XXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne
|
|
- Weronika Markiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 XXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne Podaj i krótko uzasadnij odpowiedź na siedem wybranych przez siebie punktów spośród poniższych dziesięciu: ZADANIE D2 Nazwa zadania: Rurka w kształcie litery U 1) Sytuacja początkowa pokazana jest na rysunku 5. W zatopionej z obu stron rurce w kształcie litery U znajduje się woda. Układ znajduje się w termostacie. W lewym ramieniu rurki nad wodą znajduje się tlen, a w prawym azot. Ciśnienia obu gazów są jednakowe. Czy układ znajduje się w równowadze termodynamicznej? Jeżeli nie, to jak będzie wyglądała sytuacja po bardzo długim czasie. Nazwa zadania: Kulka między okładkami kondensatora 2) Jeżeli między okładki kondensatora wprowadzimy metalową kulę, tak jak na rysunku 6, tak jak pojemność kondensatora: a. zmaleje, b. nie zmieni się, c. wzrośnie Rys. 5 Rys. 6 Nazwa zadania: Bańka mydlana na powierzchni szkła
2 3) Na zwilżonej wodą z mydłem powierzchni szkła zrobiono bańkę mydlaną. Jaki kąt tworzy powierzchnia bańki z szybą, w miejscu zetknięcia (kątα na rysunku 7): a. ostry, b. prosty, d. rozwarty. Nazwa zadania: Kulka uderzająca w inne nieruchome kulki 4) W n jednakowych, jednorodnych, stykających się, nieruchomych kulek uderza z prędkością v kulka (n+1)-sza. Środki wszystkich Rys. 7 kulek leżą na jednej prostej. Zderzenie kulek jest zderzeniem sprężystym. Czy informacje powyższe pozwalają jednoznacznie wyznaczyć prędkość kulek po zderzeniu dla n > 1 (rys. 8)? Zakładamy, że kulki nie obracają się ani przed zderzeniem, ani po zderzeniu. Rys. 8 Rys.9 Nazwa zadania: Wiązka światła padająca na polaryzatory 5) Wiązka światła niespolaryzowanego o natężeniu l 0 pada prostopadle na układ polaryzatorów ustawionych jeden za drugim, tak jak na rysunku 9, Jeżeli nie zmieniając orientacji przestrzennej polaryzatorów P 2 i P 3 zamienimy je miejscami, to natężenie l 1 wiązki wychodzącej z układu a. nie zmieni się, b. może się zmienić. Nazwa zadania: Promień światła padający na izotropową kule szklaną 6) Dana jest jednorodna, izotropowa kula szklana o współczynniku załamania n > 1 znajdująca się w powietrzu o współczynniku załamania równym 1. Na kulę tę puszczamy promień światła: Promień padający, promień wychodzący z kuli i promień biegnący wewnątrz kuli a. leżą w jednej płaszczyźnie, b. mogą nie leżeć w jednej płaszczyźnie. 7) Moment bezwładności jednorodnej elipsoidy obrotowej o półosiach a, b i masie m względem osi symetrii jest (rys. 10). a. większy niż b. taki sam jak c. mniejszy niż moment bezwładności jednorodnej kuli o masie m i promieniu a względem osi przechodzącej przez jej środek. Nazwa zadania: Wiązka światła monochromatycznego padająca na Rys. 10
3 siatkę dyfrakcyjną 8) Dana jest siatka dyfrakcyjna, na którą puszczamy wiązkę światła monochromatycznego. Na ekranie za siatką a. zawsze powstaje nieskończenie wiele coraz słabszych obrazów, b. powstaje tylko skończona liczba obrazów zależna od stałej siatki i długości fali światła. 9) Czy każdy proces termodynamiczny przebiegający dostatecznie wolno jest procesem odwracalnym? Nazwa zadania: Ładunek elektryczny umieszczony w pobliżu wirujących tarcz miedzianych 10) Dane są dwie jednakowe, jednakowo zawieszone wirujące tarcze miedziane. Początkowe prędkości kątowe tarcz są równe. W pobliżu jednej z nich umieszczono ładunek elektryczny (rys. 11). Która z tarcz powinna się szybciej zatrzymać? Rys. 11 ROZWIĄZANIE ZADANIA D2 1) Układ wprawdzie znajduje się w równowadze mechanicznej, ale nie jest to stan równowagi termodynamicznej. Zarówno azot jak i tlen rozpuszczają się nieco w wodzie. Rozpuszczone gazy dyfundują do przeciwległego ramienia, gdzie zachodzi częściowo proces odwrotny. W rezultacie tlen z lewego ramienia stopniowo przechodzi do prawego, a azot odwrotnie z prawego do lewego. Proces ten zachodzić będzie dotąd, aż po lewej i prawej stronie powstanie laka sama mieszanina tlenu z azotem. Wtedy szybkość przechodzenia każdego z gazów w jedną i drugą stronę będzie taka sama. 2) Pojemność kondensatora wzrośnie wskutek tego, że metalowa kula ulega polaryzacji. Jakościowo wprowadzenie do kondensatora kuli metalowej przypomina wstawienie doń dielektryka. 3) Prawidłową odpowiedź podaje punkt b. Rozkład sil napięcia powierzchniowego na styku" bańki z cieczą pokrywającą szkło pokazano na rysunku 12. Wszystkie cztery siły działające na element długości obwodu mają tę samą wartość Rys. 12 charakterystyczna, dla wody z mydłem. Siły poziome równoważą się wzajemnie. Pozostałe dwie siły (równoległe) nie mogą mieć składowej poziomej: muszą one być pionowe. W przeciwnym bowiem wypadku błonka bańki musiałaby się przesunąć. Oznacza to, że
4 kątα musi być kątem prostym. 4) Nie. podane informacje nie pozwalają wyznaczyć prędkości kul po zderzeniu. Informacje te nie podają mechanizmu zderzenia kul. Jedyne, co można zrobić, to skorzystać z zasad zachowania pędu i energii. Otrzymujemy stąd 2 równania, a niewiadomych prędkości po zderzeniu mamy n+1. Dla n > 1 niewiadomych jest więcej niż równań. Do wyznaczenia prędkości kul po zderzeniu potrzebne byłyby dodatkowe wiadomości o materiale, z którego zrobiono kule, o ich wielkości itp. 5) Prawidłową odpowiedź podaje punkt b. Oto przykład. Niech P 3 będzie polaryzatorem o osi przepuszczania prostopadłej do osi przepuszczania polaryzatora P 1, a oś przepuszczania P 2 niech tworzy z osiami przepuszczania P 1 i P 2 kąt 45. Jasne jest. że W konfiguracji P 1 P 2 P 3 przez układ przejdzie część światła (spróbujcie ją policzyć), bo żadne 2 kolejne polaryzatory nie są skrzyżowane, natomiast w konfiguracji P 1 P 2 P 3 przez układ wcale światło nie przejdzie, gdyż światło, które przejdzie przez P 1 zostanie zatrzymane przez P 3. 6) Poprawną odpowiedź podano w punkcie a. Płaszczyzną padania jest płaszczyzna wyznaczona przez promień kuli przechodzący przez punkt padania oraz promień padający. Promień biegnący w środku kuli leży w tej płaszczyźnie, zgodnie z prawem załamania. Płaszczyzna padania musi więc zawierać również, promień kuli przechodzący przez ten jej punkt, w którym promień światła wychodzi z kuli. Z prawa załamania wynika dalej, że promień wychodzący z kuli musi leżeć w płaszczyźnie wyznaczonej przez promień światła biegnący w kuli i promień kuli w punkcie padania. Tak więc ostatecznie promień padający, promień biegnący w środku kuli i promień wychodzący z kuli leżą w tej samej płaszczyźnie (płaszczyźnie padania). 7) Poprawna jest odpowiedź b. Wiadomo, że jednorodne rozciągnięcie kuli daje w rezultacie elipsoidę obrotową. Odwrotnie, przez odpowiednie rozciągnięcie lub skurczenie elipsoidy obrotowej wzdłuż osi obrotu można otrzymać kulę. Jest oczywiste, że rozciągnięcie bądź skurczenie się układu wzdłuż osi obrotu nie ma wpływu na jego moment bezwładności względem tej osi. Zatem przez, odpowiednie skurczenie lub wydłużenie można elipsoidę rozważaną w tekście przekształcić w kulę nie zmieniając przy tym jednorodności ciała i nie zmieniając jego momentu bezwładności. 8) Poprawna odpowiedź jest zawarta w punkcie b. Na ekranie może powstać tylko skończona liczba obrazów, gdyż różnica dróg optycznych od dowolnego punktu ekranu do dwu sąsiednich szczelin nie może przekraczać odległości a między szczelinami. Maksymalny rząd obrazu dany jest przez maksymalną wartość liczby całkowitej n spełniającej warunek n λ < a 0 gdzie λ jest długością fali światła. 9) Nie każdy bardzo wolny proces termodynamiczny jest procesem odwracalnym. Przykłady procesów nieodwracalnych: a) Jeżeli w przegrodzie, oddzielającej dwie części naczynia zawierającego dwa różne gazy pod tym samym ciśnieniem, zrobimy niewielki otworek, to gazy zaczną się powoli mieszać. Szybkość mieszania się gazów będzie tym mniejsza im otworek będzie mniejszy. Niezależnie jednak od tego. czy szybkość mieszania
5 będzie duża, czy bardzo mała, proces mieszania gazów jest procesem nieodwracalnym. b) Jeżeli w przegrodzie oddzielającej dwie części naczynia, z których jedna zawiera gaz a druga jest pusta, zrobimy mały otworek, to gaz z jednej części zacznie powoli przechodzić do drugiej i w stanie końcowym w obu częściach naczynia ciśnienie będzie takie samo. Proces rozprężania gazu jest oczywiście również procesem nieodwracalnym. 10) Szybciej zatrzyma się tarcza, przy której umieszczono ładunek elektryczny (tarcza lewa). Rozważmy przypadek, gdy ładunek znajdujący się przy tarczy ma znak dodatni. Ładunek ten wskutek oddziaływania elektrostatycznego będzie polaryzował tarczę: nośniki ładunku ujemnego będą gromadzić się w większym stopniu w lewej części, a nośniki ładunku dodatniego W prawej (rys. 13). Względem tarczy nośniki zgromadzonego lewej i prawej stronie będą się poruszać; ale ruch nośników względem tarczy musi powodować dodatkowe jej opóźnienie wskutek oporu lepkiego, jakiego doznają nośniki w swym ruchu względem tarczy. Rys. 13 Źródło: Zadanie pochodzi z Druk z OF 77/78R. Komitet Okregowy Olimpiady Fizycznej w Szczecinie
XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Wybierz lub podaj i krótko uzasadnij właściwą odpowiedź na dowolnie przez siebie wybrane siedem spośród dziesięciu poniższych punktów: ZADANIE
XLIII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLIII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne ZADANIE T Nazwa zadania: Obraz widziany przez rybę A) W basenie pod wodą zanurzono prostopadle do powierzchni wody świecący, kwadratowy ekran,
Bryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE
DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
XXXVIII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXVIII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Zadanie T A. Wykaż, że jeżeli liczby a i b spełnią równanie soczewki: + (fconst) a b f to wszystkie proste przechodzące przez punkty (a,0) i
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
PRZED KONKURSEM CZĘŚĆ 13
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Rozwiąż dowolnie przez siebie wybrane dwa zadania spośród poniższych trzech: Nazwa zadania: ZADANIE T A. Oblicz moment bezwładności jednorodnego
Waldemar GORZKOWSKI Andrzej KOTLICKI OLIMPIADA FIZYCZNA. Wybrane zadania doświadczalne z rozwiązaniami
Waldemar GORZKOWSKI Andrzej KOTLICKI OLIMPIADA FIZYCZNA Wybrane zadania doświadczalne z rozwiązaniami Stowarzyszenie Symetria i Własności Strukturalne Poznań 1994 Copyright by W. Gorzkowski and A. Kotlicki
Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami
Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,
Wyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
LXVIII OLIMPIADA FIZYCZNA
LXVIII OLIMPIADA FIZYCZNA ROZWIĄZANIA ZADAŃ ZAWODÓW I STOPNIA CZĘŚĆ I Rozwiązanie zadania 1. a) Najszybsza całkowita zmiana prędkości zachodzi wtedy, gdy przyspieszenie jest maksymalne i skierowanie zgodnie
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d
Jak rozwiązać test? Każde pytanie ma podane cztery możliwe odpowiedzi oznaczone jako a, b, c, d. Należy wskazać czy dana odpowiedź, w świetle zadanego pytania, jest prawdziwa czy fałszywa, lub zrezygnować
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)
Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO II ETAP REJONOWY 6 grudnia 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wszystkich zadań masz 90 minut. 2. Pisz długopisem/piórem
Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap wojewódzki
UWAGA: W zadaniach o numerach od 1 do 4 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas zbliżania
Rozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Nazwa zadania: ZADANIE T Wybierz lub podaj i krótko uzasadnij odpowiedź na dowolnie wybrane siedem spośród podanych niżej dziesięciu punktów: A.
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).
SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo
MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.
MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.
1. Odpowiedź c) 2. Odpowiedź d) Przysłaniając połowę soczewki zmniejszamy strumień światła, który przez nią przechodzi. 3.
1. Odpowiedź c) Obraz soczewki będzie zielony. Każdy punkt obrazu powstaje przez poprowadzenie promieni przechodzących przez wszystkie części soczewki. Suma czerwonego i zielonego odbierana jest jako kolor
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)
Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.
Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r
1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Elektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY
36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Punktacja za zadania Zadanie Zadanie Zadanie Zadanie Zadanie Zadanie Zadanie Razem 1. 2. 3. 4. 5. 6. 7. 3 p. 4 p. 6 p. 6 p. 7 p. 7 p. 7 p. 40 p. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2013 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
MECHANIKA 2. Teoria uderzenia
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia Prowadzący: dr Krzysztof Polko DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Tarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
Energia potencjalna pola elektrostatycznego ładunku punktowego
Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst
WOJEWÓDZKI KONKURS FIZYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA
Nie przyznaje się połówek. WOJEWÓDZKI KONKURS FIZYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA Przykładowe poprawne odpowiedzi i schemat punktowania otwarte W ch, za które przewidziano maksymalnie jeden
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
XXIX OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXIX OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Podaj lub wybierz i krótko uzasadnij odpowiedź na siedem spośród dziesięciu dowolnie wybranych przez siebie punktów: ZADANIE T2 A. Dana jest jednorodna
KARTOTEKA TESTU I SCHEMAT OCENIANIA - gimnazjum - etap wojewódzki. Rodzaj/forma zadania. Max liczba pkt. zamknięte 1 1 p. poprawna odpowiedź
Nr zada Cele ogólne nia 1 III. Wskazywanie w otaczającej 2 I. Wykorzystanie wielkości fizycznych 3 III. Wskazywanie w otaczającej 4 I. Wykorzystanie wielkości fizycznych 5 III. Wskazywanie w otaczającej
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Przykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ Czas rozwiązywania zadań 90 minut IMIĘ I NAZWISKO UCZNIA (wpisuje komisja konkursowa po rozkodowaniu pracy!) KOD UCZNIA:
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015, ETAP REJONOWY
WOJEWÓDZKI KONKURSZ FIZYKI DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2014/2015 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO
I Pracownia Fizyczna Dr Urszula Majewska dla Biologii
Ćw. 6/7 Wyznaczanie gęstości cieczy za pomocą wagi Mohra. Wyznaczanie gęstości ciał stałych metodą hydrostatyczną. 1. Gęstość ciała. 2. Ciśnienie hydrostatyczne. Prawo Pascala. 3. Prawo Archimedesa. 4.
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 09 lutego 2015
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI 09 lutego 2015 Ważne informacje: 1. Masz 120 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
XXV OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadania teoretyczne
XXV OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadania teoretyczne Nazwa zadania: Powtórka z fizyki ZADANIE T2 Wybierz lub podaj i krótko uzasadnij właściwą odpowiedź. 1) Cienką powłokę w kształcie elipsoidy obrotowej
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
Definicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło