WŁASNOŚCI ŚWIATŁA. 1. Optyka geometryczna i falowa zasady i prawa optyki geometrycznej całkowite wewnętrzne odbicie; światłowody

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WŁASNOŚCI ŚWIATŁA. 1. Optyka geometryczna i falowa zasady i prawa optyki geometrycznej całkowite wewnętrzne odbicie; światłowody"

Transkrypt

1 WŁASNOŚCI ŚWIATŁA 1. Optyka geometryczna i falowa zasady i prawa optyki geometrycznej całkowite wewnętrzne odbicie; światłowody 2. Oddziaływanie fali z materią dyfrakcja promieni X na sieci krystalicznej i techniki badania struktury oddziaływanie mikrofal z materią 3. Oddziaływanie światła z materią: zjawisko fotoelektryczne 4. Dwoista natura światła: foton i jego własności 5. Idea de Broglie: dualizm cząstkowo-falowy

2 OPTYKA Jeśli przeszkody mają duże rozmiary w porównaniu z długością fali, to można powiedzieć, że promieniowanie rozchodzi się po liniach prostych i efekty falowe nie grają roli a θ r θ względne natężenie l a= λ a=5λ l l a=10 λ 10 q (deg) λ <<rozmiar przeszkody λ ~rozmiar przeszkody optyka geometryczna optyka falowa

3 OPTYKA GEOMETRYCZNA: WSPÓŁCZYNNIK ZAŁAMANIA Zasady optyki geometrycznej: 1. światło rozchodzi się po liniach prostych, prostopadłych do czoła fali (promienie światła). 2. Światło w ośrodku przeźroczystym rozchodzi się z mniejszą prędkością niż w próżni, v=c/n, gdzie n jest współczynnikiem załamania światła. WSPÓŁCZYNNIK ZAŁAMANIA n=c/v Ośrodek współcz. zał. powietrze woda 1.33 alkohol 1.36 kwarc 1.46 szkło 1.52 polietylen 1.52 szafir 1.77 diament 2.42

4 PRAWA OPTYKI GEOMETRYCZNEJ PRAWA ODBICIA Jeżeli światło pada na powierzchnię zwierciadła, to odbija się od niego tak, że promień padający i odbity leżą w jednej płaszczyźnie, oraz że kąt padania równy jest kątowi odbicia. kąt padania α kąt odbicia α PRAWA ZAŁAMANIA (SNELLIUSA) Na granicy dwóch ośrodków światło załamuje się tak, że : sin( α) sin( β) V1 = V 2 = gdzie n 21 jest współczynnikiem załamania ośrodka 2 względem 1. n 21 = c V c V 2 1 n = n 2 1 kąt padania α ośrodek 2: V 2 ośrodek 1: V 1 kąt załamania β

5 CAŁKOWITE WEWNĘTRZNE ODBICIE; ŚWIATŁOWODY Jeśli światło przechodzi z ośrodka optycznie gęstszego (duże n) do rzadszego (małe n), to dla pewnego kata krytycznego może nastąpić całkowite wewnętrzne odbicie: światło nie może wyjść z ośrodka gęstszego optycznie Na granicy dwóch ośrodków światło załamuje się tak, że : sin( α) sin( β) n = n Ale n 2 < n 1, czyli może więc β być 90 0, nawet jeśli α jest mniejsze. Jeśli β =90 0, to następuje całkowite wewnętrzne odbicie 2 1 α ośrodek 2; n 2 odbicie ośrodek 1; n 1 β n 1 > n 2 światłowód

6 FALOWA NATURA PROMIENIOWANIA ELEKTROMAGNETYCZNEGO: ROZPROSZENIE PROMIENI RENTGENA NA SIECI KRYSTALICZNEJ wiązka padająca wiązka padająca θ d hkl elektrony wokół jądra wiązka rozproszona θ x Wiązka promieni X pada na materiał Elektrony atomów drgają i promieniują Wypadkowe natężenie pola E jest wynikiem interferencji tych fal Ponieważ w krysztale atomy ułożone są regularnie, dlatego promieniujące elektrony (też ułożone regularnie) zachowują się jak układ wielu szczelin: atomowa siatka dyfrakcyjna

7 PRAWO BRAGGA d hkl wiązka padająca θ θ x ANALIZA BRAGGA Różnica dróg optycznych między promieniami odbitymi na sąsiednich płaszczyznach: =2x ale x/d hkl = sin θ x=d hkl sin θ =2x = 2 d hkl sin θ Promienie się wzmacniają, jeśli równa jest wielokrotności długości fali: Intensity (%) 2,2, θ ( Ĺ) θ [20,60 ] B = 2.0 Ĺ o lampa Cu, λ= ĺ θ 2θ 2θ prawo Bragga nλ = 2 d hkl sin θ 30 2,2,2 4,2, ,2,2 4,0,0 4,4,2 2 θ ( )

8 RÓŻNE METODY OBSERWACJI STRUKTUR KRYSTALICZNYCH Aby doprowadzić do spełnienia warunku Bragga nλ = 2 d hkl sin θ trzeba zmienić θ lub λ Metoda Lauego: monokryształ białe promieniowanie zastosowanie:orient acja monokryształów Metoda Debye'a- Scherrera polikryształy promieniowanie monochromatyczne zastosowanie:anali za fazowa monochromator lampa rentgenowska obrót 2θ kolimator próbka obrót θ 2θ

9 PROMIENIOWANIE SYNCHROTRONOWE

10 SYNCHROTRON: CO MOŻNA MIERZYĆ Wiele własności materiału może być wyjaśnione w oparciu o ich strukturę mikroskopową, a ta może być zbadana techniką dyfrakcji promieni X, czasami na bardzo małych próbkach i przeprowadzaną w czasie ruchu Zastosowanie: Medycyna, Biologia, Fizyka, Mechanika i Nauka o materiałach Materiałoznawstwo: polimery (pajęczyna) Rezultat: Znaleziono związek własności elastycznych z ułożeniem łańcuchów atomów Badanie zmęczenia materiałów materiał bez naprężeń materiał z naprężeniem pękanie

11 ODDZIAŁYWANIE MIKROFAL Z MATERIĄ Mikrofale (λ= cm ) mają częstość bliską częstości drgań molekuł Mikrofale mogą pobudzić niektóre molekuły do drgań, szczególnie te, które są dipolami Woda podlega drganiom pod wpływem padającego promieniowania elektromagnetycznego z zakresu mikrofalowego drgania wody Ta własność wykorzystana jest w kuchniach mikrofalowych

12 ODDZIAŁYWANIE CZĄSTECZEK WODY: PODGRZEWANIE Cząsteczki wody oddziałują na siebie. Bezpośrednie zderzenia Przyciąganie dipoli (wiązanie wodorowe) Ruch drgający cząsteczek wody jest tłumiony: z powodu oddziaływania między cząsteczkami energia fali zostaje zamieniona na wszystkie rodzaje drgań, co powoduje zwiększenie temperatury tarcie

13 ZJAWISKO FOTOELEKTRYCZNE Polega na tym, że jeśli powierzchnię metalu oświetla się światłem, to z metalu wybijane są elektrony. światło płyta metalowa elektro ny naładowany elektroskop Energia elektronu w metalu: elektron jest w metalu związany jego energia będzie ujemna względem energii elektronu daleko od metalu przyjmowanej jako energia odniesienia. E metal zewnętrze metalu powierzchnia metalu Aby elektron z metalu wyrzucić konieczne jest wykonanie pracy: pracy wyjścia. W energia elektronów na zewnętrz metalu energia elektronów wewnątrz metalu

14 ZJAWISKO FOTOELEKTRYCZNE: EKSPERYMENT światło wzrastające natężenie wzrastająca częstość - + elektrony napięcie odcięcia napięcie odcięcia - + napięcie opóźniające napięcie opóźniające fotoefekt 1)brak jest progu natężenia światła; liczba elektronów zależy od natężenia. 2)energia elektronów nie zależy od natężenia energia kinetyczna elektronów 3)istnieje próg f 0 poniżej którego brak jest wybitych e, natomiast powyżej f 0 energia elektronów rośnie z f. f 0 częstość

15 ZJAWISKO FOTOELEKTRYCZNE: WYJAŚNIENIE EINSTEINA Nie jest możliwe wyjaśnienie zjawiska fotoelektrycznego w oparciu o elektrodynamikę klasyczną WYJAŚNIENIE EINSTEINA Einstein: światło jest zbiorem porcji energii: kwantów o energii E=hf :fotonów Fotony zachowują się jak cząstki. Jeśli foton zderza się z elektronem to może mu przekazać całą swoją energię. Część energii kwantu potrzebna jest do wyjścia elektronu z metalu, pozostała część zwiększa jego energię kinetyczną (już elektronu swobodnego) elektron pochłonie foton wychodząc na zewnątrz tylko wtedy, gdy energia fotonu przynajmniej wyniesie W 0, a nadwyżka energii fotonu ponad W 0 będzie energią kinetyczną elektronu: hf=w 0 +E K E metal W 0 E K zewnętrze metalu powierzchnia metalu energia elektronów na zewnętrz metalu energia elektronów wewnątrz metalu

16 ŚWIATŁO: CZĄSTKI, CZY FALE? FALE CZĄSTKI Zjawisko fotoelektryczne: Zjawisko Comptona: Promieniowanie ciała doskonale czarnego E = hf E K = hf-w 0 Ulega interferencji Światło-fotony nie można sklasyfikować jako wyłącznie fale, albo wyłącznie cząstki. Światło jest czymś do czego opisu konieczny jest inny język

17 WŁASNOŚCI FOTONU DŁUGOŚĆ FALI λ jest określona eksperymentem dyfrakcyjnym ENERGIA E = hf = hc λ Przykład: Obliczyć energię czerwonego światła emitowanego przez wodór λ=656nm E = hc/ λ=(6.63*10-34 Js*3*10 8 m/s)/656*10-9 m=3.03*10-19 J=1.89eV Elektronowolt: inna jednostka energii V= 1V Jaką prace trzeba wykonać, aby elektron przesunąć między punktami o różnicy potencjałów 1V W=e V= 1.6*10-19 C* 1V= 1.6*10-19 CJ/C= 1.6*10-19 J=1eV 1eV= 1.6*10-19 J

18 WŁASNOŚCI FOTONU MASA E = hf=mc 2 hf mfoton = 2 c = h cλ Ponieważ foton ma energię, to także ma masę, chociaż jego masa spoczynkowa=0 Przykład: Galaktyka, działając jak soczewka, może dać wielokrotne obrazy odległego kwazara soczewkowanie grawitacyjne: ponieważ masa przyciąga grawitacyjnie fotony, to możliwa jest obserwacja obiektu znajdującego się za masywną galaktyką PĘD p=mc p = m foton c = h λ

19 CZY DZIĘKI EKSPERYMENTOWI WIEMY JUŻ WSZYSTKO?

20 CZY DZIĘKI EKSPERYMENTOWI WIEMY JUŻ WSZYSTKO? Nie wiemy naprawdę jaki jest obiekt który obserwujemy. Wynik doświadczenia raz światło widzimy jako falę a raz jako zbiór cząstek- to wszystko co o obiektach mikroświata możemy powiedzieć. Są czymś, czego nie potrafimy sobie wyobrazić. I dlatego do ich opisu potrzebny jest nowy język

21 EKSPERYMENT Z DWIEMA SZCZELINAMI: CZĄSTKI Prawdopodob. dojścia kuli do miejsca x ściany tylko przez szczelinę 1: P 1 Prawdopodob. dojścia kuli do miejsca x ściany tylko przez szczelinę 2: P 2 Prawdopodob. dojścia kuli do miejsca x ściany przez szczelinę 1 i 2: P=P1+P2 CZĄSTKI cała kula przybywa do ekranu, brak interferencji karabin natężenie prawdop. ~P 1 +P 2

22 EKSPERYMENT Z DWIEMA SZCZELINAMI: ŚWIATŁO natężenie światła E 0 1 = E sin (kx ωt) natężenie ~(E 1 ) 2 E 0 2 = E sin (kx ωt) natężenie ~(E 1 ) 2

23 EKSPERYMENT Z DWIEMA SZCZELINAMI: ŚWIATŁO natężenie światła DETEKTOR: oko tylko część energii w punkcie ekranu, interferencja DETEKTOR: zjaw. fotoelektryczne światło dochodzi grudkami, interferencja natężenie ~(E 1 +E 2 ) 2 Gdyby pierwszym eksperymentem ze światłem było zjawisko fotoelektryczne, lub zjawisko Comptona, to wynik interferencji na 2 szczelinach byłby zupełnie niezrozumiały swiatło

24 IDEA DE BROGLIE A Wszystkie cząstki mikroświata mają tę własność, że czasem, w niektórych eksperymentach zachowują się jak fale, a czasem jak zwykłe cząstki. Wzory p obowiązują zawsze = h λ E = hf Potrzebny jest nowy język i nowy aparat matematyczny do opisu takich tworów MECHANIKA KWANTOWA

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Ćwiczenia z mikroskopii optycznej

Ćwiczenia z mikroskopii optycznej Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017 Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne

Bardziej szczegółowo

Podstawy fizyki sezon Dualizm światła i materii

Podstawy fizyki sezon Dualizm światła i materii Podstawy fizyki sezon 2 10. Dualizm światła i materii Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha W poprzednim

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego

Bardziej szczegółowo

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak

FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Matura z fizyki i astronomii 2012

Matura z fizyki i astronomii 2012 Matura z fizyki i astronomii 2012 Arkusz A1 poziom podstawowy Odpowiedzi do zadań z serwisu filoma.org fizyka matura i zadania na filoma.org 1 2 3 4 5 6 7 8 9 10 D B C D C D A C C B Zadanie 11 a) 3 b)

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13 1 ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem. 2 2012/13 Ruch falowy 1. Co to jest fala mechaniczna? Podaj warunki niezbędne do zaobserwowania rozchodzenia się fali mechanicznej. 2. Jaka wielkość

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Kwantowa teoria promieniowania

Kwantowa teoria promieniowania Rozdział 3 Kwantowa teoria promieniowania 3.1 Zjawisko fotoelektryczne 3.1.1 Kwanty promieniowania Szereg faktów doświadczalnych wskazuje, że promieniowanie elektromagnetyczne, w szczególności światło,

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest

Bardziej szczegółowo

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz] ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Ładunek elektryczny jest skwantowany

Ładunek elektryczny jest skwantowany 1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek

Bardziej szczegółowo

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności:

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności: 1. Fale elektromagnetyczne. Światło. Fala elektromagnetyczna to zaburzenie pola elektromagnetycznego rozprzestrzeniające się w przestrzeni ze skończoną prędkością i unoszące energię. Fale elektromagnetyczne

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona Fizyka kwantowa - po co? Jeśli chcemy badać zjawiska, które zachodzą w skali mikro -

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu. Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn

Bardziej szczegółowo

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)

Bardziej szczegółowo

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja

Bardziej szczegółowo

DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH

DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 7 DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis

Bardziej szczegółowo

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017 Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

falowa natura materii

falowa natura materii 10 listopada 2016 1 Fale de Broglie a Dyfrakcja promieni X 1895 promieniowanie X dopiero w 1912 dowód na ich falowa naturę - to promieniowanie elektromagnetyczne zjawiska falowe: ugięcia, dyfrakcji - trudne:

Bardziej szczegółowo

RENTGENOWSKA ANALIZA STRUKTURALNA

RENTGENOWSKA ANALIZA STRUKTURALNA LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 5 Instrukcja zawiera: RENTGENOWSKA ANALIZA STRUKTURALNA 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Sposób przygotowania

Bardziej szczegółowo

Na ostatnim wykładzie

Na ostatnim wykładzie Na ostatnim wykładzie Falę elektromagnetyczną możemy przedstawić podając jej kierunek rozchodzenia się (promień) albo czoła fali (umowne powierzchnie, na których wartość natężenia pola elektrycznego jest

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 4 24 października 2016 A.F.Żarnecki

Bardziej szczegółowo