LASERY I ICH ZASTOSOWANIE
|
|
- Sebastian Morawski
- 9 lat temu
- Przeglądów:
Transkrypt
1 LASERY I ICH ZASTOSOWANIE Laboratoriu Instrukcja do ćwiczenia nr 4 Teat: Poiar energii ipulsu lasera neodyowego
2 1. Cel i zakres ćwiczenia. Cele ćwiczenia jest zapoznanie się z warunkai pracy ipulsowego lasera na szkle neodyowy, zierzenie energii ipulsu. Ćwiczenie obejuje wykonanie otworów w cienkiej etalowej blaszce oraz dyfrakcyjne poiary paraetrów geoetrycznych tego otworu. 2. Wiadoości ogólne. 2.1 Laser na szkle doieszkowany neodye. Szkła, będące ciałai bezpostaciowyi powstałyi przez stopienie tlenków krzeu, węglanów wapnia, sodu i potasu ogą być osnową ateriałów czynnych, przy czy ożna uzyskać większe wyiary i lepsze właściwości optyczne prętów laserowych niż to a iejsce w przypadku kryształów. Materiałe czynny w szkle są najczęściej jony zie rzadkich: neody, terb, hol, europ. Najczęściej rozpowszechniony ateriałe jest szkło barowe doieszkowane neodye. Ipulsowo pobudzane lasery na szkle neodyowy stosowane w technologii elektronowej i obróbce ateriałów są używane głównie do punktowego spawania ałych eleentów etalowych oraz drążenia ałych otworów w etalach, diaentach, rubinach i ceraice. Pracują one wówczas najczęściej w sposób wielonożowy ( tzw. Mody podłużne ), w warunkach tzw. Swobodnej generacji tzn. przez prawie cały czas trwania ipulsu pobudzającego. Laser jest pobudzany etodą popowania optycznego, tzn. przez absorpcję proieniowania lapy błyskowej w pręcie laserowy. Energia ipulsu proieniowania pobudzającego jest określona wartością energii zagazynowanej w kondensatorze naładowywany przez lapę błyskową. Laser eituje w sposób ipulsowy wiązkę proieniowania o długości fali λ=1,06μ. Kształt swobodnie generowanego ipulsu laserowego jest na ogół chaotyczny wieloszpilkowy (rys. 1).
3 Rys.1 Wieloszpilkowy ipuls proieniowania lasera neodyowego w warunkach swobodnej generacji (podstawa czasu 200µs/dz) Rys.2 laser Głowica lasera neodyowego: 1 lustro T=0%, R=2000, 2 reflektor, 3 spiralna lapa błyskowa, 4 pręt na szkle neodyowy ø15, 5 - lustro T=30%, R=. Taki charakter generacji lasera jest spowodowany lokalny wyczerpywanie się pobudzenia pręta laserowego oraz jego tericzną deforacją optyczną. Wido proieniowania jest złożone (zawiera wiele częstotliwości). Szerokość wida dla lasera neodyowego wynosi Δ λ=5-13n. Lasery neodyowe ogą również pracować w sposób jednoodowy, w odzie podstawowy TEM oo. Można to osiągnąć przez unieożliwienie generacji odów wyższego rzędu np. wprowadzenie przesłon do rezonatora optycznego lasera. Energia ipulsu proieniowania w drążarkach laserowych wynosi od 1 10J. Sprawność laserów na szkle neodyowy jest ała do kilku procent. Większość energii pobudzającej jest wydzielana w głowicy laserowej w postaci ciepła, powodując.in. wzrost teperatury pręta laserowego. Powoduje to deforację optyczną i wpływa niekorzystnie na paraetry proieniowania lasera. Jest to szczególnie ważne przy dużych częstotliwościach ipulsów pogarsza się powtarzalność wartości energii ipulsów laserowych do ok. ±10%.
4 Konstrukcja ipulsowo pobudzanych laserów neodyowych zawiera: 1. Zespół głowicy laserowej (rys2) zawierający: - pręt laserowy, - rezonator optyczny, - lapę błyskową, - reflektor. 2. Baterię kondensatorów. 3. Zasilacz. 4. Układ chłodzenia głowicy laserowej. Zespół głowicy laserowej usi zapewnić: - aksyalne przekazywanie proieniowania pobudzającego z lap do pręta laserowego, - odpowiednie chłodzenie pręta laserowego i lapy błyskowej, - odpowiednią sztywność echaniczną rezonatora optycznego. Wzrost teperatury pręta laserowego na skutek absorpcji proieniowania pobudzającego powoduje jego deforację optyczną wywołaną: - zianą wyiarów geoetrycznych pręta, - zianą współczynnika załaania ateriału pręta, - powstanie w pręcie naprężeń echanicznych. Rezonator optyczny w laserach z ciała stałego tworzą dwa selektywne, wielo warstwowe zwierciadła dielektryczne. Zwierciadła te są naparowane na płaskie lub wklęsłe podkłady ze szkła optycznego BK-7. Odchyłka płaskości lub sferyczności powierzchni podkładów wynosi najczęściej λ/10. Jedno ze zwierciadeł jest prawie w pełni odbijające (ze względów technologicznych współczynnik odbicia osiąga najwyżej 99,9%), drugie natoiast jest częściowo przepuszczające o współczynniku transisji najczęściej w granicach 10-50%. Rezonator płaskosferyczne i sferyczne dają większą rozbieżność wiązki, są natoiast niej wrażliwe na rozjustowanie. Zasilacz jest zasilany z sieci 230V, 50Hz i posiada regulację napięcia wyjściowego do 4kV ± 1%. Natoiast pojeność baterii kondensatorów wynosi 150μF. 3. Przebieg ćwiczenia Poiar energii ipulsu laserowego.
5 Poiar energii proienistej lasera ipulsowego odbywa się przy poocy iernika MODEL 142 INDIKATOR. Sonda poiarowa iernika zaienia krótki ipuls proieniowania laserowego na długi ipuls elektryczny. Aplituda tego ipulsu jest proporcjonalna do energii ipulsu proieniowania laserowego. Sonda poiarowa działa na zasadzie absorpcji objętościowej: Proień lasera pada na płytkę absorbenta, zaienia się na ciepło i podnosi jego teperaturę. Przyrost teperatury absorbenta jest ierzony za poocą stosu teropar (rys.5). Napięcie wyjściowe z sondy zostaje wzocnione i ożna odczytać jego wartość na skali. Maksyalna wartość tego napięcia jest proporcjonalna do energii proienia laserowego tak, więc ze skali iernika odczytujey wprost wartość energii proieniowania. Obsługa przyrządu przy wykonywaniu poiarów: 1. Przyrząd powinien być przyłączony do gniazdka z bolce uzieiający lub uzieiony dodatkowy przewode. 2. Włączyć zasilanie iernika wyłącznikie (2) i odczekać około 10 inut na nagrzanie przyrządu. 3. Przyłączyć przewode koncentryczny sondę poiarową z gniazde INP (8) 4. Przełącznik (7) ustawić w położenie górne. 5. Wyzerować iernik pokrętłe zerowania (4) ADJUST OFFSET OR ZERO naciskając przycisk zero (9). 6. Ustawić sondę na drodze proienia laserowego. 7. Przełącznik (7) przestawić w położenie dolne PEAK HOLD. 8. Wyzwolić pojedynczy ipuls lasera. 9. Odczytać na wskaźniku (5) wartość ipulsu laserowego. 10. Następny poiar ożna dokonać po upływie 60 sekund i wykonujey czynności od punktu 4.
6 Rys.4. Miernik energii MODEL 142 INDIKATOR. 1-Lapka sygnalizacyjna włączanie zasilania MAINS. 2- Wyłącznik zasilania ON. 3- Gniazdo bezpiecznikowe. 4- Regulacja składowej stałej lub zera ADJUST OFFSET OR ZERO. 5- Wskaźnik wychyłowy. 6- Przełącznik zakresów. 7- Przełącznik rodzaju pracy: położenie górne poiary wartości chwilowej energii, położenie dolne zatrzyanie aksyalnej wartości wskazań energii PEAK HOLD. 8- Wejście sygnału poiarowego z sondy I.P.N. 9- Przycisk zerowania ZERO. 10- Przełącznik asy: położenie górne wyłączenie, położenie dolne włączenie ziei MAINS EARTH. Rys. 5. Fotodetektor
7 1 Okrągła płytka absorbująca proieniowanie 2 Stos teropar 3- Końcówki przylegające Poiar energii ipulsu laserowego należ wykonać w układzie poiarowy Rys.6. Scheat układu poiarowego. 1- Laser. 2- Filtr neutralny. 3- Terostos. 4- Miernik energii. - cała wiązka proieniowania laserowego powinna trafić do okienka wejściowego fotodetektora, - filtry neutralne powinny być wyskalowane, - średnica powierzchni czynnej okienka wejściowego fotodetektora powinna być większa od średnicy wiązki laserowej, - Przed wykonanie poiaru należy sprawdzić czy energia wiązki laserowej nie przekracza energii dopuszczalnej czujnika, która wynosi 30 J/c 2. Badania należy wykonać za poocą filtru neutralnego Wykonanie otworu obliczanie średnicy wiązki zogniskowanej 2w z zależności ( 2.1 ) dla x p = 0 otrzyujey λ f w = π w gdzie : λ - długość fali 1,06 μ f - ogniskowa soczewki ( rys.9 ),
8 w proień wiązki laserowej, w =5 Cienką blaszkę etalową uieszczay w płaszczyźnie ogniskowej soczewki i wykonujey otwór ipulse laserowy Poiar średnicy wykonanego otworu ( rys.7 ). Scheat powstawania dyfrakcji Fraunhofera na kołowy otworze płaski nieprzezroczystej przesłonie przedstawia rys.7. Wiązka oświetlająca otwór o średnicy a jest równoległa i ekran znajduje się w dostatecznie dużej odległości od otworu spełniając warunek a 1 d >> 2 λ Mierzyy odległości iędzy cienyi prążkai tego saego rzędu. Sinus kąta φ z zależności : Sin φ = sin arc tg ( l / 2a ) ~ l / 2d Średnicę a otworu obliczay ze wzorów : 2 a 1 = 1,226 λ / sin φ 1 a 2 = 2,333 λ / sin φ 2 a 3 = 3,238 λ / sin φ 3 gdzie : λ = 0,6328 μ May do czynienia z serią poiarową gdzie średnica otworu a jest otrzyana z różną dokładnością. Wartość średnią dla wszystkich poiarów obliczay wg następującego wzoru określającego tzw. Średnią ważoną a: φ 3 l 1 a φ 2 l 2 l 3 φ 1 d Rys.7. Poiar średnicy otworu
9 a średnica otworu, d odległość od przediotu badanego,l 1, l 2, l 3, - odległość poiędzy iniai pierwszego, drugiego, trzeciego rzędu, φ 1, φ 2, φ 3 kąt ugięcia dla iniów pierwszego, drugiego, trzeciego rzędu 1 2 Δk o Rys.8. Odchyłka kołowości. 1 okrąg rzeczywisty, 2 okrąg przylegający, 3- Δk o odchyłka kołowości. ω l 2r s f Rys.9.Scheat ogniskowania wiązki laserowej. n P a / 1 a= n P / 1 gdzie : p jest tzw. Wagą poszczególnego poiaru i wyraża się wzore: B p = 2 ( a ) Błąd aksyalny średniej ważonej znajdujey z zależności:
10 Δa= n P a / 1 n / 1 P gdzie: Δa błąd aksyalny wyniku określony wg. wzoru. Δa = a d d + a l l odchyłka kołowości ( rys.8 ). Odchyłka kołowości największa odległość iędzy kołe rzeczywisty w przekroju poprzeczny walca kołowego do koła przylegającego. Określay odchyłkę kołowości otworu wg następującej zależności: aax a Δ ko = in 2 Gdzie: a ax - średnica aksyalna otworu, a in - średnica inialna otworu Oblicz głębokości otworu. d= ρ H t p ( C Tv + LV ) H - gęstość powierzchniowa ocy wiązki laserowej ( 0, W/ 2 ), t p czas trwania ipulsu ( 0, s ), ρ gęstość ateriału z którego wykonana jest blaszka (7870 kg/ 3 ), C ciepło właściwe ( 449 J/( kg K )), T v - teperatura wrzenia ( 3160 K ), L v ciepło parowania ( 6, J/kg ), Literatura. 1. S. R. Meyer Ardent: Wstęp do optyki, PWN W wa H. Klejan: Lasery, PWN W-wa W. Wyrębski: Lasery właściwości budowa zastosowania specjalne, MON W-wa 1975.
CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER
CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady
13. Optyka Interferencja w cienkich warstwach. λ λ
3. Optyka 3.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,
PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska
PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BAANIE MIKROFAL opracowanie: Marcin ębski, I. Gorczyńska 1. Przediot zadania: fale elektroagnetyczne. 2. Cel zadania: badanie praw rządzących propagacją fali
Wyznaczanie e/m za pomocą podłużnego pola magnetycznego
- 1 - Wyznaczanie e/ za poocą podłużnego pola agnetycznego Zagadnienia: 1. Ruch cząstek naładowanych w polu elektryczny i agnetyczny.. Budowa i zasada działania lapy oscyloskopowej. 3. Wyprowadzenie wzoru
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
Wyznaczanie charakterystyk przepływu cieczy przez przelewy
Ć w i c z e n i e 1 Wyznaczanie charakterystyk przepływu cieczy przez przelewy 1. Wprowadzenie Cele ćwiczenia jest eksperyentalne wyznaczenie charakterystyk przelewu. Przelew ierniczy, czyli przegroda
9. Optyka Interferencja w cienkich warstwach. λ λ
9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki
Wstęp teoretyczny. Więcej na: dział laboratoria
Więcej na: www.treolo.prv.pl, www.treolo.eu dział laboratoria Wstęp teoretyczny Sprężystość, własność polegająca na powrocie odkształconego ciała do jego pierwotnej fory po zniknięciu sił wywołujących
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
2. Dane techniczne... 4 2.1. Parametry metrologiczne... 4 2.2. Warunki eksploatacji... 4 2.3. Dane fizyczne... 4 2.4. Realizowane funkcje...
ROAD MASTER 4 SPIS TREŚCI 1. Wstęp......... 3 2. Dane techniczne........ 4 2.1. Paraetry etrologiczne...... 4 2.2. Warunki eksploatacji....... 4 2.3. Dane fizyczne........ 4 2.4. Realizowane funkcje.......
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie B-2 Temat: POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI Opracowanie: dr inż G Siwiński Aktualizacja i opracowanie elektroniczne:
Ć wiczenie 4 BADANIE PROSTOWNIKÓW NIESTEROWANYCH
Ć wiczenie 4 9. Wiadoości ogólne BADANIE PROSOWNIKÓW NIESEROWANYCH Prostowniki są to urządzenia przetwarzające prąd przeienny na jednokierunkowy. Prostowniki stosowane są.in. do ładowania akuulatorów,
CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg
WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki
Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
NOWOŚCI mikrometr Laser Scan - jednostka wskaźnikowa USB LSM-5200
NOWOŚCI ikroetr Laser Scan - jednostka wskaźnikowa USB LSM-5200 szczegółowe inforacje na stronie 336. Laserowe systey poiarowe ikroetr Laser Scan jednostka poiarowa strony 333 335 ikroetr Laser Scan LSM
Art. Nr Laserowy miernik odległości MeterMaster Pro. INSTRUKCJA OBSŁUGI
Art. Nr 82 96 15 Laserowy miernik odległości MeterMaster Pro www.conrad.pl INSTRUKCJA OBSŁUGI Wyświetlacz Klawiatura a b Powierzchnia wyjściowa pomiaru (z przodu / z tyłu) Wskaźnik pamięci (MEMORY) 1 2
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak
Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Nasdaq: IPG Photonics(IPGP) Zasada działania laserów włóknowych Modułowość laserów włóknowych IPG
II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego
1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)
Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.
Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:
Multimetr cyfrowy 6w1 AX-190A
Multimetr cyfrowy 6w1 AX-190A Instrukcja obsługi 1. Zasady bezpieczeństwa NIGDY nie należy stosować napięcia lub prądu do miernika, który przekracza określone wartości maksymalne. Funkcja Maksymalne wartości
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
AX Informacje dotyczące bezpieczeństwa
AX-7600 1. Informacje dotyczące bezpieczeństwa AX-7600 jest urządzeniem wyposażonym w laser Klasy II i jest zgodne ze standardem bezpieczeństwa EN60825-1. Nieprzestrzeganie instrukcji znajdujących się
SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).
SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo
Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej
Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja
Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.
Technologia elementów optycznych
Technologia elementów optycznych dr inż. Michał Józwik pokój 507a jozwik@mchtr.pw.edu.pl Część 1 Treść wykładu Specyfika wymagań i technologii elementów optycznych. Ogólna struktura procesów technologicznych.
Właściwości światła laserowego
Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE
Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 5 PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE 5.1 Cel ćwiczenia Zapoznanie się z zależnościami opisującymi kształt wiązki laserowej (mod
PĘTLA HISTEREZY MAGNETYCZNEJ
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECNOLOGII MATERIAŁÓW POLITECNIKA CZĘSTOCOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 5 PĘTLA ISTEREZY MAGNETYCZNEJ Ćwiczenie FCS-5: Badanie
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
5.Specyfikacja: Uwaga!!! 1) Nie używać rozpuszczalnika do czyszczenia obiektywu. 2) Nie zanurzać urządzenia w wodzie.
Uwaga!!! 1) Nie używać rozpuszczalnika do czyszczenia obiektywu. 2) Nie zanurzać urządzenia w wodzie. 5.Specyfikacja: Temperatura pracy Dokładność Powtarzalność Czes reakcji -50 do 480'C (-58'F do 896'F)
WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE
Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną. opiekun mgr K.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną opiekun mgr K. Łudzik ćwiczenie nr 27 Zakres zagadnień obowiązujących do ćwiczenia 1. Zastosowanie
LABORATORIUM OPTOELEKTRONIKI
LABORATORIUM OPTOELEKTRONIKI ĆWICZENIE 1 ŹRÓDŁA ŚWIATŁA Gdańsk 2001 r. ĆWICZENIE 1: ŹRÓDŁA ŚWIATŁA 2 1. Wstęp Zasada działania półprzewodnikowych źródeł światła (LED-ów i diod laserowych LD) jest bardzo
1. Przeznaczenie testera.
1. Przeznaczenie testera. Q- tester jest przeznaczony do badania kwarcowych analogowych i cyfrowych zegarków i zegarów. Q- tester służy do mierzenia odchyłki dobowej (s/d), odchyłki miesięcznej (s/m),
PIROMETR AX Instrukcja obsługi
PIROMETR AX-6520 Instrukcja obsługi Spis treści 1. Informacje dotyczące bezpieczeństwa.. 3 2. Uwagi... 3 3. Opis elementów miernika.. 3 4. Opis wyświetlacza LCD. 4 5. Sposób pomiaru 4 6. Obsługa pirometru..
Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Obwody prądu ziennego rojekt współfinansowany przez nię Europeją w raach Europejiego Funduszu Społecznego rąd elektryczny: oc lość ciepła wydzielanego na eleencie oporowy określa prawo Joule a: Q t Moc
Cel ćwiczenia: Podstawy teoretyczne:
Cel ćwiczenia: Cele ćwiczenia jest zapoznanie się z pracą regulatorów dwawnych w układzie regulacji teperatury. Podstawy teoretyczne: Regulator dwawny (dwupołoŝeniowy) realizuje algoryt: U ( t) U1 U 2
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D
SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Pomiary wymiarów zewnętrznych (wałków)
Pomiary wymiarów zewnętrznych (wałków) I. Cel ćwiczenia. Zapoznanie się ze sposobami pomiaru średnic oraz ze sprawdzaniem błędów kształtu wałka, a także przyswojeniu umiejętności posługiwania się stosowanymi
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
Podstawy Badań Eksperymentalnych
Podstawy Badań Eksperymentalnych Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Instrukcja do ćwiczenia. Temat 01 Pomiar siły z wykorzystaniem czujnika tensometrycznego Instrukcję
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
POMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
V & A VA6530 Termometr pirometryczny Numer katalogowy #4896
V & A VA6530 Termometr pirometryczny Numer katalogowy #4896 INSTRUKCJA OBSŁUGI DOKŁADNIE ZAPOZNAJ SIĘ Z INSTRUKCJĄ OBSŁUGI PRZED ROZPOCZĘCIEM PRACY Niestosowanie się do zaleceń zawartych w instrukcji może
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10)
Page 1 of 6 Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10) Wstęp Obraz dyfrakcyjny (w promieniowaniu rentgenowskim) DNA (Rys. 1) wykonany w laboratorium Rosalind Franklin, znany jako sławne
WYMIENNIK CIEPŁA TYPU RURA W RURZE - WYZNACZANIE WSPÓŁCZYNNIKÓW WNIKANIA I PRZENIKANIA CIEPŁA
WYMIENNIK CIEPŁA TYPU RURA W RURZE - WYZNACZANIE WSPÓŁCZYNNIKÓW WNIKANIA I PRZENIKANIA CIEPŁA 1. Wprowadzenie W przypadku gdy płynący przewode płyn ( gaz lub ciecz) a teperaturę różną od teperatury ściany
INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY
INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY! 1. WSTĘP Instrukcja obsługi dostarcza informacji dotyczących bezpieczeństwa i sposobu użytkowania, parametrów technicznych oraz konserwacji
Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum
Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
PIROMETR WSKAŹNIK STRAT CIEPŁA DT-8665 INSTRUKCJA OBSŁUGI
PIROMETR WSKAŹNIK STRAT CIEPŁA DT-8665 INSTRUKCJA OBSŁUGI Dokładnie zapoznaj się z instrukcją obsługi przed rozpoczęciem pracy. Niestosowanie się do zaleceń zawartych w instrukcji może spowodować zagrożenie
BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW
ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.
INSTRUKCJA OBSŁUGI. Inwerter Pure Sine Wave MODEL: 53880, 53881, 53882, 53883, 53884,
INSTRUKCJA OBSŁUGI Inwerter Pure Sine Wave MODEL: 53880, 53881, 53882, 53883, 53884, 53885 www.qoltec.com Przedmowa Dziękujemy za wybranie naszego urządzenia. Prosimy o zapoznanie się z niniejszą instrukcją
Miernik Cęgowy Extech EX730, CAT III 600 V
Miernik Cęgowy Extech EX730, CAT III 600 V Instrukcja obsługi Nr produktu: 121642 Opis Opis miernika (model EX730) 1. Miernik cęgowy 2. Przycisk otwierający miernik 3. Przyciski sterowania Zapamiętywanie
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Pomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH
Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia PC-13 BADANIE DZIAŁANIA EKRANÓW CIEPLNYCH
4. Specyfikacja. Utrzymanie Obiektyw można czyścić za pomocą sprężonego powietrza lub wilgotną bawełnianą szmatką
7. Wyświetlacz LCD 8. Zaczep pojemnika baterii. 9. Pojemnik na baterie. 10. W pojemniku na baterie znajduje się przycisk zmiany mierzonych jednostek 'C/'F. Utrzymanie Obiektyw można czyścić za pomocą sprężonego
INSTRUKCJA OBSŁUGI PRZENOŚNY PIROMETR SCAN TEMP 440
INSTRUKCJA OBSŁUGI PRZENOŚNY PIROMETR SCAN TEMP 440 Wydanie LS 13/07 OPIS Pirometr przenośny typu ScanTemp 440 służy do bezdotykowego pomiaru temperatury, obsługa urządzenia jest bardzo prosta, wystarczy
POMIARY WYMIARÓW ZEWNĘTRZNYCH, WEWNĘTRZNYCH, MIESZANYCH i POŚREDNICH
PROTOKÓŁ POMIAROWY Imię i nazwisko Kierunek: Rok akademicki:. Semestr: Grupa lab:.. Ocena.. Uwagi Ćwiczenie nr TEMAT: POMIARY WYMIARÓW ZEWNĘTRZNYCH, WEWNĘTRZNYCH, MIESZANYCH i POŚREDNICH CEL ĆWICZENIA........
CYFROWY MIERNIK NATĘŻENIA OŚWIETLENIA AX-L230. Instrukcja obsługi
CYFROWY MIERNIK NATĘŻENIA OŚWIETLENIA AX-L230 Instrukcja obsługi I.INSTRUKCJA Cyfrowy miernik natężenia oświetlenia jest precyzyjnym urządzeniem służącym do pomiaru natężenia oświetlenia (luxy, stopoświece)