Schemat oceniania: Wstęp do statystyki praktycznej. Zalecane podręczniki: Dodatkowe uwagi: Przygotowanie studenta do zajęć:
|
|
- Zdzisław Biernacki
- 9 lat temu
- Przeglądów:
Transkrypt
1 Schemat oceniania: Wstęp do statystyki praktycznej Semestr zimowy 2016/2016 Wykładowca: prof. dr hab. inż. Krzysztof Bogdan Wymagam obecności. Proszę niezwłocznie usprawiedliwiać absencje. 2 Kolokwia. Skreślam osoby, które opuściły oba. Kartkówki są niezapowiadane (zakres: dwa ostatnie wykłady). Wszystkie punkty się sumują. 50%: dst, 70%: db, 90%: bdb, itp. Zaliczenie w sesji daje ocenę co najwyżej dst+. Dla osób poniżej progu 50% doliczę 1/10 wyniku procentowego z semestru, pod warunkiem nieprzekroczenia 3 nieobecności. Zalecane podręczniki: Statystyka dla studentów kierunków technicznych i przyrodniczych, J. Koronacki, J. Mielniczuk, WNT 2004, wyd. II Introduction to the Practice of Statistics, D. Moore, G. McCabe, Freeman 2003, wyd. IV (w bibliotece w C-11) Statistics for the Life Sciences, M. Samuels, J. Witmer, 2003, wyd. III Dodatkowe uwagi: Listy zadań są dostępne na stronie www kursu. Część zadań pochodzi z podanych podręczników, a część ze skryptu H. Jasiulewicz i W. Kordeckiego Rachunek prawdopodobieństwa i statystyka matematyczna. Przykłady i zadania", wyd. II. Proszę zaopatrzyć się w kalkulator; powinien on przynajmniej liczyć średnią i odchylenie standardowe dla zadanego ciągu liczb. Kalkulator jest obowiązkowy na zajęciach i testach. Telefony komórkowe są niedozwolone na testach. Przygotowanie studenta do zajęć: Proszę przeczytać poprzedni wykład, rozwiązać aktualną listę zadań, wydrukować i przejrzec bieżącą prezentację z Internetu, żeby ułatwić sobie śledzenie wykładu i notowanie. Zachęcam do dyskusji i zadawania pytań. 1
2 Dane Używamy danych, aby odpowiedzieć na pytania dotyczące badanych populacji. Na ogół dane charakteryzują się losową zmiennością. Oceniamy informację zawartą w danych, w obliczu losowego szumu. Czym jest statystyka jako nauka? To nauka rozumienia danych i podejmowania decyzji w obliczu losowości. To także zbiór metod do planowania eksperymentu i analizowania danych tak, aby uzyskać informację i ocenę jej wiarygodności. Przykład 1 Pewne badania dotyczą wpływu aktywności fizycznej na poziom cholesterolu. Pytanie: Czy poziom cholesterolu jest niższy u osób, które ćwiczą? Grupa eksperymentalna ćwiczy, grupa kontrolna-nie. Kogo dotyczy pytanie? Kogo dotyczą pomiary? Co wpłynie na pomiary? Okoliczności: Ludzie mają naturalnie różne poziomy cholesterolu, reagują różnie na reżim ćwiczeń. Ćwiczenia mogą wpływać na inne czynniki. Przykład 2 Eksperyment mikromacierzowy porównuje komórki rakowe i normalne. Czy zaobserwowany dwukrotnie wyższy poziom ekspresji genu dowodzi faktycznie różnej ekspresji komórek rakowych w ogólności? Ważne pytania: Czy mamy dość liczne powtórzenia eksperymentu? Czy w powtórzeniach wyniki są podobne? Dwukrotnie, czy raczej czterokrotnie wyższy poziom ekspresji stanowiłby wystarczający dowód? Przykład 3 Reakcja owiec na bakterie wąglika Reakcja Szczepione Nie szczepione Śmierć 0 24 Przeżycie 24 0 Procent przetrwania 100% 0% Przykład 4 E. coli a rozwój raka wątroby u myszy Myszy zarażone E. coli Wolne od zarazków Rak wątroby 8 19 Zdrowa wątroba 5 30 Suma Procent myszy z rakiem wątroby 62% 39% 2
3 Sygnał i szum Schemat badań naukowych Przykład 3 brak zmienności, mocna konkluzja Przykład 4 duża zmienność, niepewna konkluzja Ważne pytania metodologiczne: Czy na podstawie danej proby można wnioskować, że badany czynnik ma wpływ na interesujące nas zjawisko w populacji? Jak duża powinna być próba, aby tak wnioskować? Pytanie naukowe Planowanie eksperymentu Eksperyment / zbieranie danych Analiza danych Wnioski statystyczne Wnioski naukowe Próba: Składa się z obserwacji lub z danych eksperymentalnych. Jest konkretną reprezentacją populacji. Rozmiar próby: oznaczamy n np. n=10, n=35, n=556 Przykłady: wysokość 10 kłosów żyta (10 obserwacji) poziom hemoglobiny u 35 dawców krwi kolor i kształt ziaren grochu Zmienna Jakiś aspekt tego, co obserwujemy. Przykłady: wysokość, poziom hemoglobiny, kolor i kształt. Rodzaje zmiennych: Zmienne jakościowe (kategoryczne) Zmienne Jakościowe=kwalifikujące do kategorii: Jakościowe Ilościowe Porządkowe, np. wybory w ankiecie: nigdy, rzadko, czasami, często, zawsze Nieporządkowe, np.: kolor i kształt Porządkowe Nieporządkowe Ciągłe Dyskretne 3
4 Zmienne ilościowe (liczbowe) Ilościowe=wynik jest liczbą: Typowe oznaczenia Zmienne: X, Y, Z; np.y=wzrost (pojęcie) Ciągłe, np. wzrost, waga, stężenie Obserwacja: x, y, z; np. y=182cm (wartość) Dyskretne, np. liczba wadliwych elementów, liczba gładkich i żółtych groszków w strączku Próba: y 1, y 2,, y n (ciąg obserwacji) Rozmiar próby: n, czasem n 1, n 2 Próba a próbka Biolog mierzy poziom glukozy we krwi 20 ludzi. Biolog: Mam 20 próbek krwi. Statystyk: To jedna próba złożona z 20-tu pomiarów glukozy. Bezpieczniej jest użyć słowa pomiar tam, gdzie biolog użyłby słowa próbka. Klasy Statystyka opisowa: Opisy rozkładu: Tabela częstości Groszki: gładkie/pomarszczone, zielone/żółte Liczba Gładkie, żółte 315 Gładkie, zielone 108 Pomarszczone, żółte 101 Pomarszczone, zielone 32 Wykres słupkowy (dla danych jakościowych) Tabela częstości dla poziomu wykształcenia (USA, ludzie w wieku lat, rok 2000) Wykształcenie Liczba (w mln) Procent liczność groszki generacji F2 Podstawowe lub zawodowe Ukończona szkoła średnia Szkoła policealna Licencjat round, yellow round, green wrinkled, yellow wrinkled, green Wykształcenie wyższe
5 Wykres słupkowy Wykres kołowy Dane ilościowe dyskretne (przykład) Dane/próba (wielkość miotu): Liczba potomstwa u n=36 macior. Liczność miotu jest liczbą całkowitą (zmienna dyskretna) Tabela (rozkład) liczności miotu Histogram liczności Liczność miotu Liczba macior Liczba (macior) Liczność miotu 5
6 Histogram (liczności) Oznacza grupowanie zbliżonych obserwacji. Definiujemy klasy (przedziały) obserwacji i zliczamy obserwacje wpadające klas. Jak wybierać klasy: Klasy są rozłączne i pokrywają wszystkie możliwe wyniki (każda obserwacja wpada do dokładnie jednej klasy). Rozmiar (szerokość) klas (przedziałów) jest często stały. Używamy wygodnych granic przedziałów, np , a nie Używamy 5 do 15 klas dla umiarkowanych zbiorów danych (n 50); używamy więcej, gdy próba jest duża. Przykład Dane: długość łodygi papryki w calach (n=15) min=10.9, max=14.1, rozstęp=max-min=3.2 Wybieramy np. szerokość klasy 0.5 oraz początek 10.5, by pokryć zakres Zliczamy liczby wystąpień i rysujemy histogram. Możemy zmieniać szerokość klas, aby uzyskać bardziej informacyjny lub czytelny kształt. Za mała szerokość klas= dużo szumu, za duża = utrata informacji. Tabela liczności (dla klas) Klasa Liczność Histogram liczności Liczność ,99 11,49 11,99 12,49 12,99 13,49 13,99 14, Klasa
7 Przykład: Stężenia CK (kinaza kreatynowa) w surowicy krwi Dane do histogramu: min=25, max=203 rozstęp=178 szerokość klasy=20 punkt początkowy= Serum CK Liczność Suma 36 Opis histogramu CK: Centralny szczyt (moda) w okolicach 100 J/L Zasadnicza masa rozkładu między 40 a 140 J/L Niesymetryczny skośny na prawo (=wyciągnięty w prawo) Dygresja: interpretacja pola powierzchni pod histogramem przy równej szerokość klas Do odcinka J/L wpada 42% (15 z 36) wartości CK. = Nad odcinkiem J/L leży: 42% całkowitej powierzchni histogramu. 7
8 Co robić przy nierównej szerokości klas? Wizualna wielkość klasy = pole słupka. Dlatego warto podzielić liczności klas przez długość odcinka tak, aby pole było proporcjonalne do liczności. Histogram częstości Często rysujemy histogram tak, że na osi pionowej zaznaczamy częstość (względną) =liczba wystąpień /n. Histogram częstości jest użyteczny np. dla porównania prób o różnych rozmiarach n. Diagram łodygi i liścia (Stem and leaf plot) Liczność Histogram liczności ,99 11,49 11,99 12,49 12,99 13,49 13,99 14,49 Długość łodygi Częstość Histogram częstości 0,35 0,3 0,25 0,2 0,15 0,1 0, ,99 11,49 11,99 12,49 12,99 13,49 13,99 14,49 Długość łodygi Jest to prosty sposób ilustracji rozkładu danych: Wybieramy łodygę ( pień ) danych-zwykle opuszczając jedną lub dwie ostatnie cyfry w zapisie dziesiętnym. Zapisujemy łodygi w kolumnie w kolejności rosnącej, rysujemy pionową linię. Za linią zapisujemy pozostałe cyfry obserwacji= liście. 8
9 Przykład: Stężenie glukozy w przedniej komorze prawego oka u 31 zdrowych psów Miejsce na diagram łodygi i liścia: Słownictwo dla opisu histogramu/rozkładu (): Symetryczny/asymetryczny W kształcie dzwonu ( normalny )/ciężkie ogony (spłaszczony) Skośny=rozciągniety w prawo lub lewo Jednomodalny=jeden główny wierzchołek Dwumodalny=dwa główne wierzchołki Wykładniczy=malejący jak eksponenta Rozrzut: duży lub mały Statystyka jako procedura obliczeniowa Statystyka = (najczęściej) liczbowa charakterystyka danych Przykłady statystyk dla próby y 1 =24, y 2 =35, y 3 =26, y 4 =36: min=24, max=36 rozstęp= 36-24=12 Statystyka może precyzować kształt, centrum, rozrzut danych/rozkładu itp. Miary położenia rozkładu Średnia z próby: Symbol y oznacza konkretną liczbę: arytmetyczną średnią z obserwacji. Średnia jest środkiem ciężkości zbioru danych. Y Symbol oznacza pojęcie=procedurę obliczania średniej z próby dla różnych prób 6 i1 Przykład: Przyrost wagi owiec Dane : 11, 13, 19, 2, 10, 1 y 1 =11, y 2 =13,, y 6 =1 y y y... y i y 56 /
10 Mediana próbkowa: Definicja: Przykłady Środkowa obserwacja, jeżeli n jest nieparzyste Średnia z dwóch środkowych wartości, gdy n jest parzyste Przykład 1 (n = 5) Dane: Średnia z próby = 32/5 = 6.4 Mediana = Przykład 2 (n = 6) Dane: Średnia z próby = Mediana = Średnia a mediana Przykład 1 cd. (n = 5) Dane: Średnia = 32/5 = 6.4 Mediana = 6.3 Te same dane z błędem w zapisie: Dane: Średnia = 19 Mediana = 6.3 Średnia a mediana (cd.) Mediana dzieli powierzchnię histogramu na połowę. Mediana jest odporna, to znaczy nie mają na nią wpływu obserwacje odstające. Przypomnienie: średnia to środek ciężkości histogramu; obserwacje odstające mają duży wpływ na średnią średnia nie jest odporna. Średnia a mediana (cd.) Jeżeli histogram jest w przybliżeniu symetryczny, to średnia i mediana są zbliżone. Jeżeli histogram jest skośny na prawo, to średnia jest zwykle większa niż mediana. Obie te miary położenia są jednakowo ważne. Średnia jest częściej wykorzystywana do testowania i estymacji (o tym później). Miary położenia cd.: Kwartyle Kwartyle dzielą zbiór danych na ćwiartki, tzn.: Drugi kwartyl (Q2) to mediana. Pierwszy kwartyl (Q1) to mediana grupy obserwacji mniejszych niż Q2. Trzeci kwartyl (Q3) to mediana grupy obserwacji większych niż Q2. 10
11 Przykład Dane: Przykład (n=15) Rozstęp międzykwartylowy IQR=Q3-Q1 (inter-quartile range) Wykres ramkowy (Boxplot) Boxplot graficzna reprezentacja 5 liczb: kwartyli, maximum i minimum. Ramka ( pudełko ) powstaje z obrysowania kwartyli. Linie ( wąsy ) ciągną się do wartości najmniejszej i największej. BoxPlot Zmodyfikowany Boxplot Obserwacja odstająca (oo): Typowe żródła oo: błąd w zapisie danych, błąd pomiaru, zmiana warunków eksperymentu itp. Nasz zakres dla identyfikacji oo: Dolna granica = Q1-1.5*IQR Górna granica = Q *IQR 11
12 Dane : Czy są tu oo? Zmodyfikowany wykres ramkowy (zmodyfikowany boxplot) wskazuje oo: Miary rozrzutu: Rozstęp=max min Rozstęp jest zbyt wrażliwy na obserwacje odstające. Rozstęp międzykwartylowy=iqr=q3-q1 = rozstęp środkowych 50% obserwacji Wariancja Odchylenie standardowe Współczynnik zmienności (CV) Odchylenia (od średniej): dev y y i i dev1 y1 y Fakt: Σ dev i =0. Próbkowe odchylenie standardowe (SD, s) Jest wyrażone w jednostkach pomiarowych. Informuje o ile przeciętnie odległe od średniej są obserwacje. n 2 ( i ) /( 1) (definition) i1 s y y n n 2 ( yi 2 ny ) /( n 1) (calculations) i1 Uwaga: w mianowniku jest n-1: SS s,where n 1 n n ( i ) i i1 i1 SS y y y ny 12
13 Próbkowa wariancja: s 2 Podaje przeciętny kwadrat odległości od średniej próbkowej: s 2 =SS/(n-1). Jest mierzona w kwadratach jednostek, w których wyrażone są dane. Dlaczego n-1? s 2 jest nieobciążonym estymatorem wariancji w populacji (te pojęcia wyjaśnimy później) n1 Σ dev i =0, skąd dev dev n i1 Heurystyka: n obserwacji daje tylko n-1 stopni swobody = n-1 jednostek informacji Sprawdź, jak Twój kalkulator liczy SD dla próby: 1, 2.5, 3.1 (odp ) i Miary rozrzutu, cd. Współczynnik zmienności (CV) CV s / y Przykład: dane 35.1, 30.6, 36.9, 29.8 (n=4) Suma obserwacji: y = = średnia: y= SS = wariancja: s 2 = s= CV= Uwaga: Proszę zachowywać dużo cyfr znaczących przy rachunkach, zwłaszcza przed odejmowaniem. Zaokrąglamy na koniec (po odejmowaniu). Wymagam 3 lub więcej cyfr znaczących w odpowiedziach. Ogólne uwagi Duże s=duży rozrzut. Małe s=mały rozrzut. Jeżeli histogram (rozkład) jest w kształcie dzwonu ( normalny ), to w przybliżeniu: 68% obserwacji jest w odległości 1 s od średniej 95% obserwacji jest w odległości 2 s od średniej 99% obserwacji jest w odległości 3 s od średniej 13
14 Nierówność Czebyszewa Przykład Gdy rozkład jest dowolny, to wiemy tylko: co najmniej 75% obserwacji jest w odległości 2 s od średniej, co najmniej 89% obserwacji jest w odległości 3 s od średniej Przykład cd. Średnia y = 14.4, odchylenie std. s = 2.9. I ( y 2 s, y 2 s) Ocena s = (długość I) /4. zawiera około 95% danych. Reguła działa, gdy histogram jest w kształcie dzwonu (bliski normalnemu). Odporność miar rozrzutu i położenia Załóżmy, że mamy dość skupiony dzwonowy (normalny) zbiór danych. Czy statystyki zmienią się, gdy jedną obserwację zastąpimy bardzo dużą wartością/błędem? Mediana: tak/nie Rozstęp: Średnia: Kwartyle i rozstęp międzykwartylowy: Standardowe odchylenie: Praca własna (przypomnienie): 1. Proszę przeczytać ponownie wykład, 2. przeczytać i przygotować listę zadań, zapisać w zeszycie rozwiązania, 3. wydrukować i przejrzeć następny wykład (WWW, za kilka dni), 4. powtórzyć po każdym wykładzie. 14
Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Wstęp do statystyki praktycznej. Semestr zimowy 2019/2020 Wykładowca: dr Damian Brzyski Strona internetowa:
Wstęp do statystyki praktycznej Semestr zimowy 2019/2020 Wykładowca: dr Damian Brzyski Strona internetowa: www.im.pwr.wroc.pl/~brzyski Schemat oceniania: Wymagam obecności. Proszę niezwłocznie usprawiedliwiać
Statystyka stosowana. Podreczniki. Oceny. Przygotowanie do zajęć
Statystyka stosowana Kurs dla Budownictwa Lądowego Semestr zimowy /9 Strona internetowa: http://im.pwr.wroc.pl/~mbogdan Wykładowca : Małgorzata Bogdan Biuro: C-, p.. Godziny konsultacji: pon. :-6:, wt.
Oceny: Wstęp do statystyki praktycznej. Zalecane podręczniki: Dodatkowe uwagi:
Oceny: Wstęp do statystyki praktycznej Semestr letni 2014/2015 Wykładowca: dr hab. Małgorzata Bogdan Strona internetowa: www.im.pwr.wroc.pl/~mbogdan Kolokwia: 23 kwietnia i 11 czerwca Cztery kartkówki
Oceny: Statystyka stosowana. Zalecane podręczniki: Dane. Dodatkowe uwagi: Przygotowanie studenta do zajęć:
Oceny: Statystyka stosowana Semestr letni 2013/2014 Wykładowca: dr hab. Małgorzata Bogdan Strona internetowa: www.im.pwr.wroc.pl/~mbogdan Kolokwia: 28 kwietnia i 16 czerwca Kartkówki są niezapowiadane
Oceny. Podreczniki. Dane. Statystyka matematyczna i stosowana
Statystyka matematyczna i stosowana Kurs dla Informatyki Matematycznej Semestr zimowy 7/ Strona internetowa: http://im.pwr.wroc.pl/~mbogdan Wykładowca : Małgorzata Bogdan Biuro: C-, p.. Godziny konsultacji:
Oceny. Statystyka stosowana. Podreczniki. Przygotowanie do zajęć. Dane
Oceny Statystyka stosowana Semestr zimowy / Wykładowca: dr hab. Małgorzata Bogdan Strona internetowa: www.im.pwr.wroc.pl/~mbogdan Testy: 6 listopada i stycznia Kartkówki (pierwsza października) %: dst,
Nowoczesne techniki matematyczne, statystyczne i informatyczne
Nowoczesne techniki matematyczne, statystyczne i informatyczne Wykładowca : Krzysztof Bogdan Biuro : C-11, p. 2.12 http://prac.im.pwr.wroc.pl/~bogdan/ Twój wynik z wykładów: zadania domowe (25%) kartkówki
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Y \ X , 2 0, 1 0, 1 1 0, 1 0, 3 0, 2. E(XY ) = i,j. x i y j p ij. i wtedy. x i y j p (X) = i,j. y j p (Y ) i wtedy
Wykład 7 Rozkłady wielowymiarowe c.d. Wstęp do statystyki Wektor losowy Załóżmy, że dany jest wektor (X, Y ) i jego rozkład Y \ X 0 1 2 1 0, 2 0, 1 0, 1 1 0, 1 0, 3 0, 2 Kowariancja Miarą zależności zmiennych
2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba
2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 2 marca 2009 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski.
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30
Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Inżynierskie zastosowania statystyki Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Inżynierskie zastosowania statystyki Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest nabycie wiedzy na temat metod
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Analiza statystyczna w naukach przyrodniczych
Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Wprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP.
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 września 2017 1 Wprowadzenie 2 Pojęcia podstawowe 3 Szeregi rozdzielcze Zwykle wyróżnia się dwa podstawowe działy statystyki: statystyka
Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.
Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Wykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański
KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół
Podstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat
Wykład 11: Dane jakościowe Obserwacje klasyfikujemy do klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to jedną z nich możemy nazwać sukcesem, a drugą porażką. Generalnie, liczba
Statystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Wykład 10. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.
Wykład 10 Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym gdy zmienimy jednostki? stopnie Celsiusza stopnie Fahrenheita dolary 1,000 dolarów wartość faktyczna odległość od minimum
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
laboratoria 24 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
Wykład 2: Tworzenie danych
Wykład 2: Tworzenie danych Plan: Statystyka opisowa a wnioskowanie statystyczne Badania obserwacyjne a eksperyment Planowanie eksperymentu, randomizacja Próbkowanie z populacji Rozkłady próbkowe Wstępna/opisowa
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi
Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:
Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2
Wykład 10: Elementy statystyki
Wykład 10: Elementy statystyki dr Mariusz Grządziel 0 grudnia 010 Podstawowe pojęcia Biolodzy: -badają pojedyńcze rośliny lub zwierzęta; -chcemy rozszerzyć wnioski na wszystkich przedstawicieli gatunku
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Parametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Wykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA (EiT stopień) Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność
Biostatystyka, # 1 /Weterynaria I/
Biostatystyka, # 1 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich