Opis ogólny projektu. Mariusz Lejman Extreme light infrastructure
|
|
- Tomasz Sowa
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Opis ogólny projektu W projekcie bierze udział około o 40 instytucji badawczych i akademickich z 13 krajów Unii Europejskiej Finansowanie projektu z Komisji Europejskiej na poziomie 700mln euro Lokalizacja-Europa wschodnia (Czechy, Węgry, Rumunia, jedna do zadecydowania) 2
3 Opis naukowy projektu Infrastruktura poświ więcona podstawowym badaniom oddziaływania materii ze światłem laserowym o nieosiąganych dotąd d natęŝ ęŝeniach 3
4 Opis naukowy projektu NatęŜ ęŝenia wytwarzanego światła laserowego osiągn gną reŝim ultra- relatywistyczny (I L >10 23 W/cm 2 ) Osiągni gnięta moc ma dochodzić do 200PW Czas trwania impulsów w ma być rzędu attosekund
5 Postęp w rozwoju mocy laserowych
6 MoŜliwe obszary nowych badań Fizyka cząstek elementarnych Fizyka jądrowaj Nieliniowa teoria pola Fizyka ultra-wysokich ciśnie nień Astrofizyka i kosmologia 6
7 Czechy (Praga) Instalacja wiązki Filar projektu ELI, który skupi się na dostarczaniu ultrakrótkich tkich impulsów energetycznych cząstek (10GeV), oraz promieniowania (do kilku MeV) wytworzonych z akceleratora plazmy laserowej 7
8 Wizualizacja obiektu w Pradze 8
9 Węgry (Szeged) Instalacja attosekundowa Będzie poświ więcona ekstremalnie szybkiej dynamice poprzez wykonywanie fotografii w skali attosekundowej dynamiki elektronów w w atomach, molekułach, plazmie, oraz ciałach ach stałych (kryształach) ach) 9
10 Wizualizacja obiektu w Szeged 10
11 Rumunia (Magurele( Magurele) Instalacja dla fizyki jądrowejj Filar ELI, który skupi się na fizyce jądrowej j opartej na laserze. Przewidziane jest intensywne źródło o promieniowania gamma otrzymywanego przez sprzęŝ ęŝenie akceleratora cząstek wysokoenergetycznych z laserem wysokiej mocy 11
12 Wizualizacja obiektu w Magurele 12
13 Czwarta lokalizacja Instalacja ultra-silnego pola Decyzja o wyborze lokalizacji nastąpi w przyszłym ym roku MoŜe e to być w jednym z trzech ośrodko rodków, lub w innym kraju Będzie tam zainstalowana największa moc lasera zaleŝna od bieŝą Ŝącego rozwoju techniki laserowej Dzięki temu będzie b moŝna badać oddziaływania materii ze światłem laserowym w obszarze energii, w którym prawa relatywistyczne mogą przestać być spełniane 13
14 Laboratorium wyspecjalizowane w badaniu plazmy powstałej w oddziaływaniu światła laserowego z materią
15 Badania naukowe i zastosowania Nauka attosekundowa badanie dynamiki elektronów w w materii w skalach attosekund Wtórne promieniowanie (drugiego rzędu) źródła a protonów, elektronów, promieniowania gamma i innych cząstek (moŝliwe zastosowania w terapii hadronowej i obrazowaniu medycznym) Fizyka silnych pól p badania próŝni kwantowej i kwantowej dynamiki 15
16 Attonauka Niedawna rewolucja w technologii laserowej otworzyła drzwi do generacji błyskówświatła mogących zamrozić ultraszybki ruch elektronóww atomach i molekułach ach. Nasza zdolność powtarzalnej generacji i pomiaru błyskówświtła o attosekundowej długości oznacza początek nowej ery w badaniu ruchu w mikroświecie wiecie- ery attonauki. Attosekunda (10-18s) 18s) stanowi naturalną skalę w ruchu elektronów w atomowej skali. Ruch ten podlega teraz kontroli w czasie rzeczywistym. 16
17 Nauka attosekundowa Bezpośrednio w czasie rzeczywistym dostęp p do ruchu elektronów w w skali atomowej, oraz do oscylacji światła a widzialnego Zakres badań od wewnątrzatomowych procesów w do ruchu elektronów w w złoŝonych z onych biomolekułach ach,, od dynamiki w klastrach do transferu elektronów w na powierzchniach, od ruchu elektronów w w półprzewodnikowych p przewodnikowych nanostrukturach do zbiorowej dynamiki w materii wysokiej gęstog stości 17
18 ALS attosekundoweźródło światła Ma przerastać pod względem czasowo uśrednionej jasności o kilka rzędów w wielkości obecne źródła, a impulsy mają być kilka rzędów w wielkości krótsze Wytworzy polichromatyczne światło o o czasie trwania impulsu kilkadziesiąt attosekund Idealnie uzupełni XFEL (monochromatyczny impuls 100fs) budowany w Hamburgu dopasowany do badań strukturalnej dynamiki materii w czasie rzeczywistym 18
19 Schemat generacji impulsu attosekundowego uŝywając harmoniczne z przegęszczonej plazmy 19
20 Mechanizm wytworzenia impulsów Relatywistyczne harmoniczne sąs sposobem wytworzenia wydajnych impulsów attosekundowych Oddziaływanie intensywnego impulsu laserowego z przegęszczon szczoną plazmą pozwala na wytworzenie impulsów w poprzez fazowo-zamkni zamknięte harmoniczne (silnie anharmoniczny ruch elektronów w na granicy tarcza-pr próŝnia) 20
21 Attosekundowe impulsy utworzone przez odpowiednie filtry 21
22 MoŜliwe badania i eksperymenty Obserwacja w czasie rzeczywistym wewnątrzatowowej dynamiki elektronowej (atomowa jednostka czasu wynosi 24as) Attosekundowe eksperymenty pump-probe probe pozwolą badać wielokanałowe owe kaskady relaksacji atomów wzbudzonych w wewnętrznych powłokach, okach, czasy oddziaływa ywań międzyelektronowych dzyelektronowych,, oraz wpływ ultra-silnego pola na te dynamiki (atom He) Czasowa ewolucja obsadzenia wewnętrznych powłok ok w obecności ci silnego zewnętrznego pola będzie po raz pierwszy dostepna eksperymentalnie 22
23 MoŜliwe badania i eksperymenty Kontrola i obserwcja w czasie rzeczywistym dynamiki elektronowej w molekułach i klasterach (np.. badanie rezonansów w kolektywnych wzbudzeń 240 zdelokalizowanych elektronów w w molekule C 60 z czasem Ŝycia rzędu femtosekundy,, badanie migracji ładunku w biomolekułach ach) Badanie transferu elektronów w z powierzchni o silniejszych oddziaływaniach kowalencyjnych Czterowymiarowa mikroskopia dynamiki elektronowej z nanometrową rozdzielczości cią w przestrzeni i attosekundową w czasie 23
24 Generacja impulsów w cząstek Za pomocą ultrakrótkich tkich impulsów w laserowych o silnym natęŝ ęŝeniu skupionych na specjalnej tarczy moŝna wytworzyć promieniowanie (X, X,gamma), oraz wysokoenergetyczne cząstki (jony, protony, elektrony) Niezwykle silne pola ekekryczneo wartościach przekraczających cych 1TV/m Rozmiar źródła a mniejszy o kilka rzędów wielkości od konwencjonalnego Długość impulsu cząstek i jasność sprawia, Ŝe są unikalne i inne od konwencjonalnych źródeł 24
25 Akceleracja elektronów Laser Wake Field Acceleration (LWFA) LWFA)-pracuje dla impulsów w krótszych niŝ długość fali plazmy Elektrony sąs przyspieszane do relatywistycznych energii (czynnik gamma ) 1000) z duŝą wydajności cią Osiągany jest kwazienergertyczny (do 175MeV) impuls elektronów w o wysokim ładunku (0,5nC), rozbieŝno ności kilku miliradianów,, oraz czasie trwania ok. 10fs Parametry powstałego impulsu silnie zaleŝą od impulsu lasera, oraz parametrów w tarczy Planowane jest osiągni gnięcie energii powyŝej 1GeV 25
26 Akceleracja protonów Dwuwarstwowa tarcza wykonana z materiału u o wysokiej liczbie atomowej (np( np.. złoto) z pokrytego warstwą zawierającą atomy wodoru Przy uŝyciu u bieŝą Ŝącej technologii laserowej (1PW) moŝna uzyskać monoenergetyczną wiązk zkę protonów w o energi do 200MeV MoŜna jąj wykorzystać do terapii protonowej (redukcja skalii, łatwiejsza orientacja wiązki, mniejsze koszty), oraz produkcji krótko tkoŝyciowych radioizotopów w dla PET W drugim stadium projektu dla laserów w o mocy do 100PW moŝliwa będziegeneracja protonów w o energiach kilku Gev 26
27 Generacja promieniowania X Promieniowanie X moŝna wytworzyć ogniskując intensywny impuls femtosekundowy na pęku p relatywistycznych elektronów w dzięki mechanizmowi rozpraszania Comptona 27
28 Zastosowania w terapii hadronowej Wiązki hadronowe (protony, jony węgla) mają odwrotny profil wgłębny, przez co mogą dostarczyć większej dawki chorej tkance połoŝonej w głębi, niŝ zdrowej na powierzchni
29 Zastosowania w terapii hadronowej Energia jonów musi mieć odpowiednią wartość, by wiązka była uŝyteczna, stąd potrzebne są odpowiednie natęŝenia wiązki laserowej
30 Zastosowania w fizyce jądrowej NatęŜenia wiązki laserowej wystarczające do zainicjowania niskoenergetycznych reakcji jądrowych MoŜliwość wzbudzania jądrowych poziomów energetycznych i wymuszania charakterystycznej emisji promieni gamma Zmiana jądrowych czasów Ŝycia, dzięki czemu moŝliwość neutralizacji niektórych szkodliwych izotopów z reaktorów jądrowych
31 Fizyka silnych pól Badanie rozpraszania fotonu na fotonieefektu przewidzianego w kwantowej elektrodynamice powstałego wskutek kreacji pary elektron-pozyton w próŝni
32 Literatura Mariusz Lejman Extreme light infrastructure 32
33 Zapraszam do dyskusji Mariusz Lejman Extreme light infrastructure 33
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Formularz informacyjny dotyczący propozycji projektu infrastruktury badawczej w związku z aktualizacją Polskiej Mapy Drogowej Infrastruktury Badawczej
Formularz informacyjny dotyczący propozycji projektu infrastruktury badawczej w związku z aktualizacją Polskiej Mapy Drogowej Infrastruktury Badawczej (Proszę o wpisanie wymaganych informacji w puste pola;
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Oddziaływanie promieniowania jonizującego z materią
Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony
Przewodnik po wielkich urządzeniach badawczych
Przewodnik po wielkich urządzeniach badawczych 5.07.2013 Grzegorz Wrochna 1 Wielkie urządzenia badawcze Wielkie urządzenia badawcze są dziś niezbędne do badania materii na wszystkich poziomach: od wnętrza
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Zastosowania fizyki jądrowej w medycynie Medycyna nuklearna Medycyna nuklearna - dział medycyny zajmujący się bezpiecznym zastosowaniem izotopów
Dział: 7. Światło i jego rola w przyrodzie.
Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl
Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek
FUZJA LASEROWA JAKO PRZYSZŁE ŹRÓDŁO ENERGII
Konferencja naukowo-techniczna NAUKA I TECHNIKA WOBEC WYZWANIA BUDOWY ELEKTROWNI JĄDROWEJ MĄDRALIN 2013 Warszawa, 13-15 lutego 2013 roku. Instytut Techniki Cieplnej Politechniki Warszawskiej FUZJA LASEROWA
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.
Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą
Eksperymenty z wykorzystaniem wiązek radioaktywnych
Eksperymenty z wykorzystaniem wiązek radioaktywnych 1. Co to są wiązki radioaktywne 2. Metody wytwarzania wiązek radioaktywnych 3. Ośrodki wytwarzające wiązki radioaktywne 4. Nowe zagadnienia możliwe do
Akceleratory (Å roda, 16 marzec 2005) - Dodał wtorek
Akceleratory (Å roda, 16 marzec 2005) - Dodał wtorek Definicja: Urządzenie do przyspieszania cząstek naładowanych, tj. zwiększania ich energii. Akceleratory można sklasyfikować ze względu na: kształt toru
Wszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Wszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
AKCELERATORY I DETEKTORY WOKÓŁ NAS
AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATOR W CERN Chociaż akceleratory zostały wynalezione dla fizyki cząstek elementarnych, to tysięcy z nich używa się w innych gałęziach nauki, a także w przemyśle
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów
Janusz Gluza. Instytut Fizyki UŚ Zakład Teorii Pola i Cząstek Elementarnych
Akceleratory czyli największe mikroskopy świata Janusz Gluza Instytut Fizyki UŚ http://fizyka.us.edu.pl/ Zakład Teorii Pola i Cząstek Elementarnych http://www.us.edu.pl/~ztpce/ http://www.us.edu.pl/~gluza
Słowniczek pojęć fizyki jądrowej
Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),
Energetyka jądrowa. Energetyka jądrowa
Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Elektron i proton jako cząstki przyspieszane
Elektron i proton jako cząstki przyspieszane Streszczenie Obecnie znanych jest wiele metod przyśpieszania cząstek. Przyśpieszane są elektrony, protony, deuterony a nawet jony ciężkie. Wszystkie one znalazły
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Podstawowe własności jąder atomowych
Fizyka jądrowa Struktura jądra (stan podstawowy) Oznaczenia, terminologia Promienie jądrowe i kształt jąder Jądra stabilne; warunki stabilności; energia wiązania Jądrowe momenty magnetyczne Modele struktury
Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ
Źródła promieniowania X. ciąg dalszy
Źródła promieniowania X ciąg dalszy Promieniowanie synchrotronowe undulatory i wigglery W pierwszych synchrotronach do produkcji promieniowania używane dipolowe magnesy zakrzywiające. Istnieje dużo bardziej
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka)
Wykład na Studiach Podyplomowych "Energetyka jądrowa we współczesnej elektroenergetyce", Kraków, 4 maj DETEKCJA NEUTRONÓW JERZY JANCZYSZYN Oddziaływanie promieniowania (Powtórka) Cząstki naładowane oddziałują
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Lasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Informacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu.
Informacje wstępne Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Szanowny uczestniku, poniżej znajduje się zestaw pytań zamkniętych i otwartych. Pytania zamknięte są pytaniami
Pierwsza eksperymentalna obserwacja procesu wzbudzenia jądra atomowego poprzez wychwyt elektronu do powłoki elektronowej atomu.
Pierwsza eksperymentalna obserwacja procesu wzbudzenia jądra atomowego poprzez wychwyt elektronu do powłoki elektronowej atomu Plan prezentacji Wprowadzenie Wcześniejsze próby obserwacji procesu NEEC Eksperyment
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Jak działają detektory. Julia Hoffman
Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne
Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński
Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński Metoda PLD (Pulsed Laser Deposition) PLD jest nowoczesną metodą inżynierii powierzchni, umożliwiającą
Reakcje jądrowe dr inż. Romuald Kędzierski
Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Eksperymenty z wykorzystaniem wiązek radioaktywnych
Eksperymenty z wykorzystaniem wiązek radioaktywnych 1. Co to są wiązki radioaktywne 2. Metody wytwarzania wiązek radioaktywnych 3. Ośrodki wytwarzające wiązki radioaktywne 4. Nowe zagadnienia możliwe do
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość
strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
Frialit -Degussit Ceramika tlenkowa Komora próżniowa
Frialit -Degussit Ceramika tlenkowa Komora próżniowa Zastosowanie: Zaginanie toru cząstki w akceleratorze Materiał: Tlenek glinu FRIALIT F99.7 L = 1350 mm D = 320 mm Produkcja Friatec Na całym świecie
Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu
Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych
Widma atomowe. Fizyka atomowa i jądrowa. Dawne modele atomu. Widma atomowe. Linie emisyjne kwantowanie poziomów energetycznych
Fizyka atomowa i jądrowa Widma atomowe kwantowanie poziomów Widma atomowe Linie emisyjne kwantowanie poziomów energetycznych Budowa atomu: eksperyment Geigera-Marsdena-Rutherforda Atom wodoru w mechanice
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 24 października 2017 A.F.Żarnecki WCE Wykład 4 24 października
Fizyka atomowa i jądrowa
Fizyka atomowa i jądrowa Widma atomowe kwantowanie poziomów Budowa atomu: eksperyment Geigera-Marsdena-Rutherforda Atom wodoru w mechanice kwantowej; liczby kwantowe Atomy wieloelektronowe układ okresowy
Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN
Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii Jan Pękala Instytut Fizyki Jądrowej PAN Promienie kosmiczne najwyższych energii Widmo promieniowania kosmicznego rozciąga się na
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza
Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ
Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ INTEGRAL - International Gamma-Ray Astrophysical Laboratory prowadzi od 2002 roku pomiary promieniowania γ w Kosmosie INTEGRAL 180 tys km Źródła
Fragmentacja pocisków
Wybrane zagadnienia spektroskopii jądrowej 2004 Fragmentacja pocisków Marek Pfützner 823 18 96 pfutzner@mimuw.edu.pl http://zsj.fuw.edu.pl/pfutzner Plan wykładu 1. Wiązki radioaktywne i główne metody ich
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
Wstęp do akceleratorów
Wstęp do akceleratorów Mariusz Sapinski BE/BI CERN/Czerwiec 2009 Spis treści Co to jest przyśpieszenie Po co przyśpieszać? Jak przyśpieszać? Jak przyśpiesza natura: mechanizm Fermiego Metody przyśpieszania
Podstawy fizyki wykład 3
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
Osłabienie promieniowania gamma
Osłabienie promieniowania gamma Cel ćwiczenia Celem ćwiczenia jest badanie osłabienia wiązki promieniowania gamma przy przechodzeniu przez materię oraz wyznaczenie współczynnika osłabienia dla różnych
Promieniotwórczość naturalna. Jądro atomu i jego budowa.
Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI.
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16 Semestr 1M Przedmioty minimum programowego na Wydziale Chemii UW L.p. Przedmiot Suma godzin Wykłady Ćwiczenia Prosem.
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
I. Poziom: poziom rozszerzony (nowa formuła)
Analiza wyników egzaminu maturalnego wiosna 2017 + poprawki Przedmiot: FIZYKA I. Poziom: poziom rozszerzony (nowa formuła) 1. Zestawienie wyników. Liczba uczniów zdających - LO 6 Zdało egzamin 4 % zdawalności
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Nagroda Nobla z fizyki 2018
Jak zbudować urządzenie o mocy 1000 razy większej niż wszystkie elektrownie na świecie Nagroda Nobla z fizyki 2018 Czesław Radzewicz Uniwersytet Warszawski Nobel Prize in physics 2018 "for groundbreaking
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
Fizyka cząstek elementarnych
Wykład III Metody doświadczalne fizyki cząstek elementarnych I Źródła cząstek elementarnych Elektrony, protony i neutrony tworzą otaczającą nas materię. Aby eksperymentować z elektronami wystarczy zjonizować
O egzotycznych nuklidach i ich promieniotwórczości
O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu
LASERY NA SWOBODNYCH ELEKTRONACH. Przygotowali: Arkadiusz Robiński Mariusz Nowaczyk Mateusz Kubiak Krzysztof Konwisarz
LASERY NA SWOBODNYCH ELEKTRONACH Przygotowali: Arkadiusz Robiński Mariusz Nowaczyk Mateusz Kubiak Krzysztof Konwisarz Co to jest laser? Light Amplification by Stimulated Emission of Radiation - wzmocnienie
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny