań zewnętrznych. Prowadzi to np. do rozszerzenia obecnych technologii krzemowych i metalowych. Te materiały wykazują użyteczne właściwości, takie jak: nadprzewodnictwo wysokotemperaturowe, połączenie właściwości półprzewodnikowych i półmagnetycznych przy niskich stratach, gigantyczną magnetorezystancję, przełączaną wieloferroelektyczność. Właściwości te wynikają z uporządkowania ładunków, spinów i orbitali w elektroniczne rozróżnialnych domenach. Domeny te fluktuują w przestrzeni i w czasie w zakresie wielu rzędów wielkości skal czasowej i przestrzennej. Infrastruktura LCLS-II jest optymalizowana w kierunku dokładnego badania tych nowych zjawisk, szczególnie w krytycznym zakresie energii fotonów mev, nanometrowym zakresie wymiarów i femtosekundowym obszarze czasów trwania zjawisk. Elektronika 5/2013
5 Koniecznym narzędziem badawczym jest dobrze zdefiniowana, stabilna rentgenowska wiązka impulsowa o kontrolowanych parametrach i zmiennej polaryzacji, czasie trwania impulsu, energii impulsu, kolorze impulsu. Odpowiedź materiału badana jest czasowo rozdzielczą metodą rezonansowego nieelastycznego rozpraszania rentgenowskiego RIXS (time-resolved resonant, inelastic X-ray scattering). Sygnał odpowiedzi może być wzmacniany z wykorzystaniem procesów stymulowanych. Celem jest zrozumienie mechanizmów powstawania nowych cech materiałów i nowych zjawisk oraz kontrolowanie zjawisk i parametrów oraz nowych faz kwantowych materiałów. Molekularne transformacje fotochemiczne Poznanie szczegółów transformacji atomowych na poziomie molekularnym, a przez to uzyskanie możliwości kontroli reakcyjności chemicznej, jest konieczne dla dalszej poprawy jakości życia człowieka. Takie procesy zachodzą w femtosekundowej skali czasowej w lokalnych katalitycznych centrach reakcji. Próbkowanie takich zjawisk wymaga znacznej rozdzielczości czasowej i przestrzennej, a także uwzględnienia specyfiki chemicznej znacznie wykraczającej poza obecne możliwości pomiarowe, szczególnie te dostępne przy pomocy źródeł synchrotronowych, a nawet źródeł FEL pierwszej generacji z niedostatecznie idealną wiązką impulsową. Kontrola reakcji chemicznych prowadzi do możliwości syntezy zupełnie nowych klas materiałów, budowy efektywnych i kompaktowych systemów gromadzenia i przechowywania energii oraz jej uwalniania wykorzystywania, np. przy pomocy manipulacji szczególnym wiązaniem. Prowadzi to do możliwości wpływania na kluczowe reakcje biologiczne a przez to na funkcje organizmu. Infrastruktura LCLS daje możliwość badania metodami rentgenowskimi reakcji trygerowanych przez fotony optyczne. Stwarza to możliwość projektowania rozwoju sztucznych procesów biologicznych które przebiegają ze zwiększoną efektywnością. Impuls optyczny wyzwala proces, którego ewolucja jest próbkowana, a przez to obserwowana przez ściśle określone czasowo i dobrze kontrolowane impulsy rentgenowskie. Następujące ruchy atomowe są śledzone metodami ultraszybkiej krystalografii oraz dyfuzyjnymi technikami rozproszenia twardego promieniowania RTG. Spektroskopie miękkie pozwalają na obserwacje bardzo subtelnych zmian lokalnych w wiązaniach dookoła wybranych atomów w wyselekcjonowanych grupach funkcjonalnych. Używane są techniki stymulowanego rozpraszania Ramana dla promieniowanie miękkiego RTG z impulsami ograniczonymi transformatą o różnych kolorach oraz polaryzacjach. Określanie struktury złożonych obiektów mikro- i nanobiologicznych Zwalczanie niektórych rodzajów chorób wymaga określenia struktury wirusów lub kompleksów białkowych. Do badań strukturalnych wykorzystywane są metody anomalnej dyfrakcji pojedynczej fali SAD (Single Wavelength Anomalous Diffraction) lub anomalnej dyfrakcji wielu fal (MAD). Metody te cechują się bardzo dokładną kontrolą rozkładu natężenia spektralnego impulsu. W celu uzyskania dużej rozdzielczości pomiaru stosuje się fotony o energii ponad 10 kev, czyli powyżej krawędzi Se i Br. Rejestrowane są pełne trajektorie fotonów, ich wszystkie odbicia, co minimalizuje potrzebę nad-próbkowania. Nad-próbkowanie jest istotnym ograniczeniem w przypadku badań protein trudnych do przygotowania próbek i krystalizacji. Nie periodyczne obiekty biologiczne, takie jak wirusy, powinny być obrazowane jednym impulsem. Jest to możliwe ale kosztem malejącej rozdzielczości. Uruchomienie infrastruktury LCLS-II jako efektywnego laboratorium użytkowego wymaga: znacznego uproszczenia interfejsów użytkowników, szkolenia użytkowników i kadry obsługującej infrastrukturę, oraz konstrukcji dedykowanych i standaryzowanych zestawów eksperymentalnych. Literatura [1] Emma P., et al.: First lasing and operation of an Angstrom-wavelength free-electron laser, Nature Photonics 4, (2010) doi: / nphoton [2] Young L., et al.: Femtosecond electronic response of atoms to ultraintense X-rays, Nature 466, (2010) doi: /nature09177 [3] Lightsources [lightsources.org/facility/lcls] [4] SLAC Stanford Synchrotron Radiation Lightsource [ stanford.edu/] [5] SLAC [ [6] SLAC LCLS [ [7] SLAC LCLS-II [ [8] LCLS-II Conceptual Design Report [portal.slac.stanford.edu] [9] LCLS Strategic Plan, DoE, SLAC, April 2013, SLAC-R-1007 [10] European XFEL [ [xfel.desy.de] [11] EuroFEL [ [ [12] XFEL 2013 [ [13] Romaniuk R.: POLFEL A free electron laser in Poland, Photonics Letters of Poland, 1 (3), pp (2009). [14] Romaniuk R.S.: Akceleratory dla społeczeństwa TIARA 2012, Elektronika, nr 3, 2013, str [15] Ackerman W., K. Poźniak, R. Romaniuk, et.al.: (TESLA Collaboration), Operation of a free-electron laser from the extreme ultraviolet to the water window, Nature Photonics, vol.1, no.6, pp , [16] Romaniuk R.S.: Development of free electron laser and accelerator technology in Poland (CARE and EuCARD projects), Proc.SPIE, vol. 7502, paper (2009). [17] Romaniuk R.S., Institute of Electronic Systems in CARE and Eu- CARD projects; Accelerator and FEL research, development and applications in Europe, Proc.SPIE, vol. 7502, paper (2009). [18] Romaniuk R.: EuCARD i CARE Rozwój techniki akceleratorowej w kraju, Elektronika, vol. 49, nr. 10, 2008, str [19] Romaniuk R.S.: Instytut Systemów Elektronicznych w projektach CARE i EuCARD; Badania i zastosowania akceleratorów w Europie, Elektronika, vol. 50, nr 8/2009, str [20] Romaniuk R.: CARE Coordinated Accelerator Research in Europe, Elektronika 2 3/2005, II okładka. [21] Romaniuk R.S., K.T. Poźniak, T. Czarski: Udział Politechniki Warszawskiej w programie CARE, Elektronika nr 2 3, 2005, str. 75. [22] Romaniuk R.S.: EuCARD 2010: European coordination of accelerator research and development, Proc.SPIE 7745, paper (2010). [23] Romaniuk R.S.: Accelerator infrastructure in Europe EuCARD 2011, Proc. SPIE, vol. 8008, art.no (2011). [24] Romaniuk R.S.: Accelerator Science and Technology in Europe Eu- CARD 2012, International Journal of Electronics and Telecommunications, 2012, Vol. 58, No. 4, pp [25] Romaniuk R.S.: Accelerator Technology and High Energy Physics Experiments; Photonics and Web Engineering, Wilga May 2012, Proc. SPIE 8454, art no (2012). [26] Romaniuk R.S.: Rozwój techniki akceleratorowej w Europie Eu- CARD 2012, (Development of accelerator technology in Europe EuCARD 2012), Elektronika, vol. 53, Nr 9, 2012, str [27] Romaniuk R.S.: Technika akceleratorowa i eksperymenty fizyki wysokich energii, Wilga 2012, Elektronika, vol. 53, Nr 9, 2012, str [28] Koprek W., P. Kaleta, J. Szewiński, K.T. Poźniak, T. Czarski, R. Romaniuk: Oprogramowanie dla systemu kontrolno-pomiarowego akceleratora TESLA, Elektronika, nr 1, 2005, str [29] Romaniuk R.S.: Fizyka fotonu i badania plazmy, Wilga 2012, Elektronika, vol. 53, nr 9, 2012, str [30] Romaniuk R.: EuCARD 2010 Technika akceleratorowa w Europie EuCARD, Elektronika vol. 51, no. 8, pp (2010). [31] Romaniuk R.: Infrastruktura akceleratorowa w Europie EuCARD 2011, Elektronika, vol. 52, no. 12, pp (2011). [32] Romaniuk R.: Europejski laser rentgenowski, Elektronika, vol.54, no. 4, str (2013). [33] Romaniuk R.: Międzynarodowy zderzacz liniowy, Elektronika, vol. 54, no. 3, str (2013). [34] Zagozdzinska A., R.S. Romaniuk, K.T. Pozniak, P. Zalewski: TRIDAQ systems in HEP experiments At LHC accelerator, International Journal of Electreonics and Telecommunications, vol. 59, no. 2, pp (2013). [35] Romaniuk R.S.: EuCARD-2, Elektronika, vol.54, no. 3, ss (2013). Elektronika 5/
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową
Formularz informacyjny dotyczący propozycji projektu infrastruktury badawczej w związku z aktualizacją Polskiej Mapy Drogowej Infrastruktury Badawczej
Formularz informacyjny dotyczący propozycji projektu infrastruktury badawczej w związku z aktualizacją Polskiej Mapy Drogowej Infrastruktury Badawczej (Proszę o wpisanie wymaganych informacji w puste pola;
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
LASERY NA SWOBODNYCH ELEKTRONACH. Przygotowali: Arkadiusz Robiński Mariusz Nowaczyk Mateusz Kubiak Krzysztof Konwisarz
LASERY NA SWOBODNYCH ELEKTRONACH Przygotowali: Arkadiusz Robiński Mariusz Nowaczyk Mateusz Kubiak Krzysztof Konwisarz Co to jest laser? Light Amplification by Stimulated Emission of Radiation - wzmocnienie
Przewodnik po wielkich urządzeniach badawczych
Przewodnik po wielkich urządzeniach badawczych 5.07.2013 Grzegorz Wrochna 1 Wielkie urządzenia badawcze Wielkie urządzenia badawcze są dziś niezbędne do badania materii na wszystkich poziomach: od wnętrza
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
METODY BADAŃ BIOMATERIAŁÓW
METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku
EuCARD-PUB-2009-012. European Coordination for Accelerator Research and Development PUBLICATION
EuCARD-PUB-2009-012 European Coordination for Accelerator Research and Development PUBLICATION Nowa seria wydawnicza Politechniki Warszawskiej Technika Akceleratorowa (New editorial series on Accelerator
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej
Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Źródła promieniowania X. ciąg dalszy
Źródła promieniowania X ciąg dalszy Promieniowanie synchrotronowe undulatory i wigglery W pierwszych synchrotronach do produkcji promieniowania używane dipolowe magnesy zakrzywiające. Istnieje dużo bardziej
PUBLICATION. European XFEL (in Polish)
EuCARD-PUB-2013-002 European Coordination for Accelerator Research and Development PUBLICATION European XFEL (in Polish) Romaniuk, R S (Warsaw University of Technology) 04 June 2013 The research leading
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Trzy rodzaje przejść elektronowych między poziomami energetycznymi
Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman
Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy
h λ= mv h - stała Plancka (4.14x10-15 ev s)
Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
FUZJA LASEROWA JAKO PRZYSZŁE ŹRÓDŁO ENERGII
Konferencja naukowo-techniczna NAUKA I TECHNIKA WOBEC WYZWANIA BUDOWY ELEKTROWNI JĄDROWEJ MĄDRALIN 2013 Warszawa, 13-15 lutego 2013 roku. Instytut Techniki Cieplnej Politechniki Warszawskiej FUZJA LASEROWA
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział
Oddziaływanie promieniowania jonizującego z materią
Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16 Semestr 1M Przedmioty minimum programowego na Wydziale Chemii UW L.p. Przedmiot Suma godzin Wykłady Ćwiczenia Prosem.
Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski
Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie
30 maja 2007 Dokument Techniczny nr 1 dołączony do Konwencji dotyczącej Europejskiego Ośrodka XFEL
30 maja 2007 Dokument Techniczny nr 1 dołączony do Konwencji dotyczącej Europejskiego Ośrodka XFEL STRESZCZENIE projektu technicznego XFEL (część A) i scenariusz szybkiego uruchomienia Europejskiego Ośrodka
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Pomiary widm fotoluminescencji
Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER
CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady
Pracownia Optyki Nieliniowej
Skład osobowy: www.if.pw.edu.pl/~nlo Kierownik pracowni: Prof. dr hab. inż. Mirosław Karpierz Kierownik laboratorium Dr inż. Urszula Laudyn Dr inż. Michał Kwaśny Dr inż. Filip Sala Dr inż. Paweł Jung Doktoranci:
Grafen materiał XXI wieku!?
Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?
Optyczny dualizm przestrzenno-czasowy: zastosowania w optyce kwantowej
Sympozjum IFD, 28.11.2016 Optyczny dualizm przestrzenno-czasowy: zastosowania w optyce kwantowej Michał Karpiński Zakład Optyki IFD UW Optical Quantum Technologies Group, Clarendon Laboratory, University
NOWE ŚWIATŁO DLA NAUKI: EUROPEJSKI RENTGENOWSKI LASER NA SWOBODNYCH ELEKTRONACH
NOWE ŚWIATŁO DLA NAUKI: EUROPEJSKI RENTGENOWSKI LASER NA SWOBODNYCH ELEKTRONACH R. Sobierajski i K. Lawniczak-Jablonska Instytut Fizyki Polskiej Akademii Nauk, Al. Lotników 32/46, 02-668 Warszawa, Polska
Wysokowydajne falowodowe źródło skorelowanych par fotonów
Wysokowydajne falowodowe źródło skorelowanych par fotonów Michał Karpioski * Konrad Banaszek, Czesław Radzewicz * * Instytut Fizyki Doświadczalnej, Instytut Fizyki Teoretycznej Wydział Fizyki Uniwersytet
Europejski laser rentgenowski
Europejski laser rentgenowski prof. dr hab. inż. Ryszard S. Romaniuk Politechnika Warszawska, Instytut Systemów Elektronicznych Uwarunkowania międzynarodowe oraz krajowe i jak to się zaczęło w Niemczech?
IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH
IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 14 15 stycznia 2018 A.F.Żarnecki Podstawy
Własności światła laserowego
Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie
Rozpraszanie i dyfrakcja promieniowania X część II. Jak eksplorować przestrzeń odwrotną - eksperymenty dyfrakcyjne
Rozpraszanie i dyfrakcja promieniowania X część II Jak eksplorować przestrzeń odwrotną - eksperymenty dyfrakcyjne Poprzedni wykład Dyfrakcja a transformacja Fouriera k r R r(r) q=k-k Obraz dyfrakcji (rozproszenia)
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie
MAGNETYCZNY REZONANS JĄDROWY - podstawy
1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Metody optyczne w medycynie
Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Rozwój laserów na swobodnych elektronach w Europie 2016
DOI: 10.15199/13.2016.3.4 Rozwój laserów na swobodnych elektronach w Europie 2016 (Development of free electron lasers in Europe 2016) prof. dr hab. inż. Ryszard S. Romaniuk Politechnika Warszawska, Instytut
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 4 24 października 2016 A.F.Żarnecki
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny
Ekscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated
Opis ogólny projektu. Mariusz Lejman Extreme light infrastructure
Opis ogólny projektu W projekcie bierze udział około o 40 instytucji badawczych i akademickich z 13 krajów Unii Europejskiej Finansowanie projektu z Komisji Europejskiej na poziomie 700mln euro Lokalizacja-Europa
POLITECHNIKA POZNAŃSKA Wydział: BMiZ Kierunek: MiBM / KMiU Prowadzący: dr hab. Tomasz Stręk Przygotował: Adrian Norek Plan prezentacji 1. Wprowadzenie 2. Chłodzenie największego na świecie magnesu w CERN
Epiphany Wykład II: wprowadzenie
Epiphany 2008 LEP, 2: opady deszczu LHC This morning I visited the place where the street-cleaners dump the rubbish. My God, it was beautiful - Van Gogh 20 krajów europejskich należy do CERN Kraje
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Spektrometr XRF THICK 800A
Spektrometr XRF THICK 800A DO POMIARU GRUBOŚCI POWŁOK GALWANIZNYCH THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zaprojektowany do pomiaru grubości warstw
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
NCBiR zadania badawcze IFPiLM. Marek Scholz
NCBiR zadania badawcze IFPiLM Marek Scholz Wstęp Warunki utrzymania plazmy: R dt n d n t dt v r ilośl reakcji m s R dt 3 n 5 14 cm -3 10 s T ~ 10 kev D T 4 He(3,5 MeV) n(14.1 MeV) R dt P A br n d n t n
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Fizyka cząstek elementarnych warsztaty popularnonaukowe
Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński
NZ54: Zakład Fizyki Transportu Promieniowania
Przegląd działalności naukowej IFJ PAN 7 8 stycznia 014 Oddział V Zastosowań Fizyki i Badań Interdyscyplinarnych NZ54: Zakład Fizyki Transportu Promieniowania Kierownik: dr hab. Krzysztof Drozdowicz Przegląd
Cel wykładu. Detekcja światła. Cel wykładu. Światło. Sebastian Maćkowski
Cel wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz
Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek
Frialit -Degussit Ceramika tlenkowa Komora próżniowa
Frialit -Degussit Ceramika tlenkowa Komora próżniowa Zastosowanie: Zaginanie toru cząstki w akceleratorze Materiał: Tlenek glinu FRIALIT F99.7 L = 1350 mm D = 320 mm Produkcja Friatec Na całym świecie
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Synchrotron SOLARIS. nowe światło dla polskiej nauki
Synchrotron SOLARIS nowe światło dla polskiej nauki strategiczny projekt na Polskiej Mapie Drogowej Infrastruktury Badawczej najbardziej nowoczesne urządzenie tego typu na świecie, wybudowane w technologii
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl
Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN
Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii Jan Pękala Instytut Fizyki Jądrowej PAN Promienie kosmiczne najwyższych energii Widmo promieniowania kosmicznego rozciąga się na
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Lasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Polacy i Polska w technologiach detektorów w CERN-ie. L. Zwalinski CERN EP/DT December 16 th 2016
Polacy i Polska w technologiach detektorów w CERN-ie L. Zwalinski CERN EP/DT December 16 th 2016 1 Eksperymenty LHC technologie detektorów LHCb ATLAS CMS ALICE * Neutrino platform * CLIC Polskie zespoły
Źródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg.
ZFP dysponuje obecnie unowocześnioną aparaturą, której skompletowanie, uruchomienie i utrzymanie w sprawności wymagało wysiłku zarówno merytorycznego jak i organizacyjnego oraz finansowego. Unowocześnienia
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1
Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM
Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny
Dział: 7. Światło i jego rola w przyrodzie.
Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i