Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych. Strefa danych matematycznych. Strefa opisu fizycznego.
|
|
- Krzysztof Kurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych Strefa danych matematycznych. Strefa opisu fizycznego. SKRÓT Irena Grzybowska
2 STREFA DANYCH MATEMATYCZNYCH Dane matematyczne dokumentu kartograficznego zapisywane są w: w polu 255 i w polu 034 oraz 008/ W tych polach zapisuje się: skalę, odwzorowanie i zasięg terenu przedstawionego w dokumencie. Dodatkowe informacje o danych matematycznych można podać w polu 500.
3 SKALA Miary skal $a Skalę na mapach Ziemi wyraża się miarą liniową, na mapach nieba - miarą kątową. Dokumentami kartograficznymi są również diagramy, wykresy itp., na których może być stosowana inna miara skali, np. czasowa. Te miary skal koduje się w polu 034 $a: a - skala miary liniowej b - skala miary kątowej c - inna miara skali. To podpole $a jest obowiązkowe. Dla skal innych niż liniowa i kątowa (w polu 034 $a będzie c - inna miara skali), pola 255 nie wypełnia się.
4 Rodzaje skal - pierwszy wskaźnik w polu 034 W polu 034 pierwszy wskaźnik oznacza rodzaj skali. Wartość 0 pierwszy wskaźnik przyjmuje, gdy w polu 255 $a jest wyrażenie słowne, bez wartości liczbowych. W polu 255 $a podaje się wyrażenie: Skale różne, gdy w dokumencie jest wiele skal; Skala nie podana, gdy, mimo usilnych starań, nie możemy ustalić wartości skali; Skala nieokreślona - przy dokumentach parakartograficznych np. widokach.
5 Rodzaje skal - pierwszy wskaźnik w polu 034 c.d. Bardzo rzadko może występować zakres skal - pierwszy wskaźnik będzie miał wartość 3 -, kiedy jedna mapa jest wykonana w skali zmiennej, tzn. jej środek ma inną skalę niż brzeg. Może się to zdarzyć w związku ze zniekształceniem odwzorowawczym, na mapach obejmujących duży obszar. Jeżeli ten zakres jest podany lub możliwy do obliczenia, w 034 pierwszy wskaźnik będzie miał wartość 3, w 255 $a należy podać obie wartości rozdzielone myślnikiem. Jeżeli zakres ten jest nie podany lub niemożliwy do obliczenia, w 034 pierwszy wskaźnik będzie miał wartość 0, w 255 $a należy podać: Skala zmienna.
6 Rodzaje skal - pierwszy wskaźnik w polu 034 c.d. Najczęściej pierwszy wskaźnik pola 034 przyjmie wartość 1 mówiącą o skali pojedynczej. Są to wszystkie inne sytuacje, gdy w polu 255 $a podane jest wartość liczbowa lub wartości liczbowe, np. Skala 1: Skale 1: , 1: Poszczególne skale pojedyncze rozdzielamy przecinkiem. Skala 1: Skala pionowa 1: Tak opisujemy dokument, który zawiera skalę pionową.
7 Wartość liczbowa skali Pierwszy człon jest licznikiem, drugi mianownikiem. Skala liczbowa może być zapisana w postaci ułamka: 1: = : = Skala 1: jest większa niż 1: Skala 1: jest mniejsza niż 1:25.000
8 Rodzaje skal: Skala liczbowa: 1: Skala mianowana: 1cm - 1 km Podziałka liniowa: km
9 Zamiana skali mianowanej i podziałki liniowej na skalę liczbową Skala mianowana: 1 cm - 1 km 1 km = cm 1 cm cm 1: Skala [1: ]. Podziałka liniowa: odległość zmierzona w oznaczeniu podziałki liniowej: 12 cm odpowiada 6 km: 12 cm cm 1 cm cm 1: Skala [ok.1:50.000].
10 Zapis skali liczbowej w rekordzie bibliograficznym 034 1@ $a koduje się tylko mianownik skali liczbowej. $a Skala 1: W ten sposób zapisuje się skalę w przypadku, gdy jest ona podana w dokumencie w takiej postaci. Gdy jest obliczona ze skali mianowanej zapis jest następujący: 034 1@ $a $a Skala [1: ]. Gdy jest podana w innej postaci lub nie jest podana: 034 1@ $a $a Skala [ok.1: ].
11 Gdy skala wyrażona jest w innych miarach niż metryczna: 1 cal = 2,54 cm 1 mila geograficzna = 7,42 km 1 mila morska = 1,85 km 1 mila angielska = 1,61 km 1 mila pruska = 7,53 km = kroków 1 mila rzymska = 1,48 km = passus (kroków podwójnych) 1 wiorsta = 1,067 km = 500 sążni = cali Z tego wynika: 1 wiorsta w calu = Skala 1: mila w calu = Skala 1:63.360
12 Gdy w dokumencie żadna skala nie jest podana, należy posłużyć się inną mapą tego samego terenu, która posiada znaną skalę. Należy wybrać dwa te same punkty na obu mapach i obliczyć odległości między nimi. Np.: Między wiaduktem a odległym skrzyżowaniem na jednej mapie w skali 1: wynosi 22,4 cm, a na drugiej 16,8 cm.
13 22,4 cm 16,8 cm X 22,4 cm 16,8 cm X X x 22,4 16,8 X $a Skala [ok.1: ].
14 Skalę można obliczyć również z siatki kartograficznej lub kilometrowej. 1 stopień szerokości geograficznej = 111 km Mierząc odległości między oczkami siatki na mapie, skalę można obliczyć jak z podziałki liniowej.
15 2 mapy na 1 ark. - współwydane - w jednej skali 034 $a a $b $a Skala 1:
16 2 mapy na 1 ark. - współwydane - w różnych skalach 034 $a a $b $a a $b $a Skale 1:42.000, 1:11.400
17 W dokumentach zawierających więcej niż dwie skale 034 $a a $a Skale różne.
18 ODWZOROWANIE to sposób przedstawienia siatki geograficznej na płaszczyźnie Nazwę odwzorowania wpisuje się w polu 255 w $ b oraz koduje się w polu 008/ Nazwę odwzorowania przejmuje się z dokumentu. Jeżeli w dokumencie odwzorowanie nie jest nazwane, podpola b nie wypełnia się, w polu 008 wybiera się - odwzorowanie nieznane lub nieokreślone.
19 Inne dane uzupełniające odwzorowanie, np. układ współrzędnych prostokątnych w układzie 1992, elipsoida GRS-80 zapisuje się w polu 500.
20 POŁOŻENIE GEOGRAFICZNE Podaje się współrzędne geograficzne najdalszego zasięgu obszaru przedstawionego na mapie, w czterech kierunkach, kolejno W, E, N, S @ $a a $b $d E $e E $f N $g N $a Skala 1: $c (E 18º41 E 19º16 /N 50º02 49º34 ). Współrzędne podaje się tylko wtedy, gdy mapa posiada siatkę kartograficzną. Na starych mapach równoleżniki zaznaczane były jednolicie, od równika do bieguna od 0 do 90, południki od 0 do 180, ale południk 0 wiele państw umieszczało na własnym terytorium.
21 Różnice między poszczególnymi południkami 0 Południk zerowy Greenwich Ferro (niemieckie) Greenwich ,4 W Ferro (niemieckie) Ferro (austriackie) ,4 E Ferro (austriackie) W Pułkowo E ,4 E ,4 W E ,4 W E Pułkowo W ,4 W W 0
22 W polu 255 $c i 034 $d, e, podaje się długość geograficzną liczoną od Greenwich. Jeżeli na mapie zastosowano inny południk zerowy, informację o nim podaje się w polu 500.
23 STREFA OPISU FIZYCZNEGO 300 $a Postać fizyczna i objętość : $b oznaczenie innych cech fizycznych ; $c format + $e oznaczenie dokumentu towarzyszącego. Oznaczenie postaci fizycznej i objętości oraz niektórych innych cech fizycznych jest pochodną jednostki opisu i postaci fizycznej.
24 JEDNOSTKI OPISU I ICH ZAPIS W POLU 300 Jednoczęściowe dokumenty kartograficzne Jedna mapa z mapami pobocznymi $a 1 mapa $a Mapy poboczne:
25 Mapa z dokumentem towarzyszącym $a 1 mapa : $b kolor. ; $c 70x100 cm, złoż. 22x12 cm + $e Skorowidz nazw : 23 s., 22 cm.
26 300 $a 1 mapa na 4 ark. 1 mapa na kilku arkuszach
27 Zestaw map w kopercie, tece, obwolucie itp $a 14 map : $b kolor. ; $c każda 57x57 cm, w kopercie 67x64 cm.
28 Atlas w postaci luźnych kart w tece $a 1 atlas (38, [2] s., [24] k. luz.) : $b il.w tym kolor., mapy większość kolor. ; $c teka 50 cm.
29 Dokumenty współwydane Profile współwydane na jednej stronie arkusza 300 $a 106 profili na 1 ark.
30 Dwie mapy, jedna na jednej, druga na drugiej stronie arkusza 300 $a 2 mapy na 1 ark. : $b na obu stronach ark., kolor.
31 2 atlasy w 1 woluminie $a 2 atlasy w 1 wol.
32 Dokument wieloczęściowy opisany jako całość 300 $a Mapy
Wykład 2. Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa. Wykład 2 1
Wykład 2 Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa Wykład 2 1 Mapa - graficzna forma przekazu informacji o Ziemi. Wykład 2 2 Mapa Głównym zadaniem geodezji jest stworzenie obrazu
w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań:
Elementy mapy mapa jest płaskim obrazem powierzchni Ziemi lub jej części przedstawionym na płaszczyźnie w odpowiednim zmniejszeniu; siatka kartograficzna będzie się zawsze różniła od siatki geograficznej;
MARC21 dla dokumentów w kartograficznych
MARC21 dla dokumentów w kartograficznych jednostka opisu pola stałej długod ugości (skrót) Dorota Gazicka Centralna Biblioteka Geografii i Ochrony Środowiaska Instytut Geografii i Przestrzennego Zagospodarowania
3a. Mapa jako obraz Ziemi
3a. Mapa jako obraz Ziemi MAPA: obraz powierzchni Ziemi (ciała niebieskiego) lub jej części przedstawiony na płaszczyźnie, w ściśle określonym zmniejszeniu (skali), w odwzorowaniu kartograficznym (matematycznym
Ocena dobra. Przyporządkowuje kierunki do współrzędnych. Wymienia podział map i podaje ich znaczenie.
Numer lekcji dopuszczająca dostateczna dobra bardzo dobra 1 ------------------------------------------------- ------------------------------------- ---------------------------------------------- ----------------------------------------
odwzorowanie równokątne elipsoidy Krasowskiego
odwzorowanie równokątne elipsoidy Krasowskiego wprowadzony w 1952 roku jako matematyczną powierzchnię odniesienia zastosowano elipsoidę lokalną Krasowskiego z punktem przyłożenia do geoidy w Pułkowie odwzorowanie
Mapy papierowe a odbiornik GPS
Mapy papierowe a odbiornik GPS Na polskim rynku spotykamy mapy wykonane w kilku różnych układach odniesienia, z różnymi siatkami współrzędnych prostokątnych płaskich (siatkami kilometrowymi). Istnieje
2) oblicza odległości w terenie oraz powierzchnię na podstawie map wykonanych w różnych skalach;
Geografia wrzesień Liceum klasa I, poziom rozszerzony IX Mapa (teoria) Zapisy podstawy programowej Uczeń: 1. 1) klasyfikuje mapy ze względu na różne kryteria; 2) oblicza odległości w terenie oraz powierzchnię
ZADANIA DO TEMATU SKALA MAPY część 2
ZADANIA DO TEMATU SKALA MAPY część 2 Zad. 1 Zamień przykładowe skale liczbowe map na podziałkę mianowaną i kwadratową Zad. 2 Długość rzeki w terenie wynosi 38.7 km. Oblicz długość tej rzeki [mm] na mapie
Elżbieta Słoń Garść uwag dotyczących opisu katalogowego : cz. 2 : strefa opisu fizycznego. Fides: Biuletyn Bibliotek Kościelnych 1-2 (28-29), 5-11
Elżbieta Słoń Garść uwag dotyczących opisu katalogowego : cz. 2 : strefa opisu fizycznego Fides: Biuletyn Bibliotek Kościelnych 1-2 (28-29), 5-11 2009 FIDES Biuletyn Bibliotek Kościelnych nr 1-2 (28-29)
Współrzędne geograficzne
Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna
Kartkówka powtórzeniowa nr 1
Terminarz: 3g 3 stycznia 3b 4stycznia 3e 11 stycznia 3a, 3c, 3f 12 stycznia Kartkówka powtórzeniowa nr 1 Zagadnienia: 1. Współrzędne geograficzne 2. Skala 3. Prezentacja zjawisk na mapach Ad. 1. WSPÓŁRZĘDNE
ĆWICZENIE 4. Temat. Transformacja współrzędnych pomiędzy różnymi układami
ĆWICZENIE 4 Temat Transformacja współrzędnych pomiędzy różnymi układami Skład operatu: 1. Sprawozdanie techniczne. 2. Tabelaryczny wykaz współrzędnych wyjściowych B, L na elipsoidzie WGS-84. 3. Tabelaryczny
Piotr Banasik Układy odniesienia i układy współrzędnych stosowane w Polsce : cz. 2. Acta Scientifica Academiae Ostroviensis nr 35-36, 45-51
Piotr Banasik Układy odniesienia i układy współrzędnych stosowane w Polsce : cz. 2 Acta Scientifica Academiae Ostroviensis nr 35-36, 45-51 2011 Acta Scientifica Academiae Ostroyiensis 45 Piotr Banasik
Opracowanie książki w formacie MARC 21/ SOWA2
Opracowanie książki w formacie MARC 21/ SOWA2 Materiał pomocniczy do kursu e-learningowego Wojewódzkiej Biblioteki Publicznej i Centrum Animacji Kultury w Poznaniu CZĘŚĆ 2 Kurs dostępny na: www.wbp.poznan.ekursy.eu
4. Odwzorowania kartograficzne
4. Odwzorowania kartograficzne PRZYPOMNIJMY! SIATKA GEOGRAFICZNA układ południków i równoleżników wyznaczony na kuli ziemskiej lub na globusie. Nie występują tu zniekształcenia. SIATKA KARTOGRAFICZNA układ
Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych
Załącznik nr 1 Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów Tabela 1. Parametry techniczne geodezyjnego układu odniesienia PL-ETRF2000 Parametry techniczne geodezyjnego
Dwa podstawowe układy współrzędnych: prostokątny i sferyczny
Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym
UKŁADY GEODEZYJNE I KARTOGRAFICZNE
UKŁADY GEODEZYJNE I KARTOGRAFICZNE Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu Model ZIEMI UKŁAD GEODEZYJNY I KARTOGRAFICZNY x y (f o,l o ) (x o,y o ) ZIEMIA
Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku. Autor: Arkadiusz Piechota
Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku Autor: Arkadiusz Piechota Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia
ODWZOROWANIA KARTOGRAFICZNE
ODWZOROWANIA KARTOGRAFICZNE Określenie położenia Podstawą systemów geoinformacyjnych są mapy cyfrowe, będące pochodną tradycyjnych map analogowych. Układem opisującym położenie danych na powierzchni Ziemi
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.
Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym
GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu
GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W celu ujednolicenia wyników pomiarów geodezyjnych, a co za tym idzie umożliwienia tworzenia
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
ODWZOROWANIA KARTOGRAFICZNE
ODWZOROWANIA KARTOGRAFICZNE Określenie położenia Podstawą systemów geoinformacyjnych są mapy cyfrowe, będące pochodną tradycyjnych map analogowych. Układem opisującym położenie danych na powierzchni Ziemi
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"
Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
Spis treści. Przedmowa Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym
Spis treści Przedmowa................................................................... 11 1. Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym......................................................................
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
1. Wysokość względna między poziomem morza a Rysami (2499 m n.p.m.) wynosi A. 2499 cm. B. 2499 m. C. 2499 m n.p.m. D. około 2500 m.
ID Testu: LY731X2 Imię i nazwisko ucznia Klasa Data 1. Wysokość względna między poziomem morza a Rysami (2499 m n.p.m.) wynosi A. 2499 cm. B. 2499 m. C. 2499 m n.p.m. D. około 2500 m. 2. Graficzny obraz
KONKURS GEOGRAFICZNY DLA UCZNIÓW GIMNAZJUM. Rok szkolny 2011/2012 ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS GEOGRAFICZNY DLA UCZNIÓW GIMNAZJUM Rok szkolny 2011/2012 ETAP SZKOLNY Drogi Uczniu, Witaj na I etapie konkursu geograficznego. Przeczytaj uważnie
Podstawy Terenoznawstwa
Podstawy Terenoznawstwa Podstawy terenoznawstwa 1. Sposób określania stron świata. 2. Kompas i busola. 3. Pomiar i wyznaczanie azymutu. 4. Orientowanie mapy. 5. Marsz według mapy. Kurs OiAInO ::: Łukasz
MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ ETAP SZKOLNY KONKURSU GEOGRAFICZNEGO
MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ ETAP SZKOLNY KONKURSU GEOGRAFICZNEGO Nr zadania 1. 2. Przewidywana odpowiedź Punktacja Zasady oceniania Skala mapy Ali: C. 1:50 000 Skala mapy Izy: H. 1:200
Obliczenia geograficzne - przykłady
bliczenia geograficzne - przykłady Zmiany temperatury wraz z wysokością Wilgotne powietrze na każde 100 metrów wysokości zmienia swoją temperaturę o 0,5, powietrze suche o 1, natomiast powietrze częściowo
Zadania do testu Wszechświat i Ziemia
INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
Kartografia - wykład
prof. dr hab. inż. Jacek Matyszkiewicz KATEDRA ANALIZ ŚRODOWISKOWYCH, KARTOGRAFII I GEOLOGII GOSPODARCZEJ Kartografia - wykład Mapy topograficzne i geologiczne Część 1 MAPA Graficzny, określony matematycznie
ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99
ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 00/003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW-404-38/99 I LICZBY NATURALNE- RACHUNEK PAMIĘCIOWY Dodawanie i odejmowanie liczb
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe
Wymagania na poszczególne oceny z matematyki do klasy IV na rok 2017/2018
Wymagania na poszczególne oceny z matematyki do klasy IV na rok 2017/2018 Dział I Liczby naturalne część 1 odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA
Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA 2014-2015 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu materiały przygotowane m.in. w oparciu o rozdział Odwzorowania
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Dział I Liczby naturalne część 1 Uczeń otrzymuje ocenę dopuszczającą, jeśli: 1. odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki)
PODSTAWY NAWIGACJI SPISZ TREŚCI: 1. UKŁAD UTM 1.1. SCHEMAT ZAPISU WSPÓŁRZĘDNYCH W UKŁADZIE UTM 2. WYZNACZANIE AZYMUTU/KIERUNKU MARSZU
PODSTAWY NAWIGACJI Wersja 1.0 Opracowanie: Zenek Opracowano na podstawie szkolenia Wstęp do rozpoznania przeprowadzonego przez Jednostę Rozpoznania Taktycznego. Podziekowania za korektę dla JRT! Niniejsze
Orientacja w terenie, kartografia
Orientacja w terenie, kartografia Arkadiusz Majewski 12.11.2013 KURS SKPB Terenoznawstwo Terenoznawstwo (Wikipedia) jest to sztuka orientacji w terenie, odczytywania yy i sporządzania map, posługiwania
Matematyka z kluczem
Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Ocena Dopuszczający Osiągnięcia ucznia odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
RYSUNEK MAP. Ćwiczenie 2 Arkusze mapy topograficznej i zasadniczej KATEDRA GEODEZJI SZCZEGÓŁÓWEJ. Dr hab. inż.. Elżbieta Lewandowicz
RYSUNEK MAP Ćwiczenie 2 Arkusze mapy topograficznej i zasadniczej KATEDRA GEODEZJI SZCZEGÓŁÓWEJ Dr hab. inż.. Elżbieta Lewandowicz Podział mapy na arkusze mapy wiąż ąże e się z przyjętym państwowym układem
MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny
MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny Wymagania konieczne (ocena dopuszczająca) Dział I - Liczby naturalne część 1 Wymagania podstawowe (ocena dostateczna) Wymagania rozszerzające
dobry (wymagania rozszerzające) dodaje i odejmuje w pamięci liczby naturalne z przekraczaniem progu dziesiątkowego
dopuszczający (wymagania konieczne) odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane cyframi (w zakresie 1 000 000) zapisuje cyframi
GEOMATYKA. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu
GEOMATYKA 2019 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu materiały przygotowane w oparciu o rozdział Odwzorowania kartograficzne współczesnych map topograficznych autorstwa
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Matematyka w klasie 4
I. Wymagania na poszczególne oceny Dział I Liczby naturalne część 1 Matematyka w klasie 4 Tatiana Pałka - Witowska Agnieszka Wołoszyn Korczyk Katarzyna Czembor-Pękal 1. odczytuje współrzędne punktów zaznaczonych
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,
Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych
Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Ocena dopuszczająca (wymagania konieczne) Ocena dostateczna
PRZYKŁADOWE ZADANIA Z GEOGRAFII NA KOŃCOWY SPRAWDZIAN W KLASIE III GIMNAZJUM
PRZYKŁADOWE ZADANIA Z GEOGRAFII NA KOŃCOWY SPRAWDZIAN W KLASIE III GIMNAZJUM TEMAT WIODĄCY: KLIMAT POLSKI W tabeli przedstawiono średnie miesięczne temperatury powietrza i sumy opadów atmosferycznych dla
rozszerzające (ocena dobra)
SZKOŁA PODSTAWOWA NR 149 im. Marszałka Józefa Piłsudskiego w Krakowie Wymagania edukacyjne z geografii dla klasy 5 SP - w op Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) podstawowe (ocena
nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.
14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Wymagania na poszczególne oceny z matematyki w klasie IV
Wymagania na poszczególne oceny z matematyki w klasie IV 1. Wymagania konieczne (na ocenę dopuszczająca ) obejmują wiadomości i umiejętności umożliwiające uczniowi dalsza naukę, bez których nie jest on
Mapa. Cechy różniące Podobieństwa Cechy różniące
1 Mapa 1. Cechy mapy i globusa. Mapa Globus Cechy różniące Podobieństwa Cechy różniące Jest to obraz powierzchni Ziemi. Zawiera zniekształcenia odległości, powierzchni lub kątów /nie ma mapy wiernie zachowującej
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
Kryteria ocen z matematyki w klasie 4. Matematyka z plusem WYMAGANIA WYMAGANIA KONIECZNE. WYKRACZAJĄCE ocena ROZSZERZAJĄCE PODSTAWOWE
Kryteria ocen z matematyki w klasie 4 Matematyka z plusem DZIAŁ KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE ocena ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca dopuszczająca
Rozkład materiału nauczania. Klasa 5
1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4 SP
I. Liczby naturalne część 1 konieczne i umiejętności dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie 100 bez przekraczania progu dziesiątkowego, mnoży liczby jednocyfrowe,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOBRY DZIAŁ 1. LICZBY NATURALNE
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY DZIAŁ 1. LICZBY NATURALNE dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
Małopolski Konkurs Matematyczny r. etap szkolny
Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap szkolny rok szkolny 2018/2019 1. Przed Tobą zestaw 20
Zadania. 1. Na podstawie rysunku:
1. Na podstawie rysunku: Zadania Wykonaj polecenia: a) podpisz poziomice, które nie są podpisane 200 220 240 b) podkreśl prawidłowe uzupełnienie zdania: Szlak turystyczny zaznaczony na rysunku prowadzi
LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III GIMNAZJUM BARDZO DOBRY DOBRY DOSTATECZNY. DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 26 godzin
DOPUSZCZAJĄCY WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III GIMNAZJUM BARDZO DOBRY DOBRY DOSTATECZNY DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 26 godzin CELUJĄCY zaokrągla liczby do podanego rzędu szacuje
Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN
Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN Program GEOPLAN umożliwia zmianę układu współrzędnych geodezyjnych mapy. Można tego dokonać przy udziale oprogramowania przeliczającego
W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46.
1. Wprowadzenie Priorytetem projektu jest zbadanie zależności pomiędzy wartościami średnich szybkości przemieszczeń terenu, a głębokością eksploatacji węgla kamiennego. Podstawowe dane potrzebne do wykonania
Ocenianie przedmiotowe MATEMATYKA
Ocenianie przedmiotowe MATEMATYKA Nauczyciel: - klasa 4, 8ab mgr Agata Dróżdż Ocenianie przedmiotowe z matematyki dla klasy 4 2 Ocenianie przedmiotowe z matematyki dla klasy 8 6 Ocenianie przedmiotowe
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej Wymagania konieczne (na ocenę dopuszczającą) Uczeń: dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie 100
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 04. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 33). Ewentualny brak zgłoś przewodniczącemu
Matematyka Matematyka z pomysłem Klasy 4 6
Szczegółowy rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej w klasach IV VI Klasa IV szczegółowe z DZIAŁ I. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM (19 godz.)
dodaje liczby bez przekraczania progu dziesiątkowego, zapisuje słownie godziny przedstawione na zegarze,
MATEMATYKA KLASA 4 Wymagania na poszczególne oceny Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
KARTY PRACY Matematyka Pakiet 3.
GSP052 KARTY PRACY Matematyka Pakiet 3. Imię i nazwisko ucznia....................................... Klasa............... Numer w dzienniku..................... Instrukcja Uważnie czytaj teksty zadań
1.Podać przykłady zastosowania wiedzy geograficznej w życiu. 2.Podać powiązania pomiędzy elementami środowiska przyrodniczego i geograficznego.
GEOGRAFIA KL. I Dział Wymagania konieczne i podstawowe Wymagania rozszerzające Wymagania dopełniające Mapa 1.Definiować pojęcie: geografia, środowisko przyrodnicze i geograficzne. 2.Podać źródła wiedzy
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej; - sposób zaokrąglania
MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. 1) Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
DZIAŁ 1. STATYSTYKA DZIAŁ 2. FUNKCJE
DZIAŁ 1. STATYSTYKA poda pojęcie diagramu słupkowego i kołowego (2) poda pojęcie wykresu (2) poda potrzebę korzystania z różnych form prezentacji informacji (2) poda pojęcie średniej, mediany (2) obliczy