Systemy autonomiczne wykorzystujące sterowanie reaktywne
|
|
- Krystyna Skiba
- 8 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 4 Systemy autonomiczne wykorzystujące sterowanie reaktywne DZIAŁANIE REAKTYWNE działanie poprzez 'reakcje', oparte na bezpośrednim przyporządkowaniu percepcji i akcji, bez modelowania i bez planowania DLACZEGO? Charakterystyczne cechy świata rzeczywistego: ( w odróżnieniu do świata "klocków" ) złożoność (np. dokładny opis łąki porośniętej trawą ) niepewność, nieprzewidywalność ( niedeterminizm, probabilistyka, np. przewidywanie pogody ) niekompletna wiedza świat dynamiczny - system czasu rzeczywistego ( najczęściej konieczna jest natychmiastowa reakcja, np. podczas gry komputerowej ) Eksperyment: z zaplanowaniem działania osoby, której zadaniem jest chwycenie długopisu Cechy "sterowania racjonalnego" planowania przez duże P :! generuje sekwencję zadań / akcji do wykonania! zakłada 'ślepe' wykonywanie (bez interakcji) - nie jest uniwersalne 1
2 Planowanie racjonalne generuje wiele problemów:! złożoność charakter kombinatoryczny! niepewność adekwatności i poprawnego wykonania zaplanowanych akcji! natychmiastowość reakcji Niemożliwa!! kompletna reprezentacja Niemożliwa! Jak natura problemów świata rzeczywistego wpływa na wewnętrzną architekturę oprogramowania "agenta"? Czy jest jakieś antidotum? Wniosek: Świat naturalny wymaga takich systemów sterowania, które są odporne na różnego rodzaju zakłócenia, szybko adaptują się do zmian dynamicznego otoczenia i jednocześnie działają w czasie rzeczywistym. Możliwa jest inna architektura agenta DZIAŁANIE REAKTYWNE Planowanie przez małe 'p' Reaktywne zachowanie to klasyfikacja aktualnego stanu i wykonywanie pre-planowanych akcji. Jest to wyliczenie (zaplanowanie?) reakcji na każdą możliwą sytuację. Najważniejsze paradygmaty:! omijanie obliczeń kiedy tylko możliwe (unikanie wnioskowania/planowania) Przykład: robot Lema > "byle nie myśleć a będzie dobra nasza"! unikanie reprezentacji stanu otoczenia " Najlepszym modelem świata, jest on sam! " (Rodney Brooks) 2
3 ! Czy to się da zrobić?! Czy to będzie działać? PRZYKŁAD (z laboratoriów MIT): architektura systemu sterowania robota mobilnego zbierającego puszki po napojach Cechy sterowania reaktywnego:! bezpośrednie połączenie percepcji i akcji! brak modeli-reprezentacji otoczenia! zazwyczaj wykorzystuje dedykowany, współbieżnie działający hardware / software! predefiniowane, proste, szybkie odpowiedzi na zmiany otoczenia! przyczynowość działania to świat powoduje działanie 'odpalając' reguły, które zwrotnie oddziaływują na świat ( czyżby powrót od agenta do obiektu? )! Cele + proste umiejętności + skomplikowany świat =? Różnice w porównaniu do planowania racjonalnego:! brak stanu początkowego! brak unikalnego stanu końcowego! przewidywanie wszystkich możliwych sytuacji i przyporządkowywanie reakcji (planowanie off line) Rezultaty stosowania systemów reaktywnych: otrzymujemy wysoko reaktywne zachowania w czasie rzeczywistym, możliwe jest działanie w złożonych, dynamicznych i niepewnych otoczeniach. 3
4 Możliwe wersje architektury reaktywnej:! Równoległe wykonywanie wielu działań ( każde źródło sygnałów steruje innym rodzajem działania )! Agregacja składanie wielu sygnałów (percepcji) otoczenia w celu wyznaczenia sterowania jednym rodzajem działania! Priorytetowanie gdy różne działania wzajemnie się zakłócają, pierwszeństwo ma najważniejsze działanie ( pozostałe działania są blokowane ) 4
5 PRZYKŁAD: Vehicles: Experiments in Synthetic Psychology, Valentino Braitenberg, Cambridge, MIT Press, 1984 vehicle 1 vehicle 2a vehicle 2b vehicle 3 Za pomocą bardzo prostych środków możliwe jest zbudowanie złożonych zachowań:! omijanie przeszkód! dopasowanie prędkości! algorytmy stada tworzenie różnych formacji które są postrzegane jako działania celowe i inteligentne chociaż nie wykorzystują żadnej wewnętrznej reprezentacji takiego abstrakcyjnego celu. 5
6 KRYTYKA :! wiedza systemu reaktywnego jest ograniczona zakresem obserwowalności sensorów! nie potrafią wykrywać zmian lub powtórzeń względem przeszłości! nie potrafią zliczać! mała podatność na "formalną" analizę! słaba przewidywalność działania całego systemu w nieznanym i dynamicznym otoczeniu. ( Ta słaba przewidywalność jest szczególnie akcentowana w zastosowaniach związanych z dużą odpowiedzialnością np. wojsko, medycyna, duże systemy produkcyjne )! Ograniczenie "wnioskowania" do lokalnego kontekstu tzn. podejmowania decyzji na podstawie analizy małego fragmentu czaso-przestrzeni otoczenia! W efekcie algorytmy reaktywne bardzo często zatrzymują się na rozwiązaniach lokalnie optymalnych, a działanie całego systemu jest sub-optymalne Istnieje duża klasa zadań "niereaktywnych"!!! Największą trudność sprawiają próby reaktywnej realizacji zadań, które "z natury" wymagają wykonywania uszeregowanychsekwencyjnych planów działania.! Np. typowe zadanie klasycznego systemu wnioskowania: "użyj równi pochyłej do postawienia klocka A na klocku B zajętym przez klocek C" jest niemożliwe do rozwiązania przez system reaktywny jeżeli stan klocków A,B,C i równi pochyłej nie może być obserwowany jednocześnie.! Negacja stosowania elementów pamięciowych (abstrakcyjnych modeli) uniemożliwia wymuszanie stanów pośrednich w których system "opuszcza" lokalne ekstremum, aby po jakimś czasie znaleźć lepsze rozwiązanie!!! ( przykład zwierząt: ptak vs. kot, które próbują się dostać do pożywienia ukrytego za szybą ) 6
7 Architektura reaktywna z reprezentacją stanu Dzięki wprowadzeniu jakiejkolwiek formy pamięci, modelowania stanu (systemu i/lub otoczenia):! wiedza agenta nie jest ograniczona do bezpośredniego otoczenia! agent potrafi zliczać, co umożliwia realizację działań które muszą być wykonywane zadana ilość razy ( iteracyjnych, cyklicznych )! możliwe jest wprowadzanie opóźnienie wykonania akcji względem percepcji! możliwe jest tworzenie działań opartych na sekwencjach percepcji/akcji np. reagowanie na sekwencję zmian otoczenia lub reagowanie na długotrwały brak zmian otoczenia! agent jest w stanie wykryć niepowodzenie akcji wykonywanych w przeszłości i wybrać zastosować inną regułę działania 7
8 Wielopoziomowa architektura SUBSUMPTION Architektura Subsumption składa się z wielu hierarchicznie zorganizowanych poziomów (zachowań), odpowiedzialnych za niezależną realizację różnych celów. Poszczególne poziomy działają współbieżnie, asynchronicznie, posiadają własne podsystemy percepcji oraz działania. Podstawowym elementem konstrukcyjnym jest zachowanie : Zachowania:! są opisywane za pomocą zbioru reguł definiujących działanie automatu skończonego! każde z zachowań posiada własne sensory i efektory! wyjście jednego zachowania może być wejściem innego W ramach tej architektury! bardziej złożone zachowania subsume prostsze zachowania, które znajdują się na niższych poziomach hierarchii! niższe poziomy nie posiadają żądnej wiedzy na temat wyższych! wyjścia niższych poziomów mogą być odczytywane przez zachowania z wyższych poziomów! wyższe poziomy sterują działaniem niższych poprzez: blokowanie sygnałów wejściowych (inhibition) zamianę sygnałów wyjściowych na inne (suppression) wymuszenie powrotu zachowania do stanu początkowego (reset) 8
9 PRZYKŁAD: System sterowania robotem zbierającym zadane obiekty ( Maja Matarić, Kin recognition, similarity, and group behavior, 1993 ) System składał się z 4 zachowań:! wandering losowa eksploracja terenu poprzez poruszanie się w przypadkowych kierunkach przez losowany okres czasu! avoiding : skręcanie w prawo (lewo) jeżeli zaobserwowano przeszkodę z lewej (prawej) strony po trzech próbach, wycofanie się i losowy obrót jeżeli przeszkody po obu stronach,! pickup obrót w kierunku obiektu, ruch do przodu, jeżeli obiekt w zasięgu chwytu zamknięcie chwytaka! homing obrót w kierunku bazy i następnie ruch do przodu, jeżeli na terenie bazy, to koniec działania. 9
10 POSUMOWANIE:! Podstawowy postulat "reaktywności" to kompilacja wiedzy systemu do postaci kolekcji prostych bezpośrednich odwzorowań: percepcja akcja! W rezultacie, zamiast powolnej sekwencji klasycznego wnioskowania percepcja abstrakcja modelowanie planowanie heurystyczne przeszukiwanie wykonywanie uzyskujemy bardzo szybkie systemy sterowania, których inteligencja osiągana jest poprzez bezpośrednią interakcję z otoczeniem.! Zamiast budować sztuczny model świata, wykorzystujemy świat jako jego własny model.! Prekursorem zastosowań reaktywności w robotyce był Rodney Brooks oraz zaproponowana przez niego subsumption architecture "A Robust Layered Control System for a Mobile Robot" R.A. Brooks, MIT,
Systemy hybrydowe reaktywno-racjonalne
WYKŁAD 5 Systemy hybrydowe reaktywno-racjonalne Sterowanie REAKTYWNE Zalety: bardzo szybko reaguje na zmiany otoczenia, ograniczone wymagania na moc obliczeniową oraz pamięć, system reaktywny rozbudowany
Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG
Systemy Agentowe główne cechy Mariusz.Matuszek WETI PG Definicja agenta Wiele definicji, w zależności od rozpatrywanego zakresu zastosowań. Popularna definicja: Jednostka obliczeniowa (program, robot),
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Szybkie prototypowanie w projektowaniu mechatronicznym
Szybkie prototypowanie w projektowaniu mechatronicznym Systemy wbudowane (Embedded Systems) Systemy wbudowane (ang. Embedded Systems) są to dedykowane architektury komputerowe, które są integralną częścią
Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).
SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD II: Agent i jego środowisko
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD II: Agent i jego środowisko Agent racjonalny Agent jednostka traktowana jakby postrzegała swoje środowisko dzięki pewnym czujnikom oraz działająca
Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Modelowanie i Programowanie Obiektowe
Modelowanie i Programowanie Obiektowe Wykład I: Wstęp 20 październik 2012 Programowanie obiektowe Metodyka wytwarzania oprogramowania Metodyka Metodyka ustandaryzowane dla wybranego obszaru podejście do
Podejście obiektowe - podstawowe pojęcia
Podejście obiektowe - podstawowe pojęcia Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Copyright c 2003 2008 Bogdan Kreczmer Niniejszy dokument zawiera materiały do wykładu
Sztuczna inteligencja
Wstęp do Robotyki c W. Szynkiewicz, 2009 1 Sztuczna inteligencja Inteligencja to zdolność uczenia się i rozwiązywania problemów Główne działy sztucznej inteligencji: 1. Wnioskowanie: Wykorzystanie logiki
Autonomia robotów. Cezary Zieliński Instytut Automatyki i Informatyki Stosowanej Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska
Autonomia robotów Cezary Zieliński Instytut Automatyki i Informatyki Stosowanej Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Wszechnica PAN 13 kwietnia 2016 r. Anatomia robota Receptory
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Najprostszy schemat blokowy
Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML Piotr Skrzypczyński Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Politechnika
SYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Systemy czasu rzeczywistego w automatyce i robotyce. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów
Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście
Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl
Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład X/XI: Architektury poznawcze (symboliczne) III: GLAIR/SNePS GLAIR/SNePS - przegląd GLAIR/SNePS (Grounded Layered Architecture with Integrated
Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy
Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34
Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. 2/34 Modelowanie CRC Modelowanie CRC (class-responsibility-collaborator) Metoda identyfikowania poszczególnych
Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl
Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady
Mechatronika i inteligentne systemy produkcyjne. Aktory
Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację
Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014
Podstawy techniki cyfrowej Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Charakterystyka układów asynchronicznych Brak wejścia: zegarowego, synchronizującego. Natychmiastowa (niesynchronizowana)
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Zastosowanie bisymulacji do. Non-Interference XVI FIT, Karpacz 2002
Zastosowanie bisymulacji do weryfikowania własności Non-Interference XVI FIT, Karpacz 2002 Wojciech Tomanik, Wiktor Zychla Uniwersytet Wrocławski Instytut Informatyki 14 grudnia 2002 Zastosowanie bisymulacji
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy
Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).
Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów
Systemy wbudowane - wykład 9. Systemy czasu rzeczywistego Notes. Systemy czasu rzeczywistego Notes. Systemy czasu rzeczywistego Notes.
Systemy wbudowane - wykład 9 Przemek Błaśkiewicz 26 maja 2017 1 / 93 Systemy czasu rzeczywistego sterowanie silnikiem rakietowym; 2 / 93 Systemy czasu rzeczywistego sterowanie silnikiem rakietowym; system
TECHNOLOGIE OBIEKTOWE WYKŁAD 2. Anna Mroczek
TECHNOLOGIE OBIEKTOWE WYKŁAD 2 Anna Mroczek 2 Diagram czynności Czym jest diagram czynności? 3 Diagram czynności (tak jak to definiuje język UML), stanowi graficzną reprezentację przepływu kontroli. 4
Mariusz Nowak Instytut Informatyki Politechnika Poznańska
Inteligentne budynki () Politechnika Poznańska Plan. BMS. Integracja systemów budynkowych 3. Poziomy integracji systemów budynkowych. Klasyfikacja IB 5. Kategorie instalacji w IB 6. Integracja instalacji
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie
Metody symulacji komputerowych Modelowanie systemów technicznych
Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje
INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Katarzyna Wojewoda 133413 Wrocław, 05. 06. 2007 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH PRACA ZALICZENIOWA Reprezentacje wiedzy w systemach autonomicznych: Reprezentacja potencjałowa Prowadzący: Dr inŝ. Marek
Projekt i wykonanie robota klasy Micromouse
Projekt i wykonanie robota klasy Micromouse AUTOR: KAMIL BUGDOŁ PROMOTOR: DR HAB. INŻ. WOJCIECH SKARKA, PROF. NZW. W POL. ŚL. OPIEKUN: DR INŻ. WAWRZYNIEC PANFIL Wstęp Cel pracy Celem projektu jest zaprojektowanie
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
ZASTOSOWANIE ROBOTÓW MOBILNYCH W SYMULACYJNYM BADANIU CZASU EWAKUACJI
Marcin Pluciński ZASTOSOWANIE ROBOTÓW MOBILNYCH W SYMULACYJNYM BADANIU CZASU EWAKUACJI Streszczenie Pomieszczenia, w których znajdują się duże grupy ludzi można traktować jako system złożony. Wiele z własności
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Znajdowanie wyjścia z labiryntu
Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony
Diagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
PRACA DYPLOMOWA MAGISTERSKA
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania PRACA DYPLOMOWA MAGISTERSKA Konstrukcja autonomicznego robota mobilnego Małgorzata Bartoszewicz Promotor: prof. dr hab. inż. A. Milecki Zakres
Sławomir Kulesza. Projektowanie automatów asynchronicznych
Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)
Modelowanie procesów współbieżnych
Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Systemy Informatyki Przemysłowej
Systemy Informatyki Przemysłowej Profil absolwenta Profil absolwenta Realizowany cel dydaktyczny związany jest z: tworzeniem, wdrażaniem oraz integracją systemów informatycznych algorytmami rozpoznawania
APIO. W4 ZDARZENIA BIZNESOWE. ZALEŻNOŚCI MIĘDZY FUNKCJAMI. ELEMENTY DEFINICJI PROCESU. DIAGRAM ZALEŻNOŚCI FUNKCJI.
APIO. W4 ZDARZENIA BIZNESOWE. ZALEŻNOŚCI MIĘDZY FUNKCJAMI. ELEMENTY DEFINICJI PROCESU. DIAGRAM ZALEŻNOŚCI FUNKCJI. dr inż. Grażyna Hołodnik-Janczura W8/K4 ZDARZENIA BIZNESOWE W otoczeniu badanego zakresu
MODELE I MODELOWANIE
MODELE I MODELOWANIE Model układ materialny (np. makieta) lub układ abstrakcyjny (np..rysunki, opisy słowne, równania matematyczne). Model fizyczny (nominalny) opis procesów w obiekcie (fizycznych, również
Wykorzystanie wieloagentowych systemów w optymalizacji operacji łańcucha dostaw
Wykorzystanie wieloagentowych systemów w optymalizacji operacji łańcucha dostaw Marcin Hermanowicz IT w Logistyce GigaCon, Warszawa 2017 Dlaczego systemy wieloagentowe? Systemy wieloagentowe znajdują zastosowanie
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Grupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
Wykład 8. Testowanie w JEE 5.0 (1) Autor: Zofia Kruczkiewicz. Zofia Kruczkiewicz
Wykład 8 Testowanie w JEE 5.0 (1) Autor: 1. Rola testowania w tworzeniu oprogramowania Kluczową rolę w powstawaniu oprogramowania stanowi proces usuwania błędów w kolejnych fazach rozwoju oprogramowania
Systemy Robotów Autonomicznych
Systemy Robotów Autonomicznych Wykład nr 1 Zasady organizacji zajęć i uzyskiwania zaliczenia Kraków, 30.09.2017 dr inż. Andrzej Opaliński andrzej.opalinski @ agh.edu.pl Wszystkie informacje i aktualności
Sławomir Kulesza. Projektowanie automatów synchronicznych
Sławomir Kulesza Technika cyfrowa Projektowanie automatów synchronicznych Wykład dla studentów III roku Informatyki Wersja 2.0, 20/12/2012 Automaty skończone Automat Mealy'ego Funkcja wyjść: Yt = f(st,
AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH
AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH kierunek Automatyka i Robotyka Studia II stopnia specjalności Automatyka Dr inż. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu pojęcia
Asynchroniczne statyczne układy sekwencyjne
Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul Poziomy sztucznej inteligencji Sztuczna świadomość? Uczenie się
Podstawy diagnostyki środków transportu
Podstawy diagnostyki środków transportu Diagnostyka techniczna Termin "diagnostyka" pochodzi z języka greckiego, gdzie diagnosis rozróżnianie, osądzanie. Ukształtowana już w obrębie nauk eksploatacyjnych
Automatyka i Robotyka studia stacjonarne drugiego stopnia
#384 #380 dr inż. Mirosław Gajer Projekt i implementacja narzędzia do profilowania kodu natywnego przy wykorzystaniu narzędzi Android NDK (Project and implementation of tools for profiling native code
Rozszerzony konspekt przedmiotu Inteligentne maszyny i systemy
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt przedmiotu Inteligentne maszyny i systemy dr inż. Witold Czajewski dr inż. Marcin Iwanowski
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)
Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Metody pośrednie Metody bezpośrednie czasowa częstotliwościowa kompensacyjna bezpośredniego porównania prosta z podwójnym całkowaniem z potrójnym
Programowanie współbieżne Wykład 2. Iwona Kochańska
Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński
Modelowanie i obliczenia techniczne dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, WNT Warszawa, 2005. J. Awrejcewicz: Matematyczne modelowanie
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji data aktualizacji: 2017.10.11 Delphi Kraków Rozwój jazdy autonomicznej zmienia krajobraz technologii transportu w sposób tak dynamiczny,
Zastosowania Robotów Mobilnych
Zastosowania Robotów Mobilnych Temat: Zapoznanie ze środowiskiem Microsoft Robotics Developer Studio na przykładzie prostych problemów nawigacji. 1) Wstęp: Microsoft Robotics Developer Studio jest popularnym
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku
Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku Piotr Konderak kondorp@bacon.umcs.lublin.pl Zakład Logiki i Filozofii Nauki WFiS UMCS Kognitywistyka: odkrywanie labiryntu umysłu
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
ECTS - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 2015/2016
- program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 20/206 Automatyka i robotyka Profil ogólnoakademicki studia stacjonarne I stopnia w c l p w c l p w c l p w c l p w c
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych
Hybrydowe racjonalno reaktywne systemy sterowania
Wrocław, dn. 28.05.2007r Hybrydowe racjonalno reaktywne systemy sterowania Praca zaliczeniowa z kursu: INE3802 Informatyka systemów autonomicznych Autor: Agata Zaremba 132943 Prowadzący: Dr inż. Marek
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego
Metody optymalizacji dyskretnej
Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie
INFORMATYKA Pytania ogólne na egzamin dyplomowy
INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja
SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu
SI w procesach przepływu i porządkowania informacji Paweł Buchwald Wyższa Szkoła Biznesu Początki SI John MC Carthy prekursor SI Alan Thuring pomysłodawca testu na określenie inteligencji maszyn Powolny
Inspiracje kognitywne w procesie analizy pozycji szachowej
Inspiracje kognitywne w procesie analizy pozycji szachowej C. Dendek J. Mańdziuk Warsaw University of Technology, Faculty of Mathematics and Information Science Abstrakt Główny cel Poprawa efektywności