Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii
|
|
- Sebastian Marek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii Uniwersytet Medyczny we Wrocławiu, Katedra Biofizyki, Samodzielna Pracownia Biofizyki Układu Nerwowego Uniwersytet Wrocławski, Zakład Fizjologii Molekularnej Zwierząt, Instytut Biologii Eksperymentalnej Opisanie najwaŝniejszych tez mojego wystąpienia na Jesiennej Szkole Problemy Dydaktyki Fizyki postanowiłem przedstawić w dwóch częściach. W pierwszej pragnę podzielić się kilkoma ogólnymi przemyśleniami dotyczącymi nauczania fizyki i jej roli zarówno w postrzeganiu otaczającej nas rzeczywistości, jak i w czysto pragmatycznym stwarzaniu moŝliwie dobrych szans edukacyjnych dla młodych ludzi. Przemyślenia te prezentuję nie z pozycji profesjonalnego pedagoga czy specjalisty w dziedzinie metodologii nauczania. Moje doświadczenie to wieloletnie nauczanie akademickie przedmiotów spokrewnionych z fizyką (biofizyka i neurofizjologia), które jednak nie słuŝą nauczaniu fizyki jako takiej, lecz jej wykorzystaniu do zgłębiania zagadnień z dziedziny biologii i medycyny. Mniemam, Ŝe to dobra okazja, by ocenić, na ile przydatne jest nauczanie fizyki w poszerzaniu horyzontów nie tylko z tego przedmiotu, ale równieŝ w dziedzinach często postrzeganych jako od fizyki bardzo odległe. W drugiej części chciałbym przytoczyć kilka przykładów ukazujących aktualne problemy w badaniach procesów kognitywnych (w tym uczenie się i zapamiętywanie) na poziomie neuronów i molekuł. Jednym ze znaków czasu współczesnej nauki jest to, Ŝe przynajmniej niektóre aspekty naszego poznania coraz lepiej potrafimy opisać nie tylko językiem psychologii, ale równieŝ fizyki i chemii. Temu właśnie zagadnieniu poświęcona jest druga część niniejszego opracowania. Okno na Świat i formacyjny drogowskaz Konferencja z cyklu Problemy dydaktyki fizyki, jak wynika z samej nazwy, dotyczy nauczania konkretnego przedmiotu, którego specyfika wymaga od nauczycieli i pedagogów szczególnego przygotowania, wymiany doświadczeń, opracowania długofalowej strategii nauczania, dialogu z nauczycielami innych kierunków, itd. Dobrze nauczana fizyka moŝe stać się dla ucznia swego rodzaju oknem, przez które postrzega on świat, jako piękną kompozycję, poddającą się rozumowemu poznaniu dzięki zastosowaniu (często nieskomplikowanych) praw. Dzieci i młodzieŝ niezwykle często zadają pytanie dlaczego?, w bardzo róŝnych zresztą kwestiach. Ciekawość poznania mechanizmów otaczających nas zjawisk jest prawdopodobnie jednym z najczęstszych i najsilniejszych bodźców do formułowania tego pytania. Zaspokajanie ciekawości dotyczącej zjawisk w otaczającym nas świecie to oczywiście nie jedyny cel nauczania fizyki. Z pew-
2 12 nością atut tej wrodzonej ciekawości świata i jego prawidłowości jest trudnym do przecenienia sprzymierzeńcem w procesie nauczania tego przedmiotu i nale- Ŝy go maksymalnie wykorzystać, jednakŝe oprócz niej, jest jeszcze kilka innych, bardzo waŝnych wątków, na dwa z nich (są one jednak integralnie ze sobą związane) chciałem zwrócić uwagę. W ostatnich dziesięcioleciach coraz bardziej uświadamiamy sobie potrzebę syntezy wiedzy, którą rozwijamy w ramach róŝnych dyscyplin szczegółowych, które (często mylnie) klasyfikujemy jako odrębne dziedziny. Przykładowo, jeszcze kilkadziesiąt lat temu psychologia (w tym psychologia poznania) i biologia komórkowa czy neurofizjologia traktowane były jako osobne dyscypliny nauki. Dzisiaj zadajemy sobie coraz śmielej pytania, jakie są fizjologiczne (w tym komórkowe i molekularne opisywane językiem fizyki i chemii) mechanizmy uczenia się i zapamiętywania. A zatem niezwykle waŝną wartość dodaną do naszej wiedzy na ten podstawowy dla nas temat moŝemy uzyskać korzystając z osiągnięć tych dwóch, pozornie odrębnych dyscyplin. Nieuchronnie, nauka odpowiadająca na waŝne i podstawowe pytania staje się coraz bardziej interdyscyplinarna. Trend ten widać równieŝ bardzo wyraźnie na Uniwersytecie Wrocławskim, gdzie juŝ od 20 lat z duŝym powodzeniem funkcjonuje Studium Generale stawiające sobie za cel ukazanie uniwersalności i interdyscyplinarności poznania. Co tydzień, przedstawiciel określonej dziedziny wygłasza wykład dla bardzo szerokiego spektrum środowiska akademickiego przybliŝając wybrane, waŝne osiągnięcia swojej dziedziny. Po wykładzie następuje dyskusja, która pozwala jeszcze bardziej przybliŝyć tematykę słuchaczom, nasunąć pomysły do współpracy i często przekonać się, Ŝe poszczególne zagadnienia są bliŝsze naszym zainteresowaniom niŝ nam się to przedtem wydawało. Przekonujemy się, Ŝe głębokie poznanie rzeczywistości nie jest sumą rozłącznych zbiorów szczegółowych faktów, których uczymy się pod róŝnymi etykietami. Prawdziwe poznanie zawiera w sobie zawsze pierwiastek uniwersalności. Jak te ogólne uwagi mają się do nauczania fizyki? Jak juŝ wspomniałem, ogólnie rozumiana i wrodzona ciekawość świata jest nieocenionym sojusznikiem w nauczaniu tego przedmiotu. Jak ją wykorzystać w codziennym nauczaniu szkolnym i jak uświadomić uczniom piękno interdyscyplinarnego poznania oto jest pytanie. WaŜnym aspektem interdyscyplinarności w nauczaniu szkolnym powinno być uświadomienie, Ŝe przedmioty poznania w ramach poszczególnych kursów zazębiają się wzajemnie. Te same prawa fizyki, które uczniowie poznają na prostych modelach stosują się do Ŝywych organizmów. Zapamiętywanie przez mózg, choć róŝni się od zjawisk wykorzystywanych w klasycznych komputerach, jest zjawiskiem coraz lepiej poznawalnym dzięki narzędziom badawczym stosowanym w fizyce, chemii, biologii czy informatyce. Mało co tak motywuje do wysiłku intelektualnego, jak dostrzeŝenie celu, który jest tegoŝ wysiłku godzien. Nie zawsze jednak, szczególnie na etapie przyswajania sobie podstaw, da się skutecznie zafascynować młodego ucznia perspektywą pełniejszego, interdyscyplinarnego poznania tajników otaczającej
3 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 13 nas rzeczywistości. Aby uczeń dostrzegł potrzebę nauczania-uczenia się fizyki czy innych przedmiotów musi coś na jej temat wiedzieć przynajmniej na tyle, by wyobrazić sobie do czego słuŝy proponowany mu nowy zakres wiedzy i do czego tak naprawdę moŝe się on przydać. Te pierwsze kroki bywają często decydujące, jeśli idzie o nastawienie do nauczania tego przedmiotu. Chyba nie ma prostej metody, jak wprowadzić ucznia w niełatwe zagadnienia fizyki, tak by uznał, Ŝe warto ten trud podjąć. Z drugiej jednak strony, nie łudźmy się, Ŝe da się tak nauczać fizyki, by uczeń niezmiennie pozostawał w stanie fascynacji. Prędzej czy później muszą pojawić się problemy ze zrozumieniem elektryczności i magnetyzmu, termodynamiki czy praw dynamiki i mechaniki. Stan frustracji ucznia pogłębia się, gdy mimo wkładanego wysiłku na kolejnych sprawdzianach nie widać postępu. Problem urasta do rangi dramatu, gdy uczeń, kosztem duŝego wysiłku, pamięciowo stara się opanować materiał, a efekt jest odwrotny do zamierzonego. Od talentu dydaktycznego nauczyciela zaleŝy jak szybko dostrzeŝe problem i zdoła pomóc uczniowi w rozwiązaniu tych problemów. Niekiedy problemy ze skutecznym pojęciowym nauczaniem fizyki są tak duŝe, Ŝe występuje pokusa, czy nie odpuścić sobie nauczania tego przedmiotu w szkole, ograniczając je do profilowanych liceów. Śledząc losy nauczania przedmiotów ścisłych w naszym Kraju, w ostatnich dwóch dziesięcioleciach, odnosiłem wraŝenie, Ŝe takiej pokusie ulegali nie tylko uczniowie (co moŝna jeszcze zrozumieć), ale równieŝ osoby stojące za permanentną reformą nauczania, która na długie lata powaŝnie ograniczyła powszechność nauczania fizyki i matematyki. Wiele juŝ napisano na temat konsekwencji tych decyzji. Ja równieŝ mogłem się o tym przekonać prowadząc przez ostatnie 20 lat zajęcia z biofizyki i od kilku lat z neurobiologii ze studentami na róŝnych kierunkach. Celem nauczania biofizyki, jak juŝ wspomniałem, nie jest fizyka jako taka, ale wykorzystanie elementarnej fizyki (głównie szkolnej) do pogłębienia wiedzy z fizjologii i podstaw wybranych metod diagnostycznych i terapeutycznych. Neurobiologia, a szczególnie neurofizjologia natomiast musi sięgnąć do opisu fizycznego, by poznać i opisać sygnały elektrochemiczne, bez których nasz mózg nie mógłby funkcjonować. Przy opisie tych zjawisk nie sposób ograniczyć się do jakościowego opisu (posługując się terminami typu: szybki, szybszy, wykazujący cechy koordynacji, ). Finezyjną precyzję sygnałów przekazywanych między neuronami naleŝy opisać językiem, który tę precyzję jest w stanie opisać moŝliwie wiernie. Czy chcemy czy nie musimy sięgnąć do praw fizyki i równań matematycznych i wtedy dopiero będziemy mieli szansę poznać mechanizm tych sygnałów, jak równieŝ kod, którym artykułowany jest język neuronów i sieci neuronalnych, który steruje funkcjami naszego organizmu. W mojej praktyce nauczyciela akademickiego korelacja między coraz bardziej ograniczonym nauczaniem fizyki i matematyki a wynikami nauczania tych przedmiotów była bardzo wyraźnie widoczna. Nierzadko studenci, którzy napotykali na problemy sami dochodzili do wniosku, Ŝe to przyzwolenie na odpuszczenie sobie nauczania fizyki i mate-
4 14 matyki wyrządził ich edukacji bardzo duŝe szkody. Nie wiedzieli jednak o tym, gdy pozwolono im zrezygnować z tych przedmiotów. Wtedy, gdy pojawiła się moŝliwość rezygnacji z nauki tych przedmiotów, większość z nich była wręcz zadowolona, szczególnie, Ŝe w końcu zdecydowały o tym mądre gremia, które wiedzą co robią. Co tam fizyka czy matematyka ja chcę być biologiem, lekarzem, terapeutą, itd. Wielka szkoda, Ŝe zarówno oni, jak i autorzy niekończących się eksperymentów z systemem oświaty stracili z pola widzenia niedającą się przecenić formacyjną rolę tych przedmiotów. O ile uczniów moŝna zrozumieć, to decydentów podejmujących te decyzje juŝ nie. Choć gorzka refleksja dotycząca opłakanych konsekwencji zaniechań w nauczaniu fizyki i matematyki jest juŝ obecnie dość powszechna, trzeba z tej lekcji wyciągnąć wnioski. Nie wystarczy ucznia zachęcać, odwoływać się do ciekawości świata, ukazywać uniwersalność poznania i oczekiwać, Ŝe te argumenty muszą przewaŝyć. Myślę, Ŝe trzeba przekonywać, Ŝe nawet jeśli nie będzie łatwo z nauką tych przedmiotów, nawet jeśli nie wszystko od razu będzie pasjonujące, to jest to konieczna inwestycja we własną przyszłość, którą w wieku kilkunastu lat rzadko kto jest w stanie precyzyjnie zaplanować. Trzeba twardo mówić, Ŝe bez nauki fizyki i matematyki wiele moŝliwości dalszego rozwoju albo okaŝe się nieosiągalne, albo przynajmniej znacznie trudniejsze. Dobre podstawy z fizyki i matematyki predystynują młodych ludzi do podejmowania najróŝniejszych wyzwań. Lista fizyków, którzy odnieśli sukcesy w innych dziedzinach jest bardzo długa. Alan Hodgkin, laureat nagrody Nobla z fizjologii (nagrody uznawanej za jedną z najbardziej zasłuŝonych), zanim zajął się badaniem mechanizmów generowania sygnałów elektrycznych w neuronach, podczas wojny uczestniczył w budowie systemów radarowych. Jego długoletni współpracownik Andrew Huxley, zanim pochłonęły go badania nad sygnałami nerwowymi, planował być inŝynierem. Tych dwóch badaczy, nagrodzonych najwyŝszym naukowym wyróŝnieniem za wyjaśnienie mechanizmu pobudliwości neuronów, konsekwentnie stosowało metody fizyki i matematyki do wyjaśnienia natury impulsów nerwowych. Paradoksalnie, dość złoŝone równania Hodgkina i Huxley a [1-2], opisujące pobudliwość neuronów, stały się milowym krokiem w biologii (szczególnie neurofizjologii). Od przeszło 50 lat równania te są uŝywane jako podstawowe narzędzie opisu funkcji elektrycznej neuronów, co jest w biologicznych naukach eksperymentalnych ewenementem. Nie śmiem się oczywiście porównywać do tych Mistrzów, ale z pełnym przekonaniem mogę zaświadczyć, Ŝe wszechstronna edukacja z zakresu fizyki zarówno eksperymentalnej, jak i teoretycznej była dla mnie duŝym atutem w moich badaniach dotyczących opisu sygnałów w synapsach neuronalnych. Faktycznie zatem, nauka fizyki i matematyki daje szansę na szerokie otworzenie okna na świat, z którego rzeczywistość moŝe być obserwowana ze szczególnie ciekawej perspektywy perspektywy uniwersalności. Jednocześnie, nawet jeśli nie uświadamiać sobie tych (nieco filozoficznych) aspektów edukacji
5 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 15 i poznania, to naleŝy uczniów po prostu przekonywać, Ŝe warto się sumiennie uczyć tych przedmiotów dlatego, Ŝe daje to zdecydowanie lepsze szanse dalszego rozwoju w przyszłości. O ile uświadamianie uczniom tego pierwszego aspektu porównałbym do hodowania egzotycznego kwiatu trzeba naprawdę stworzyć szczególnie korzystne warunki, by rozkwitł w całej okazałości o tyle ten drugi, chyba najlepiej konsekwentnie wcielać w Ŝycie, nie szczędząc nawet Ŝyczliwej stanowczości. Korelacje pomiędzy behawiorem (uczeniem się) a funkcją neuronów Spośród pytań jakie stawia współczesna nauka nie ma chyba bardziej pasjonujących od tych, które dotyczą mechanizmów funkcjonowania umysłu. W ostatnich dziesięcioleciach dokonał się w tej tematyce waŝny jakościowy przełom, albowiem coraz śmielej pytamy się o mechanizmy procesów myślowych tak, jak rozwaŝa się problemy w badaniach nad mechanizmami zjawisk fizycznych. Jak wspomniałem juŝ, nauki kognitywne (o mechanizmach poznania) nie są juŝ wyłączną domeną psychologii, ale równieŝ i to w coraz większym stopniu badań eksperymentalnych z wykorzystaniem bogatego arsenału metod stosowanych w fizyce, chemii, biologii, informatyce, itd. W tej części opracowania chciałbym w moŝliwie najprostszy sposób przytoczyć Czytelnikom kilka klasycznych przykładów pokazujących jak współcześni neurobiolodzy (i cała rzesza ich współpracowników, włącznie z fizykami) badają procesy uczenia się i zapamiętywania, dokonując zarówno obserwacji zachowań (klasyczna psychologia), jak i przeprowadzając zaawansowane pomiary na poziomie sieci neuronalnych, pojedynczych neuronów i molekuł. Procesy uczenia się i zapamiętywania coraz bardziej stają się dla badaczy widoczne jako zmiany funkcji i struktury neuronów i jako takie stają się coraz bardziej uchwytne dla współczesnych badaczy. Jak moŝna zmierzyć fakt przyswojenia sobie określonego zadania? Przełomu dokonał tutaj Iwan Pawłow, przeprowadzając doświadczenia behawioralne w paradygmacie warunkowania klasycznego (kojarzenia bodźców warunkowych i bezwarunkowych, na przykładzie klasycznego doświadczenia z psem Pawłowa ). Obserwując powtarzalność zachowań w określonych warunkach (w obecności określonych bodźców) oraz stosując prostą analizę statystyczną, w bardzo przekonujący sposób moŝna stwierdzić, czy faktycznie proces uczenia się zakończył się sukcesem, czy nie. Przyjrzyjmy się prostemu doświadczeniu, które polega na tym, Ŝe zwierzę doświadczalne uczy się znajdować określone miejsce w danym kontekście przestrzennym. Na ryc. 1 przedstawiony jest układ zwany labiryntem wodnym Morrisa (ang. Morris water maze, [3]), w którym takich obserwacji moŝna z powodzeniem dokonywać. Główną częścią tego urządzenia jest duŝe naczynie (basen) wypełnione nieprzeźroczystą wodą tak, Ŝe zwierzę nie widzi przedmiotów pod jej powierzchnią, a jej głębokość jest na tyle duŝa, Ŝe zwierzę nie dosięga do dna i utrzymuje się na powierzchni, pływając. Tylko w
6 16 jednym miejscu jest umieszczona niewielka platforma pod powierzchnią wody, na której zwierzę (jeśli ją znajdzie) moŝe odpocząć. W otoczeniu naczynia z wodą umieszczone są tzw. wskazówki przestrzenne o róŝnych kształtach, które pływające zwierzę widzi i które słuŝą do orientacji w przestrzeni. Przy pierwszej próbie zwierzę pływa w losowych kierunkach, aŝ w końcu znajdzie platformę. Przy kolejnych próbach czas znajdowania platformy skraca się, gdyŝ zwierzę zapamiętuje lokalizację platformy względem wskazówek przestrzennych wokół labiryntu wodnego. Na ryc. 1 (po prawej stronie) przedstawiona jest zaleŝność czasu znajdowania platformy w zaleŝności od liczby wykonanych prób. Jak widać, w kolejnych próbach czas jej odnajdywania skraca się przy czym po około 10 próbach czas ten osiąga wartość około 10 sekund. Po wielokrotnym wykonaniu tego zadania moŝna uznać, Ŝe zwierzę po włoŝeniu go do labiryntu wie, gdzie jest platforma i zmierza do niej najkrótszą drogą i czas ten jest po prostu czasem niezbędnym do pokonania dystansu do platformy najkrótszą drogą. Doświadczenie to jest jednym z wielu klasycznych przykładów jak w prostym teście behawioralnym moŝemy nie tylko przekonująco zilustrować proces uczenia się, ale równieŝ opisać ilościowo jego postęp w funkcji liczby wykonanych prób i czasu. Ryc. 1 Labirynt wodny Morrisa. Przy pierwszej próbie gryzoń włoŝony do basenu losowo poszukuje miejsca odpoczynku i znajduje je po określonym czasie na platformie (ciemnoniebieski kwadrat). Wokół basenu ustawione są przedmioty o róŝnych kształtach, które słuŝą jako wskazówki przestrzenne. Przy kolejnych próbach znalezienie platformy zajmuje zwierzęciu coraz mniej czasu (postępuje proces uczenia się przestrzennego), co przedstawia wykres po prawej stronie ryciny. Iwan Pawłow w drugiej połowie XIX wieku zainicjował prawdziwy boom tego typu doświadczeń behawioralnych, dając początek bardzo popularnemu kierunkowi badań psychologicznych zwanym behawioryzmem. Nagle okazało się, Ŝe procesy mentalne są poznawalne i nawet, przynajmniej w jakiejś
7 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 17 mierze, mierzalne. Współczesnym badaczom zajmującym się mechanizmami funkcjonowania umysłu taki opis procesów kognitywnych juŝ jednak nie wystarcza. Podstawowe pytanie jakie stawiamy to, w jaki sposób obserwowany behawioralnie proces uczenia się jest kodowany, a następnie wykorzystywany przez mózg [4]. Okazuje się, Ŝe uczenie się zadań związanych z lokalizacją przestrzenną (tak jak np. w labiryncie wodnym Morrisa) ma miejsce w strukturze mózgowej zwanej hipokampem (Ryc. 2). Hipokamp jest strukturą wchodzącą w skład tzw. układu limbicznego i przylega do skroniowych płatów kory mózgowej. Oprócz pamięci przestrzennej, hipokamp spełnia kluczową rolę w formowaniu tzw. pamięci bliskiej, która następnie jest transferowana do innych obszarów mózgu (głównie kory mózgowej). Większość rzeczy, których się świadomie uczymy (tzw. wiedza deklaratywna) na wczesnych etapach zapamiętywania, wymaga aktywności hipokampa i jest przechowywana w tej właśnie strukturze. Przekonywujących dowodów na to dostarczyły przypadki neurologiczne, w których struktury te zostały albo uszkodzone (np. w wyniku urazów), albo usunięte chirurgicznie (np. w celu zaŝegnania kryzysów padaczkowych). Okazało się, Ŝe obustronne usunięcie hipokampa niemal pozbawia pacjentów zdolności do przyswajania sobie nowych informacji (amnezja następcza). Pacjenci tacy, po utracie formacji hipokampalnej, nie są w stanie zapamiętać, co robili i gdzie byli, nawet przed kilkoma minutami. Nawet jeśli daną osobę (np. swojego opiekuna) widzą codziennie przez wiele lat, za kaŝdym razem będzie to dla nich ktoś nowy. Dlatego hipokamp jest strukturą mózgową bardzo często badaną w kontekście mechanizmów pamięci. Bez hipokampa nie moŝna przyswoić sobie Ŝadnej nowej wiedzy deklaratywnej, choć to, co zostało zapamiętane przed uszkodzeniem tej struktury, pozostaje zapamiętane dzięki transferowi tej pamięci do innych ośrodków. Ryc. 2 Lokalizacja hipokampa w mózgu (struktura zaznaczona kolorem szarym w mózgu znajdująca się pod korą mózgową). Drugi hipokamp jest zlokalizowany symetrycznie w drugiej półkuli. Uszkodzenie hipokampa skutkuje równieŝ niemoŝnością lub osłabieniem zdolności do przyswojenia sobie przez zwierzę doświadczalne zadania znajdowania platformy podwodnej w labiryncie wodnym Morrisa. Odkrycie tej specy-
8 18 ficznej i nadspodziewanie wyspecjalizowanej funkcji hipokampa oczywiście nie wyczerpuje postawionego problemu dotyczącego mechanizmu uczenia się i zapamiętywania. Wiemy jak działają masowo stosowane nośniki pamięci, ale jak zapamiętuje mózg i co tak naprawdę dzieje się w jego strukturach jest problemem, nad którym pracuje wiele zespołów badawczych na całym świecie. Kolejnym zatem krokiem powinno być wskazanie mechanizmów, które zachodzą w sieciach neuronalnych, w neuronach na poziomie komórkowym, w ich połączeniach (synapsach), jak równieŝ na poziomie molekuł. Choć istnieją oczywiste podobieństwa między współczesnymi nośnikami pamięci a mózgiem, to im więcej wiemy o funkcjonowaniu mózgu, tym większe dostrzegamy róŝnice. Przyjrzyjmy się strukturze najbardziej podstawowych połączeń sieci neuronalnych w hipokampie (Ryc. 3). Ryc. 3 Schemat połączeń neuronalnych w hipokampie. Czarne okręgi komórki ziarniste e zakręcie zębatym (DG, Dentate Gyrus). Czarne trójkąty komórki piramidowe w stratum piramidale. SC kolaterale Schaffera. CA1, CA3 obszary hipokampa, mf włókna mszyste (mossy fibers), pp ścieŝka przeszywająca (perforant pathway). Obieg informacji przekazywany na drodze impulsów nerwowych (sygnał elektryczny w ramach jednej komórki nerwowej) i przekaźnictwa synaptycznego (przekaz sygnału elektrochemicznego między neuronami) jest następujący: (i) z kory mózgowej (tzw. kory śródwęchowej) sygnały przekazywane są do tzw. komórek ziarnistych (czarne kółka na ryc. 3) w zakręcie zębatym (DG, Dentate Gyrus), (ii) z zakrętu zębatego za pośrednictwem tzw. włókien mszystych (mf, mossy fibers) do tzw. komórek piramidowych (czarne trójkąty) znajdujących się w tzw. warstwie promienistej (stratum pyramidale, rząd czarnych trójkątów na ryc. 3) w obszarze CA3, (iii) z komórek piramidowych regionu CA3 do komórek piramidowych obszary CA1 za pośrednictwem tzw. kolaterali Schaffera (SC) i ostatecznie sygnał z obszaru CA1 jest transmitowany ponownie do kory mózgowej (śródwęchowej). Przyjrzyjmy się jeszcze bardziej z bliska połączeniom pomiędzy poszczególnymi neuronami na przykładzie projekcji kolaterali
9 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 19 Schaffera z obszaru CA3 do komórki piramidowej w obszarze CA1. Miejscem przekazu sygnału z jednego neuronu do drugiego (w tym przypadku z neuronu piramidowego z CA3 do neuronu piramidowego z CA1) jest synapsa (Ryc. 4 A). Przyjmijmy konwencję, Ŝe sygnał przekazywany jest od neuronu-nadawcy (w obszarze CA3) do neuronu-odbiorcy (w obszarze CA1). Elektryczny impuls nerwowy (tzw. potencjał czynnościowy) biegnący wzdłuŝ wypustki zwanej aksonem dociera do synapsy lecz nie moŝe być przekazany w sposób bezpośredni do neuronu-odbiorcy, gdyŝ synapsa, jak to widać na ryc. 4A, jest układem elektrycznym rozwartym. Potrzebny jest zatem czynnik pośredniczący przekazowi sygnału z jednego neuronu do drugiego. Docierający do synapsy impuls nerwowy ze strony neuronu-nadawcy powoduje wydzielenie czynnika chemicznego zwanego neuroprzekaźnikiem (np. glutaminian) do tzw. przerwy synaptycznej (ryc. 4A). Ryc. 4 A Struktura i funkcja synapsy chemicznej. Impuls nerwowy dociera do synapsy, wydzielony zostaje neuroprzekaźnik, który aktywuje receptory postsynaptyczne i generuje potencjał postsynaptyczny. Błona postsynaptyczna zawiera receptory kwasu glutaminowego. B - receptory te zawierają por wodny, który ulega otwarciu po przyłączeniu cząsteczek neuroprzekaźnika. Występują dwa główne typy receptorów kwasu glutaminowego (AMPA czerwony) i NMDA (Ŝółty). Neuroprzekaźnik przedostaje się na zasadzie procesu dyfuzji przez tę przerwę i pojawia się w pobliŝu błony neuronu-odbiorcy, gdzie znajdują się białka zwane receptorami glutaminianu. Jak to wyjaśniono na ryc. 4B receptory te są białkami przechodzącymi na wylot przez błonę komórkową (tzw. białka transmembranowe), które po związaniu cząsteczek neuroprzekaźnika zmieniają swoja strukturę (konformację) tak, Ŝe zawarty w strukturze tych białek por wodny ulega otwarciu (Ryc. 4B) i moŝe przewodzić jony i tym samym generuje sygnał elektryczny (tzw. potencjał postsynaptyczny) na błonie neuronuodbiorcy. W ten sposób następuje przekaz informacji za pośrednictwem tzw. synapsy chemicznej. Przekaźnictwo za pośrednictwem synaps chemicznych jest najpowszechniejszą formą szybkiego przekazu informacji między neuronami w mózgu. Zwróćmy uwagę, Ŝe taki design synapsy doskonale nadaje się do transmisji szybkiego i dobrze zlokalizowanego sygnału. Sygnał synaptyczny następuje tu
10 20 i teraz, co w praktyce oznacza, Ŝe trwa krótko i wywołuje skutek funkcjonalny w konkretnym miejscu. Synapsa to zatem mocno wyspecjalizowany, elementarny łącznik między neuronami. Nawet wśród osób nie posiadających systematycznego wykształcenia biologicznego juŝ chyba mało kto nie wie, co to takiego synapsa, i Ŝe bez nich większość neuronów nie mogłaby się między sobą komunikować. Pomimo przypisywania jej roli elementarnego ogniwa w przekazie informacji w sieciach neuronalnych, synapsy są strukturalnie bardzo złoŝone i, co waŝne, niewyobraŝalnie liczne. Jeden neuron tworzy średnio od kilkuset do kilku tysięcy połączeń synaptycznych, jednak niektóre komórki nerwowe mogą ich tworzyć nawet setki tysięcy. ZwaŜywszy, Ŝe mózg dorosłego człowieka zawiera ok. 100 miliardów neuronów, liczba połączeń synaptycznych między nimi jest po prostu gigantyczna. Synapsy są mocno wyspecjalizowane, w mózgu występuje bardzo wiele typów synaps, ale najogólniej moŝemy podzielić je na pobudzające (zwiększają wartość napięcia błonowego) i hamujące (odwrotna funkcja). Dla synaps pobudzających neuroprzekaźnikiem jest glutaminian, zaś dla hamujących najczęściej jest to kwas gamma-aminomasłowy (GABA). W dalszej części skoncentrujemy naszą uwagę na synapsach pobudzających. Część postsynaptyczna tych synaps (tj. naleŝąca do neuronu-odbiorcy ), na której znajdują się receptory glutaminianu ma najczęściej kształt charakterystycznej wypustki, zwanej kolcem dendrytycznym (e.g. ryc. 4 A). W kolcu dendrytycznym znajdują się dwa róŝne typy receptorów glutaminianu, które wykazują diametralnie róŝne właściwości. Receptor glutaminianu typu AMPA charakteryzuje się bardzo szybką kinetyką odpowiedzi na neuroprzekaźnik, ale jego czas działania jest krótki, natomiast receptory NMDA wolniej reagują na bodziec chemiczny, ale jeśli ulegną aktywacji, to ich działanie jest bardziej długotrwałe. Bardzo waŝną cechą synaps pobudzających jest to, iŝ do efektywnego ich funkcjonowania, określona synapsa powinna zwierać receptory typu AMPA i NMDA. W sytuacji, gdyby synapsa zawierała tylko receptory typu NMDA, potencjał postsynaptyczny (przekaz sygnału do neuronu-odbiorcy) nie mógłby być wygenerowany. Poznawszy nieco strukturę połączeń poszczególnych neuronów w hipokampie oraz podstawy funkcjonowania synaps pobudzających, spróbujmy teraz odpowiedzieć na pytanie, jaki wpływ na funkcjonowanie sieci neuronalnej w hipokampie ma proces uczenia się zadań, o których wiadomo, Ŝe wymagają zaangaŝowania tej struktury (np. zadania znajdowania platformy w labiryncie wodnym Morrisa). Zanim zasygnalizuję odpowiedź na to pytanie, zwróćmy jeszcze uwagę na pewną niezwykle waŝną właściwość synaps. OtóŜ, juŝ przeszło 40 lat temu okazało się, Ŝe w warunkach in vitro, intensywne pobudzanie prądem elektrycznym tzw. kolaterali Schaffera (SC, ryc. 3) prowadzi do wzmocnienia sygnałów synaptycznych synaps pobudzających między SC i komórkami piramidowymi w obszarze CA1 i wzmocnienie to (w zaleŝności od intensywności bodźca) utrzymywało się w czasie. Przy odpowiednio silnej stymulacji, wzmocnienie synaptyczne utrzymywało się przez wiele godzin, a nawet dni. Zjawisko to na-
11 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 21 zwano długotrwałym wzmocnieniem synaptycznym (LTP, long term potentiation, ryc. 5 A, B). Ryc. 5 Wymuszona stymulacją prądem elektrycznym aktywność synaptyczna w obszarze CA1 hipokampa prowadzi do wzrostu amplitudy potencjału synaptycznego w tej samej synapsie (porównaj przebiegi w A i B ponad schematami kolców dendrytycznych). Zjawisko wzmocnienia synaptycznego moŝe utrzymywać się przez wiele godzin i nosi nazwę długotrwałego wzmocnienia synaptycznego (Long Term Potentiation, LTP). Na ryc. A i B przedstawione są schematycznie kolce dendrytyczne (część postsynaptyczna synapsy), które w wyniku indukcji zjawiska LTP ulegają powiększeniu, czemu towarzyszy wzbogacenie puli receptorów postsynaptycznych przez dodatkowe receptory kwasu glutaminowego typu AMPA. C Przykład dendrytu z kolcami dendrytycznymi, zrekonstruowany przy zastosowaniu techniki mikroskopii elektronowej. Niemal od razu dopatrzono się w tym zjawisku cech swego rodzaju śladu pamięciowego, który zaistniał jako konsekwencja epizodu intensywnej aktywności danej synapsy. Obserwacja nasunęła zatem przypuszczenie, Ŝe zjawisko to moŝe stanowić substrat mechanizmów pamięciowych (na poziomie pojedynczych synaps i komórek nerwowych) u uczących się zwierząt lub ludzi. Choć takie skojarzenie moŝe wydawać się dość oczywiste, to jednak przez kilka dziesięcioleci pozostawało ono jedynie prawdopodobną hipotezą. Problem polega przede wszystkim na tym, Ŝe mechanizm molekularny wzmocnienia synaptycznego jest bardzo złoŝony. Zmienia się bardzo wiele rzeczy: struktura synaps, powstają nowe białka, uaktywniają się róŝne enzymy, itd. Ponadto, w opisanym wyŝej klasycznym doświadczeniu, zjawisko LTP wywoływano, wymuszając zmianę aktywności neuronalnej zewnętrznymi elektrodami generującymi intensywne bodźce elektryczne, a nie poprzez fizjologiczne sygnały neuronalne towarzyszące procesowi uczenia się. To, Ŝe wiele moŝna w mózgu zmienić, poddając go dość intensywnej stymulacji wiadomo juŝ było od dawna. Brakowało dowodu, Ŝe rzeczywiście procesy uczenia się są skorelowane z indukcją plastyczności
12 22 synaptycznej. Jedną z pierwszych prac, która w sposób przekonywujący wykazała rzeczywisty związek pomiędzy procesem uczenia się i zjawiskiem LTP, była publikacja grupy Marka Bear [5]. W pracy tej wykazano, Ŝe w innym zadaniu niŝ omawiany powyŝej labirynt wodny Morrisa, w tzw. awersyjnym unikaniu (zadanie wymagające aktywności hipokampa), procesowi uczenia się (obserwowanemu behawioralnie) rzeczywiście towarzyszy indukcja zjawiska LTP w obszarze CA1 hipokampa. Wynik ten stanowi zatem niezwykle waŝny pomost pomiędzy bardzo bogatą wiedzą na temat mechanizmów uczenia się i zapamiętywania w doświadczeniach behawioralnych, a równie bogatą wiedzą na temat mechanizmów komórkowych i molekularnych towarzyszących zmianom właściwości synaps w odpowiedzi na róŝne paradygmaty aktywności neuronalnej. Zmiany właściwości synaps pod wpływem aktywności neuronalnej zwykło się określać mianem plastyczności synaptycznej. Pojęcie to zrobiło zawrotną karierę, gdyŝ uświadomiono sobie, Ŝe fundamentalne cechy naszego umysłu takie jak uczenie się i zapamiętywanie są ściśle związane ze zdolnością synaps do szybkich i często głębokich zmian w ich funkcjonowaniu. Co więcej, badając układy neuronalne, w których indukowano zjawiska plastyczności synaptycznej, okazało się, Ŝe oprócz wzmocnienia transmisji synaptycznej następują równieŝ zmiany w strukturze (zmiany morfologiczne) neuronów. Jak to poglądowo pokazuje ryc. 5 A i B, indukcja długotrwałego wzmocnienia synaptycznego (LTP) wiąŝe się ze powiększeniem kolców dendrytycznych. Kolec dendrytyczny najczęściej nie zmienia swojej długości, ale istotnemu poszerzeniu ulega głowa kolca dendrytycznego, jak równieŝ szyjka łącząca kolec ze strukturą dendrytu, co poprawia jego elektryczny kontakt z resztą neuronu. Co niezwykle istotne, procesowi zmiany geometrii kolca dendrytycznego towarzyszy zwiększenie puli receptorów typu AMPA, co moŝe mieć bardzo waŝne konsekwencje funkcjonalne. Często się zdarza, Ŝe synapsy glutaminianergiczne posiadają tylko receptory NMDA i wtedy, jak juŝ wspominałem, nie są w stanie wygenerować sygnału synaptycznego. Wmontowanie do takiej synapsy receptorów typu AMPA sprawia, Ŝe w wyniku zjawisk plastyczności staje się ona synapsą aktywną. Plastyczność synaptyczna to zatem nie tylko wzmocnienie synapsy, ale niekiedy jej włączenie. NaleŜy zauwaŝyć, Ŝe kolce dendrytyczne są zatem tymi elementami strukturalnymi neuronów, w których pojawiają się najwcześniej zjawiska plastyczności i w związku z tym właśnie w tych strukturach pojawiają się pierwsze ślady pamięciowe. Procesy uczenia się wpływają nie tylko na funkcję i strukturę istniejących kolców dendrytycznych, ale stymulują tworzenie nowych połączeń synaptycznych lub powodują usuwanie części z nich. Choć procesy zmiany liczby kolców dendrytycznych są najintensywniejsze we wczesnych etapach rozwoju, mają miejsce równieŝ w dojrzałych mózgach, a nawet u osobników zaawansowanych wiekowo. Kolce dendrytyczne mogą równieŝ przemieszczać się wzdłuŝ dendrytów, co dodaje jeszcze dodatkowy stopień swobody plastyczności synaptycznej. Obecnie wiemy, ze sieci neuronalne
13 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 23 i neurony wykazują niezwykle duŝą plastyczność w porównaniu do innych struktur czy komórek w naszym organizmie. Warto sobie uświadomić, Ŝe w ramach neuronów to kolce dendrytyczne (czyli elementy postsynaptyczne synaps) są najbardziej plastyczne zarówno funkcjonalnie, jak i strukturalnie. Gdy uczymy się, poznajemy nowe osoby, dokonujemy spostrzeŝeń, to właśnie synapsy ulegają najdalej idącym zmianom i dzięki nim dokonują się, przynajmniej niektóre etapy formowania naszej pamięci. Aby posłuŝyć się przykładem ukazującym jak duŝa moŝe być plastyczność kolców dendrytycznych przytoczę znany przykład porównania tych struktur w dwóch róŝnych sytuacjach. Rycina 6 przedstawia graficzną reprezentację struktury dendrytów neuronów u dziecka prawidłowo rozwijającego się (A) i cierpiącego z tytułu niedorozwoju umysłowego (B). Najbardziej widoczna róŝnica dotyczy kolców dendrytycznych. U dzieci z niedorozwojem umysłowym, charakterystyczne jest to, Ŝe kolce te mają najczęściej kształt podłuŝnych wypustek (tzw. filopodiów), który normalnie charakteryzuje neurony, w których synapsy znajdują się dopiero we wstępnych fazach tworzenia (synaptogenezy). Co ciekawe, nadmierna liczba kolców dendrytycznych o kształcie filopodialnym, którą obserwuje się u dzieci z niedorozwojem umysłowym, występuje takŝe przy wielu zasadniczo róŝniących się od siebie chorobach, takich jak np. zespół Downa czy fenyloketonuria. Obserwacja ta potwierdza, Ŝe synapsy, a w szczególności kolce dendrytyczne, są bardzo newralgicznym elementem funkcjonowania sieci neuronalnej w mózgu. Ryc. 6 Graficzna reprezentacja zmian morfologii dendrytów z neuronów od dzieci normalnie rozwijających się (A) i u dzieci z niedorozwojem umysłowym (B). Najbardziej uderzająca róŝnica dotyczy kształtu (morfologii) kolców dendrytycznych, które u pacjentów z niedorozwojem umysłowym mają nieproporcjonalnie duŝo kolców kształcie tzw. filopodiów (taki kształt maja synapsy w bardzo wczesnym etapie ich tworzenia). Przytoczone wyŝej przykłady pokazują, Ŝe zaczynamy coraz lepiej rozumieć (choć ciągle jesteśmy bardzo odlegli od pełnego zrozumienia) przynajmniej niektóre mechanizmy uczenia się i zapamiętywania. Procesy mentalne za-
14 24 tem stały się obiektem badań eksperymentalnych, podobnie jak fizjologia czy zjawiska fizyczne. Zrozumienie, Ŝe w procesach tworzenia śladów pamięciowych modyfikacja synaps stanowi niezwykle waŝny etap jest niewątpliwie wielkim krokiem naprzód w badaniu funkcji mózgu. Zmiany w synapsach kodujące nasze zapamiętywanie są jednak niezwykle złoŝone. Co więcej, nie są zerojedynkowe, jak to ma miejsce w pamięci komputerowej. Synapsy mogą zmieniać się w róŝnym stopniu i to na wiele róŝnych sposobów. Co więcej, niektóre zmiany są nieodwracalne, co jest zrozumiałe w sytuacji, gdy stwierdzono, Ŝe zmiany plastyczne synaps dotyczą ich struktury. O ilu rzeczach chcielibyśmy zapomnieć, ale się nie da, właśnie dlatego, Ŝe zmiana struktury synapsy, to coś jakościowo innego, niŝ zmiana stanu tranzystora na płycie pamięci. Warto teŝ sobie uświadomić, Ŝe nawet jeśli nie nastąpi uaktywnienie bodźców prowadzących do wywołania plastyczności, to określona synapsa nie musi pozostawać niezmienna w czasie. Stan synaps zaleŝy od wielu czynników, takich jak: metabolizm, poziom stresu, obecność czynników modulujących, np. serotoniny, dopaminy, itd. NaleŜy teŝ pamiętać, Ŝe utoŝsamianie procesów kognitywnych ze zmianami właściwości pojedynczych synaps lub określonej zbiorowości synaps jest sporym uproszczeniem. W czasie indukcji śladów pamięciowych oczywiście duŝo się dzieje w samych synapsach, ale pamięć to nie jest prosta suma tych zmian na poszczególnych synapsach (jak np. zapis pamięci na dysku mierzony w kb). Coraz bardziej uświadamiamy sobie, Ŝe tak naprawdę chodzi o przekonfigurowanie połączeń w sieci neuronalnej. Zgodnie z zasadą Hebba (w uproszczonej postaci) neurony, które razem są aktywne, tworzą (i zmieniają) między sobą połączenia (neurons which fire tohether, wire togeter). To aktywność neuronów i aktywność sieci neuronalnej jest czynnikiem współtworzącym daną sieć. Dlatego teŝ o kondycji kognitywnej mózgu tak bardzo decyduje jego aktywność. Zapamiętują zatem sieci neuronalne, a nie pojedyncze synapsy, choć mają one w tym oczywiście swój udział, ale muszą grać zespołowo. Pojedyncze synapsy niewiele znaczą. Warto w tym kontekście wspomnieć, Ŝe paradoksalnie liczba synaps w czasie dojrzewania mózgu nie zwiększa się, lecz maleje. Liczy się bardziej jakość połączeń, ich strategiczne połoŝenie w sieci niŝ ich ilość. To teŝ odróŝnia sieci neuronalne od pamięci na twardym dysku. W pewnym sensie, po niezwykle dynamicznym wzroście liczby połączeń synaptycznych we wczesnych etapach rozwoju mózgu, układ ten stosuje swego rodzaju brzytwę Okhama, która eliminując połączenia zbędne, zachowuje te, które są istotne z punktu widzenia funkcjonowania mózgu. Badania nad połączeniami neuronalnymi rzeczywiście pokazują, Ŝe w tym procesie optymalizacji połączeń neuronalnych w okresie dojrzewania bardzo dobrze potwierdza się wspomniana zasada Hebba i to w dwie strony. Te neurony, które komunikują się między sobą rozwijają połączenia synaptyczne, zaś te, między którymi komunikacja zanika te połączenia redukują. Jak juŝ wspomniałem, pomimo generalnej tendencji w kierunku selekcji najwaŝniejszych połączeń synaptycznych w okresie dojrze-
15 Neurobiologia poznania próba syntezy osiągnięć nauk przyrodniczych, psychologii i filozofii 25 wania, liczba kolców dendrytycznych moŝe się lokalnie zmieniać w zaleŝności od aktywności mózgu. Znany jest fakt, Ŝe zwierzęta laboratoryjne (myszy, szczury), kiedy trzymane są w zuboŝonym środowisku (ciasna klatka) w okresie dojrzałości wykazują mniejszą liczbę kolców dendrytycznych i połączeń synaptycznych niŝ zwierzęta hodowane w warunkach, w których ich środowisko zostało wzbogacone np. o róŝnego rodzaju labirynty, zabawki, kołowrotki, przestrzenne wskazówki, itd. Liczba synaps, jak równieŝ kształt (morfologia) dendrytów silnie zmienia się w stanach depresyjnych i pod wpływem nadmiaru stresu. Generalnie, w tych sytuacjach patologicznych liczba synaps się zmniejsza i tzw. drzewo dendrytyczne ulega istotnemu zmniejszeniu. Nic dziwnego zatem, Ŝe funkcje kognitywne w tych stanach chorobowych są często istotnie upośledzone. Funkcje synaps i neuronów są silnie zmieniane przez tzw. neuroprzekaźniki modulujące, jak: serotonina, acetylocholina, dopamina czy noradrenalina. Wystarczy by do omawianej wyŝej formacji hipokampalnej nie była dostarczana acetylocholina (z tzw. jądra przegrody) i funkcje kognitywne zaleŝne od tej formacji zostają zaburzone. Wszystkie przytoczone wyŝej fakty przemawiają zatem za tym, Ŝe procesy uczenia się i zapamiętywania w mózgu nie są prostą funkcją zaleŝną wyłącznie od liczby zaangaŝowanych w ten proces synaps. Zapis pamięciowy to subtelna, moŝna powiedzieć wręcz wyrafinowana, zmiana funkcji sieci neuronalnej, w której poszczególne synapsy ulegają modyfikacji, ale tzw. engram (ślad pamięciowy w mózgu) powstaje przy zaangaŝowaniu w specyficzny sposób wielu neuronów, a nawet wielu lokalnych sieci neuronalnych. Nic zatem dziwnego, Ŝe badając metodami obrazowania (np. fmri, funkcjonalnego rezonansu jądrowego) in vivo mózgi pacjentów, okazuje się, Ŝe przypominanie sobie nawet zdawałoby się prostych faktów, czy wypowiadanie pojedynczych słów moŝe angaŝować wiele struktur mózgowych. Warto zauwaŝyć pewną (dość daleką) analogię z omawianym w pierwszej części tego artykułu interdyscyplinarnym poznawaniem rzeczywistości, kiedy to stwierdziłem, Ŝe poznanie rzeczywistości nie jest sumą rozłącznych zbiorów szczegółowych faktów. Podobnie rzecz się ma z zapisem naszych śladów pamięciowych, które nie są prostą sumą zmienionych synaps, lecz subtelną modyfikacja sieci neuronalnych, a algorytmy, wedle których te modyfikacje zachodzą pozostają w większości przypadków nieznane. W opracowaniu tym celowo dotknąłem dwóch ciągle odległych od siebie zagadnień problemów nauczania wybranych przedmiotów w szkołach (z uwzględnieniem roli nauczania w kształtowaniu umysłów młodych ludzi) oraz poznawania mechanizmów funkcjonowania umysłu. Starałem się pokazać, iŝ na naszych oczach dokonuje się przełom polegający na tym, Ŝe zaczynamy z coraz większym powodzeniem badać funkcje kognitywne mózgu, tak jak wszystkie inne procesy fizjologiczne czy fizyczne. W przypadku takich badań, nieuchronnie nasuwa się pytanie o granice poznania. Czy zrozumiemy mechanizmy molekularne funkcjonowania naszego umysłu? Na tym etapie trudno to rozstrzygnąć i jest wy-
16 26 soce prawdopodobnie, Ŝe pytanie: Czy ludzki mózg zdoła zrozumieć samego siebie? pozostanie jeszcze długo pytaniem filozoficznym. Tym niemniej, poznawanie fizjologicznych mechanizmów funkcjonowania mózgów ma juŝ teraz cały szereg waŝnych implikacji. Nie tylko zaspokajamy coraz bardziej naszą ciekawość, ale coraz lepiej rozumiemy na przykład patomechanizmy chorób. W starzejących się społeczeństwach choroby mózgu (tzw. choroby neurodegeneracyjne, z chorobą Alzheimera na czele) są prawdziwa plagą, która dotyka coraz większą część społeczeństwa. Na część z nich moŝna znaleźć juŝ terapię, przynajmniej częściowo przywracającą pacjentom sprawność zarówno intelektualną, jak i motoryczną (np. choroba Parkinsona). Coraz lepiej rozumiemy równieŝ mechanizmy zaburzeń kognitywnych (np. ADHD, dysleksja) i choć droga do wdroŝenia skutecznych terapii jest jeszcze daleka, nie ulega wątpliwości, Ŝe bez poznania mechanizmów funkcjonowania mózgu byłaby ona jeszcze dłuŝsza. Literatura [1] Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117: [2] Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol. 116: [3] Kandel ER, Schwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ (2013) Principles of neural science 5 th edition, McGraw Hill Medical. [4] Sweatt JD (2003) Mechanisms of memory. Academic Press, Elsevier. [5] Whitlock JR, Heynen AJ, Shuler MG, Bear MF. (2006) Learning induces long-term potentiation in the hippocampus. Science 313:
ZAJĘCIA 1. uczenie się i pamięć mechanizmy komórkowe. dr Marek Binder Zakład Psychofizjologii
ZAJĘCIA 1 uczenie się i pamięć mechanizmy komórkowe dr Marek Binder Zakład Psychofizjologii problem engramu dwa aspekty poziom systemowy które części mózgu odpowiadają za pamięć gdzie tworzy się engram?
Podstawowe zagadnienia. Mgr Monika Mazurek Instytut Psychologii Uniwersytet Jagielloński
Podstawowe zagadnienia Mgr Monika Mazurek Instytut Psychologii Uniwersytet Jagielloński NEUROPLASTYCZNOŚĆ - zdolność neuronów do ulegania trwałym zmianom w procesie uczenia się (Konorski,, 1948) Główne
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO.
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3.
Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH
Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych
OCENIANIE KSZTAŁTUJĄCE
OCENIANIE KSZTAŁTUJĄCE Co to jest ocenianie kształtujące? Ocenianie jest integralną częścią procesu edukacyjnego. Najczęściej mamy do czynienia z ocenianiem podsumowującym, które dzięki testom i egzaminom,
Studia podyplomowe: Nauczanie biologii w gimnazjach i szkołach ponadgimnazjalnych
Studia podyplomowe: Nauczanie biologii w gimnazjach i szkołach ponadgimnazjalnych Głównym celem studiów podyplomowych Nauczanie biologii w gimnazjach i szkołach ponadgimnazjalnych jest przekazanie słuchaczom
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nazwa Nazwa w j. ang. Neurofizjologia Neurophysiology Kod Punktacja ECTS* 2 Koordynator Dr hab. Grzegorz Formicki Zespół dydaktyczny Dr hab. Grzegorz Formicki Prof. dr hab. Peter Massanyi Dr
Danuta Sterna: Strategie dobrego nauczania
: Strategie dobrego nauczania Strategie dobrego nauczania Strategie oceniania kształtującego I. Określanie i wyjaśnianie uczniom celów uczenia się i kryteriów sukcesu. II. Organizowanie w klasie dyskusji,
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU HALO, NEURON. ZGŁOŚ SIĘ.
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU HALO, NEURON. ZGŁOŚ SIĘ. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy.
Ćwiczenia na rozgrzewkę
Ćwiczenia na rozgrzewkę DOKĄD ZMIERZA EDUKACJA XXI WIEKU? Co ma wspólnego uczenie się z wielbłądem doprowadzonym do wodopoju? Oroooo czyli o różnych aspektach tworzenia atmosfery sprzyjającej uczeniu
KARTA KURSU. Neurophysiology
KARTA KURSU Nazwa Nazwa w j. ang. Neurofizjologia Neurophysiology Kod Punktacja ECTS* 1 Koordynator Dr hab. Grzegorz Formicki Zespół dydaktyczny Dr hab. Grzegorz Formicki Prof. dr hab. Peter Massanyi Dr
Marian Chwastniewski. Stowarzyszenie Twórcze i Edukacyjne Wyspa
Marian Chwastniewski Stowarzyszenie Twórcze i Edukacyjne Wyspa WYSPA ODKRYĆ A WYSPA ZAGADEK Laboratorium ma na celu wdroŝenie autorskiego programu pedagogicznego WYSPA rozwijającego postawy twórcze i badawcze
Opisy efektów kształcenia w obszarze nauk przyrodniczych Załącznik 2
Opisy efektów kształcenia w obszarze nauk przyrodniczych Załącznik 2 Aspekty kształcenia WIEDZA I stopień II stopień III stopień Wiedza dotycząca fundamentów nauk przyrodniczych (fizyki, chemii, na poziomie
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Budowa atomu. Układ okresowy pierwiastków chemicznych. Promieniotwórczość naturalna i promieniotwórczość sztuczna
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
BUDOWA MÓZGU (100 MILIARDÓW NEURONÓW) NEUROFIZJOLOGICZNE PODSTAWY
NEUROFIZJOLOGICZNE PODSTAWY UCZENIA SIĘ I PAM IĘCI BUDOWA MÓZGU (100 MILIARDÓW NEURONÓW) Objętość ok. 1300 cm 3 Kora mózgowa powierzchnia ok. 1m 2 Obszary podkorowe: Rdzeń przedłużony (oddychanie, połykanie,
Wybrane metody aktywizujące
Wybrane metody aktywizujące Referat na konferencję Zespołu Nauczycielskiego w Zakładzie Poprawczym i Schronisku dla Nieletnich w Raciborzu Opracował: mgr Rafał Lazar Racibórz 2008 Podział metod nauczania
dr hab. Przemysław E. Gębal UW/UJ Język niemiecki w gimnazjum zalecenia dydaktyczne Warszawa,
dr hab. Przemysław E. Gębal UW/UJ Język niemiecki w gimnazjum zalecenia dydaktyczne Warszawa, 28.11.2014 Szkolne zajęcia językowe Neurobiologia Specyfika języka Zainteresowania uczniów Nauczyciel Ukryte
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU NEUROGENEZA
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU NEUROGENEZA SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta
Fizjologia człowieka
Akademia Wychowania Fizycznego i Sportu w Gdańsku Katedra: Promocji Zdrowia Zakład: Biomedycznych Podstaw Zdrowia Fizjologia człowieka Osoby prowadzące przedmiot: Prof. nadzw. dr hab. Zbigniew Jastrzębski
Liczba godzin Punkty ECTS Sposób zaliczenia
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Jan Matysiak Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne
biologia rozwoju/bezkręgowce: taksonomia, bezkręgowce: morfologia funkcjonalna i filogeneza i biologia rozwoju mikologia systematyczna
matematyka chemia ogólna i nieorganiczna chemia organiczna biologia roślin podstawy statystyki botanika systematyczna botanika zajęcia terenowe bezkręgowce: morfologia funkcjonalna i biologia rozwoju/bezkręgowce:
Problem Based Learning - - Nauczanie problemowe
Szkoła Podstawowa im. Adama Mickiewicza w Skalmierzycach Problem Based Learning - - Nauczanie problemowe Czym jest PBL? mgr Alina Stryjak Nauczanie problemowe (Problem Based Learning, PBL) To nauczanie
STAROSTWO POWIATOWE W SOKÓŁCE
STAROSTWO POWIATOWE W SOKÓŁCE DIAGNOZA TRUDNOŚCI NOWATORSKIE NARZĘDZIA - neuromodulacja (EEG Biofeedback), - neuroobrazowanie (EEG/QEEG), - rehabilitacja funkcji poznawczych (FORBRAIN), - diagnostyka i
Objaśnienia oznaczeń w symbolach K przed podkreślnikiem kierunkowe efekty kształcenia W kategoria wiedzy
Efekty kształcenia dla kierunku studiów FIZYKA - studia II stopnia, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych Kierunek studiów fizyka należy do obszaru
Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki
Załącznik nr 1 Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru
OLIMPIADA INFORMATYCZNA GIMNAZJALISTÓW NARZĘDZIE PRACY Z UCZNIEM ZDOLNYM
OLIMPIADA INFORMATYCZNA GIMNAZJALISTÓW NARZĘDZIE PRACY Z UCZNIEM ZDOLNYM Projekt współfinansowany z Unii Europejskiej w ramach Europejskiego Funduszu Społecznego IDEA OLIMPIADY INFORMATYCZNEJ GIMNAZJALISTÓW
Wszelkie działania twórcze zaczyna się od ruchu. Gimnastyka Mózgu. Kinezjologia Edukacyjna według dr P. Dennisona stopień I i II.
Wszelkie działania twórcze zaczyna się od ruchu. Samorządowe Centrum Edukacji w Tarnowie kolejny juŝ raz w swojej ofercie proponuje dla nauczycieli wszystkich specjalności warsztaty metodyczne: Gimnastyka
Opisy efektów kształcenia w obszarze nauk przyrodniczych Załącznik 2
Opisy efektów w obszarze nauk przyrodniczych Załącznik 2 WIEDZA Wiedza dotycząca fundamentów nauk przyrodniczych (fizyki, chemii, na poziomie ponadlicealnym) Zaawansowana wiedza z fizyki, chemii; wyspecjalizowana
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Neuroinformatyka 3-letnie studia I stopnia (licencjackie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Neuroinformatyka 3-letnie studia I stopnia (licencjackie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Gwałtowny rozwój Neuroinformatyki na świecie odbywa się
EFEKTYWNE SPOSOBY UCZENIA SIĘ
EFEKTYWNE SPOSOBY UCZENIA SIĘ Wielu rodziców znajduje się w sytuacji, gdy ich dziecko poświęca dużo czasu na naukę, natomiast jego wyniki szkolne nie są zadawalające. Wielokrotnie dzieci opowiadają, że
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU. Czym są choroby prionowe?
SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU Czym są choroby prionowe? SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy.
Efekty kształcenia dla kierunku Biotechnologia
Efekty kształcenia dla kierunku Biotechnologia Załącznik nr 1 do Uchwały Nr 671 Senatu UWM w Olsztynie z dnia 6 marca 2015 roku zmieniającej Uchwałę Nr 907 Senatu UWM w Olsztynie z dnia 27 kwietnia 2012
Neurodydaktyka - rewolucja czy rozsądek? Dr n.med.tomasz Srebnicki
Neurodydaktyka - rewolucja czy rozsądek? Dr n.med.tomasz Srebnicki Jak świat światem, nikt nikogo niczego nie nauczył. Można tylko się nauczyć. Nikt z nas nie został nauczony chodzenia, my nauczyliśmy
Przemiana nauczycieli: W jaki sposób wspierać nauczycieli w pracy nad zmianą praktyki? dr John M. Fischer Uniwersytet Stanowy Bowling Green Ohio, USA
Przemiana nauczycieli: W jaki sposób wspierać nauczycieli w pracy nad zmianą praktyki? dr John M. Fischer Uniwersytet Stanowy Bowling Green Ohio, USA Jak wspieramy samodzielną refleksję i rozwój u nauczycieli?
Rozwijanie twórczego myślenia uczniów
Rozwijanie twórczego myślenia uczniów Przygotowanie do konkursów przedmiotowych i tematycznych Oprac. Anna Szczepkowska-Kirszner Szkoła Podstawowa nr 3 we Włodawie Rok szkolny 2011/2012 tytuł laureata
FIZYKA II STOPNIA. TABELA ODNIESIENIA EFEKTÓW KIERUNKOWYCH DO EFEKTÓW PRK POZIOM 7 Symbol Efekty kształcenia dla kierunku studiów FIZYKA.
Załącznik nr 2 do uchwały nr 421 Senatu Uniwersytetu Zielonogórskiego z dnia 29 maja 2019 r. Opis zakładanych efektów uczenia się z przyporządkowaniem kierunku studiów do dziedzin nauki i dyscyplin naukowych
STUDIA I STOPNIA NA KIERUNKU ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE. specjalność Biofizyka molekularna
STUDIA I STOPNIA NA KIERUNKU ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE 1. CELE KSZTAŁCENIA specjalność Biofizyka molekularna Biofizyka to uznana dziedzina nauk przyrodniczych o wielkich tradycjach, która
ZAJĘCIA 1. uczenie się i pamięć mechanizmy komórkowe. dr Marek Binder Zakład Psychofizjologii
ZAJĘCIA 1 uczenie się i pamięć mechanizmy komórkowe dr Marek Binder Zakład Psychofizjologii problem engramu dwa aspekty poziom systemowy które części mózgu odpowiadają za pamięć gdzie tworzy się engram?
Ocenianie kształtujące
1 Ocenianie kształtujące 2 Ocenianie kształtujące w nowej podstawie programowej 3 Rozporządzenie o ocenianiu Ocenianie wewnątrzszkolne ma na celu: 1) Informowanie ucznia o poziomie jego osiągnięć edukacyjnych
WYNIKI BADAŃ NAD ATRAKCYJNOŚCIĄ ZAJĘĆ PROWADZONYCH PRZY ZASTOSOWANIU TABLICY INTERAKTYWNEJ
73 WYNIKI BADAŃ NAD ATRAKCYJNOŚCIĄ ZAJĘĆ PROWADZONYCH PRZY ZASTOSOWANIU TABLICY INTERAKTYWNEJ Małgorzata Nodzyńska Zakład Dydaktyki Chemii, Instytut Biologii, Akademia Pedagogiczna im. KEN, Kraków słowa
E-learning pomocą INNOWACJA PEDAGOGICZNA. Autor: Małgorzata Olędzka. Zespół Szkół Ponadgimnazjalnych Nr 1 im. Komisji Edukacji Narodowej w Białymstoku
E-learning pomocą w nauce fizyki dla uczniów z dysfunkcjami INNOWACJA PEDAGOGICZNA Autor: Małgorzata Olędzka Zespół Szkół Ponadgimnazjalnych Nr 1 im. Komisji Edukacji Narodowej w Białymstoku Informacje
Neurokognitywistyka. Mózg jako obiekt zainteresowania w
Neurokognitywistyka. Mózg jako obiekt zainteresowania w psychologii poznawczej Małgorzata Gut Katedra Psychologii Poznawczej WyŜsza Szkoła Finansów i Zarządzania w Warszawie http://cogn.vizja.pl Wykład
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna. 3-letnie studia I stopnia (licencjackie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna 3-letnie studia I stopnia (licencjackie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Biofizyka to uznana dziedzina nauk przyrodniczych
Opis zakładanych efektów kształcenia OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA
Załącznik nr 2 do Uchwały Rady Wydziału Biochemii, Biofizyki i Biotechnologii UJ z dnia 19czerwca 2018 r. w sprawie zmian programu i planu na BIOCHEMIA na poziomie pierwszego stopnia (według wzoru zawartego
Wspieranie uczenia się neurodydaktyka i ocenianie
Wspieranie uczenia się neurodydaktyka i ocenianie kształtujące Uczenie się i wielbłąd... Ocenianie kształtujące Filozofia nauczania zasady i idee, które leżą u podstaw poglądu, że każdy uczenie się jest
Czym jest badanie czynnościowe rezonansu magnetycznego? Oraz jaki ma związek z neuronawigacją?
Czym jest badanie czynnościowe rezonansu magnetycznego? Oraz jaki ma związek z neuronawigacją? Dolnośląski Szpital Specjalistyczny im. T. Marciniaka Centrum Medycyny Ratunkowej stale podnosi jakość prowadzonego
Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu
Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu Neuron jest podstawową jednostką przetwarzania informacji w mózgu. Sygnał biegnie w nim w kierunku od dendrytów, poprzez akson, do synaps. Neuron
biologia w gimnazjum OBWODOWY UKŁAD NERWOWY
biologia w gimnazjum 2 OBWODOWY UKŁAD NERWOWY BUDOWA KOMÓRKI NERWOWEJ KIERUNEK PRZEWODZENIA IMPULSU NEROWEGO DENDRYT ZAKOŃCZENIA AKSONU CIAŁO KOMÓRKI JĄDRO KOMÓRKOWE AKSON OSŁONKA MIELINOWA Komórka nerwowa
IMYC pomaga: Zrozumieć znaczenie procesu uczenia się. Odnaleźć relacje, które zachodzą między różnymi dziedzinami nauki. Rozwinąć swój umysł.
IMYC w gimnazjum Sparka Czym jest IMYC? International Middle Years Curriculum to międzynarodowy program nauczania, który jest kontynuacją IPC (International Primary Curriculum) i daje wsparcie uczniom
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Projektowanie molekularne i bioinformatyka. 2-letnie studia II stopnia (magisterskie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Projektowanie molekularne i bioinformatyka 2-letnie studia II stopnia (magisterskie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Wieloskalowe metody molekularnego
Wykorzystanie neurodydaktyki w praktyce szkolnej
Wykorzystanie neurodydaktyki w praktyce szkolnej mgr Aneta Żurek zurek@womczest.edu.pl Naurodydaktyka Dlaczego nauczyciele powinni interesować się wnioskami płynącymi z badań nad mózgiem? 2 Marzena Żylińska
UCHWAŁA Nr 31/2014 Senatu Uniwersytetu Wrocławskiego z dnia 26 marca 2014 r.
UCHWAŁA Nr 31/2014 Senatu Uniwersytetu Wrocławskiego z dnia 26 marca 2014 r. w sprawie utworzenia kierunku genetyka i biologia eksperymentalna - studia pierwszego stopnia oraz zmieniająca uchwałę w sprawie
Dywergencja/konwergencja połączeń między neuronami
OD NEURONU DO SIECI: MODELOWANIE UKŁADU NERWOWEGO Własności sieci, plastyczność synaps Stefan KASICKI SWPS, SPIK wiosna 2007 s.kasicki@nencki.gov.pl Dywergencja/konwergencja połączeń między neuronami 1
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Projektowanie molekularne i bioinformatyka. 3-letnie studia I stopnia (licencjackie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Projektowanie molekularne i bioinformatyka 3-letnie studia I stopnia (licencjackie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Projektowanie molekuł biologicznie
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna. 2-letnie studia II stopnia (magisterskie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna 2-letnie studia II stopnia (magisterskie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Biofizyka to uznana dziedzina nauk przyrodniczych
Analiza testu kompetencji piątoklasistów przyroda
Analiza testu kompetencji piątoklasistów 2016 przyroda Test został przeprowadzony 17 maja 2016 roku. Zawierał 16 zadań (11 zamkniętych, 5 otwartych), do zdobycia było 16 punktów. Liczba uczniów, którzy
1. CHARAKTERYSTYKA STUDIÓW 2. SYLWETKA ABSOLWENTA 3. PLAN STUDIÓW
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Nauczanie i popularyzacja fizyki, specjalizacje: Nauczycielska; Dydaktyka i popularyzacja fizyki 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności
Do uzyskania kwalifikacji pierwszego stopnia (studia inżynierskie) na kierunku BIOTECHNOLOGIA wymagane są wszystkie poniższe efekty kształcenia
Kierunek studiów: BIOTECHNOLOGIA Forma studiów: stacjonarne Rodzaj studiów: studia pierwszego stopnia - inżynierskie Czas trwania studiów: 3,5 roku (7 semestrów, 1 semestr - 15 tygodni) Liczba uzyskanych
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Białystok, 15 maja 2012 r.
Białystok, 15 maja 2012 r. W jaki sposób pisać komentarze do prac pisemnych uczniów, aby motywowały do dalszej pracy? OPRAC. Urszula Roman OCENIANIE jest to proces służący uzyskaniu i interpretacji danych
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Co warto mierzyć? (I w co warto wierzyć? z tego co zmierzone)
Co warto mierzyć? (I w co warto wierzyć? z tego co zmierzone) Jacek Pyżalski UAM w Poznaniu Materiały XII Kongresu Zarządzania Oświatą www.oskko.edu.pl/kongres/materialy/ Spora niechęć do pomiarów Za dużo
Przedmiotowy System Oceniania Zajęcia komputerowe klasa 6
Przedmiotowy System Oceniania Zajęcia komputerowe klasa 6 1. Obszary aktywności oceniane na lekcjach zajęć komputerowych: a) wypowiedzi ustne na lekcjach, b) samodzielna praca z komputerem oraz stopień
zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym
Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku
POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS. Wielkie umysły. Fizycy. Jan Kowalski, FT gr
POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS Wielkie umysły Fizycy Jan Kowalski, FT gr.1 2013-09-28 Zaprezentowano wybrane wiadomości dotyczące kilku znanych wybitnych fizyków. A tak naprawdę, to chodzi tu o przećwiczenie
Wśród prostokątów o jednakowym obwodzie największe pole. ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla. gimnazjalistów.
1 Wśród prostokątów o jednakowym obwodzie największe pole ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla gimnazjalistów. Czas trwania zajęć: 45 minut Potencjalne pytania badawcze: 1. Jaki prostokąt
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Zakaźne choroby mózgu
Wiadomości naukowe o chorobie Huntingtona. Prostym językiem. Napisane przez naukowców. Dla globalnej społeczności HD. Powinniśmy martwić się inwazją huntingtyny? Eksperymenty laboratoryjne: białko choroby
Ocenianie kształtujące - ocenianie, które pomaga się uczyć
Ocenianie kształtujące - ocenianie, które pomaga się uczyć 1 40 Definicja Ocenianie kształtujące to częste, interaktywne ocenianie postępów ucznia i uzyskanego przez niego zrozumienia materiału, tak by
1. CHARAKTERYSTYKA STUDIÓW 2. SYLWETKA ABSOLWENTA
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Nauczanie i popularyzacja fizyki, specjalizacje: Nauczycielska; Dydaktyka i popularyzacja fizyki 1. CHARAKTERYSTYKA STUDIÓW Celem
01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2
Efekty kształcenia dla kierunku studiów Studia Przyrodnicze i Technologiczne (z językiem wykładowym angielskim) - studia I stopnia, stacjonarne, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia
Program Polsko Amerykańskiej Fundacji Wolności realizowany przez PSPiA KLANZA
Program Polsko Amerykańskiej Fundacji Wolności realizowany przez PSPiA KLANZA Idea programu W programie Wolontariat studencki grupy liczące od dwóch do pięciu studentów wolontariuszy prowadzą zajęcia edukacyjne
Wystawa MÓZG. Wystawa zaskakuje, bawi i ilustruje najnowsze osiągnięcia neuronauk.
Wystawa MÓZG Wystawa MÓZG Interaktywne, multimedialne laboratorium, w którym młodzież i dorośli zdobywają wiedzę na temat własnego umysłu, uczestnicząc w zaskakująych grach i testach. Realizuje wybrane
Nazwa studiów doktoranckich: Ogólna charakterystyka studiów doktoranckich
Program studiów doktoranckich Ogólna charakterystyka studiów doktoranckich Jednostka prowadząca studia doktoranckie: Nazwa studiów doktoranckich: Nazwa studiów doktoranckich w języku angielskim: Umiejscowienie
Załącznik 1. Nazwa kierunku studiów: FIZYKA Poziom kształcenia: II stopień (magisterski) Profil kształcenia: ogólnoakademicki Symbol
Efekty kształcenia dla kierunku studiów FIZYKA TECHNICZNA - studia II stopnia, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych Kierunek studiów fizyka techniczna
KRYTERIA OCENIANIA Z GEOGRAFII
KRYTERIA OCENIANIA Z GEOGRAFII I. Cele oceniania 1. Poinformowanie ucznia o poziomie jego osiągnięć edukacyjnych i postępach w tym zakresie. 2. Pomoc uczniowi w samodzielnym planowaniu swojego rozwoju.
Konspekt do lekcji matematyki dn w klasie IIIa Gimnazjum nr 7 w Rzeszowie.
Monika Łokaj III Matematyka (licencjat) Konspekt do lekcji matematyki dn. 6.01.2006 w klasie IIIa Gimnazjum nr 7 w Rzeszowie. Nauczyciel: Prowadzący: Monika Łokaj Temat lekcji: Rozwiązywanie zadań tekstowych
Potencjał spoczynkowy i czynnościowy
Potencjał spoczynkowy i czynnościowy Marcin Koculak Biologiczne mechanizmy zachowania https://backyardbrains.com/ Powtórka budowy komórki 2 Istota prądu Prąd jest uporządkowanym ruchem cząstek posiadających
Zajęcia komputerowe w szkole podstawowej. Wanda Jochemczyk Ośrodek Edukacji Informatycznej i Zastosowań Komputerów wanda@oeiizk.waw.
Zajęcia komputerowe w szkole podstawowej Wanda Jochemczyk Ośrodek Edukacji Informatycznej i Zastosowań Komputerów wanda@oeiizk.waw.pl Plan wystąpienia Jakie zmiany w nauczaniu przedmiotów informatycznych?
W badaniach 2008 trzecioklasiści mieli kilkakrotnie za zadanie wyjaśnić wymyśloną przez siebie strategię postępowania.
Alina Kalinowska Jak to powiedzieć? Każdy z nas doświadczał z pewnością sytuacji, w której wiedział, ale nie wiedział, jak to powiedzieć. Uczniowie na lekcjach matematyki często w ten sposób przekonują
Opis kierunkowych efektów kształcenia w obszarze nauk przyrodniczych na I stopniu kierunku BIOLOGIA
Opis kierunkowych efektów kształcenia w obszarze nauk przyrodniczych na I stopniu kierunku BIOLOGIA Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów BIOLOGIA o profilu ogólnoakademickim
Opis efektów uczenia się dla kwalifikacji na poziomie 7 Polskiej Ramy Kwalifikacji
Załącznik nr 2 do Uchwały nr 103/2018-2019 Senatu UP w Lublinie z dnia 28 czerwca 2019 r. Opis efektów uczenia się dla kierunku studiów Nazwa kierunku studiów: Biologia Poziom: studia drugiego stopnia
Opracowała Agnieszka Szczepaniak
Opracowała Agnieszka Szczepaniak Ustaliliśmy cele, więc wiemy dokąd zdążamy, co chcielibyśmy wspólnie osiągnąć. Teraz musimy ustalić, jakie zjawiska i fakty pokażą, że osiągnęliśmy założone cele na danej
Obserwacja jest jedną z metod/technik badań społecznych, wykorzystywaną w etnologii i antropologii kulturowej, socjologii, psychologii.
Obserwacja jest jedną z metod/technik badań społecznych, wykorzystywaną w etnologii i antropologii kulturowej, socjologii, psychologii. Zawsze dotyczy badania zachowań społecznych, interakcji między jednostkami,
Nauczanie problemowe w toku zajęć praktycznych
Nauczanie problemowe w toku zajęć praktycznych Ewa Piotrowska Wykład oparty na podręczniku: Praktyczna nauka zawodu Ornatowski, J. Figurski Nauczanie problemowe znajduje zastosowanie: w nauczaniu teoretycznych
Program zajęć pozalekcyjnych dla dzieci z kl. I III wykazujących zainteresowanie tematyką przyrodniczą i geograficzną (praca z uczniem zdolnym)
Program zajęć pozalekcyjnych dla dzieci z kl. I III wykazujących zainteresowanie tematyką przyrodniczą i geograficzną (praca z uczniem zdolnym) Program przeznaczony do realizacji w roku szkolnym 2003/04
określone Uchwałą Senatu Uniwersytetu Kazimierza Wielkiego Nr 156/2012/2013 z dnia 25 września 2013 r.
Załącznik Nr 5.1 do Uchwały Nr 156/2012/2013 Senatu UKW z dnia 25 września 2013 r. EFEKTY KSZTAŁCENIA określone Uchwałą Senatu Uniwersytetu Kazimierza Wielkiego Nr 156/2012/2013 z dnia 25 września 2013
Opis efektu kształcenia dla programu kształcenia
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: Kierunek Fizyka Techniczna POZIOM
Uchwała nr 85/2017 z dnia 30 maja 2017 r. Senatu Uniwersytetu Medycznego w Łodzi
Uchwała nr 85/2017 z dnia 30 maja 2017 r. Senatu Uniwersytetu Medycznego w Łodzi w sprawie potwierdzenia utworzenia na Wydziale Nauk Biomedycznych i Kształcenia Podyplomowego Uniwersytetu Medycznego w
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych
Program studiów doktoranckich
Program studiów doktoranckich Efekty kształcenia dla studiów doktoranckich w zakresie biologii Lp. Po ukończeniu studiów doktoranckich w zakresie biologii absolwent osiąga następujące efekty kształcenia:
Danuta Kosior ZS CKR w Gołotczyźnie doradca metodyczny
Danuta Kosior ZS CKR w Gołotczyźnie doradca metodyczny 1. Definicja oceniania kształtującego 2. Podstawa prawna oceniania kształtującego 3. Ocenianie kształtujące a ocenianie tradycyjne (sumujące) 4. Dziesięć
INTUICJE. Zespół norm, wzorców, reguł postępowania, które zna każdy naukowiec zajmujący się daną nauką (Bobrowski 1998)
PARADYGMAT INTUICJE Zespół norm, wzorców, reguł postępowania, które zna każdy naukowiec zajmujący się daną nauką (Bobrowski 1998) PIERWSZE UŻYCIA językoznawstwo: Zespół form deklinacyjnych lub koniugacyjnych
Wzór na rozwój. Nauki ścisłe odpowiadają na wyzwania współczesności
Kurs internetowy Wzór na rozwój Nauki ścisłe odpowiadają na wyzwania współczesności O projekcie Wzór na rozwój Wzór na rozwój. Nauki ścisłe odpowiadają na wyzwania współczesności to projekt edukacyjny
Innowacja pedagogiczna dla uczniów pierwszej klasy gimnazjum Programowanie
Innowacja pedagogiczna dla uczniów pierwszej klasy gimnazjum Programowanie Opracował Ireneusz Trębacz 1 WSTĘP Dlaczego warto uczyć się programowania? Żyjemy w społeczeństwie, które coraz bardziej się informatyzuje.