Jak TO działa? Nanotechnologia. TRENDY: Prawo Moore a. Kwietniowa Wiedza i Życie 2010

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jak TO działa? Nanotechnologia. TRENDY: Prawo Moore a. Kwietniowa Wiedza i Życie 2010"

Transkrypt

1 Nanotechnologia Jak TO działa? Google: Jacek Szczytko Login: student Hasło: ******* Wydział Fizyki UW 2 Kwietniowa Wiedza i Życie 2010 TRENDY: Prawo Moore a Ilość komponentów (tranzystory, połączenia, izolacje itd.) w IC podwaja się co około 18 miesięcy. Rozmiar liniowy komponentów również zmniejsza się wykładniczo w czasie. Te trendy nie mogą być kontynuowane w nieskończoność. Co zastąpi technologię Si? Z czego będzie wynikała ta zmiana technologii? 3 Źródło: Intel 4 1

2 TRENDY: Prawo Moore a TRENDY: Prawo Moore a? nanotechnologia, memrystory komputery kwantowe nanotechnologia grafen HP materiały organiczne koniec prawa Moore a Źródło: Intel Źródło: Intel 5 6 Nanotechnologia Nanotechnologia , Nauka Inżynieria Technologia b a a,b,c < 100 nm c 8 2

3 Nanotechnologia Nanotechnologia w kulturze Richard P. Feynman, 1959 There's Plenty of Room at the Bottom Annual meeting of the American Physical Society at the California Institute of Technology (Caltech) Norio Taniguchi of Tokyo science University first defined nanotechnology in 1974 "Nano-technology mainly consists of the processing of separation, consolidation, and deformation of materials by one atom or one molecule." Kim Eric Drexler, 1986 Engines of Creation (Grey goo) Nanosystems: Molecular Machinery, Manufacturing and Computation 9 10 Nanotechnologia na co dzień Pokrycia NANO Motoryzacja (Hummer H2 sport utility truck) Budownictwo Samoczyszczący się beton ipod Nano Elektronika Wyświetlacze OLED Ubrania (Nano Tex) AGD Samoczyszcząca się lodówka Samsung Nano SilverSeal Kosmetyki Liść lotosu, photo: Y T Cheng na co dzień Żuk pustynny z Namib Sport Nature 11 Scientific American 12 3

4 Nanotechnologia na co dzień Nanotechnologia na co dzień The principal applications of any sufficiently new and innovative technology always have been and will continue to be applications created by that technology. Herbert Krömer The $585 suits that went on sale today (October 8, 2009) are treated with Titanium Dioxide, a chemical compound commonly used in cosmetics and toothpaste. According to company spokes person Junko Hirohata, TiO2 has photocatalytic properties, meaning that it when exposed to light it breaks down organic materials. Antiviral Business Suits Fight H1N1 Swine Flu With Science & Style Główne zastosowanie każdej nowej i innowacyjnej technologii zawsze było i nadal będzie zastosowaniem stworzonym przez tę technologie Dlaczego XXI w? Parowóz dziejów mili mikro nano

5 Dlaczego XXI w? Nanotechnologia 5 nm Parowóz dziejów Przez ostatnie 40 lat na badania technologii krzemowej wydano bilion (ang. trillion) USD mili mikro nano Nanotechnologia Nanotechnologia 5 nm 5 nm 22 cm 22 cm 3,474 km

6 Nanotechnologia Efekty kwantowe CdSe/ZnS 1 10 nm Studnia skończona Wewnątrz studni: 2 2 2, cos sin Bariera: 2 exp Warunki zszycia: 1 1 sin 2 cos 2 exp Figure 5. Schematic diagrams depicting the evolution of the conduction band structure in the transverse direction: (a) double heterostructure, (b) separate confinement heterostructure (SCH), (c) graded index separate confinement heterostructure (GRIN SCH), (d) single quantum well heterostructure (QWH), and (e) multiple quantum well (MQW). The development of the semiconductor laser diode after the first demonstration in 1962 J JColeman Semicond. Sci. Technol. 27 (2012)

7 Potencjał harmoniczny 2D Potencjał harmoniczny 2D CB p Harmonic oscillator model: s, p, d, shells s Allowed interband transition The electronic structure of a strained InAs (110) pyramidal quantum dot embedded within GaAs. The strain modified band offsets are shown above the atomic structure. They exhibit a well for both heavy holes and electrons. Isosurface plots of the four highest hole states and four lowest electron states, as obtained from pseudopotential calculations, appear on the left and right. CBM means conduction band minimum and VBM valence band minimum VB p s PL Intensity s p d f Wetting layer 0.1mW 1mW 0.5 mw 5mW 10mW GaAs substrate MRS Bulletin Vol. 23 No. 2, p. 35 (1998). Energy (mev) Potencjał harmoniczny 2D THE ARTICLE 6 Experiment Calculations PL Intensity (normalized) 4 2 #2154 T = 4.2K B = 0T s p WL d f Power C B Be Li He H Energy [ev] Adam Babiński

8 Sferyczne kropki kwantowe Przerwa energetyczna w sferycznych kropkach kwantowych [Brus, L. E. J. Phys. Chem. 1986, 90, 2555, Brus. L. E. J. Chem. Phys. 1984, 80, 4403] Sferyczne kropki kwantowe Przerwa energetyczna w sferycznych kropkach kwantowych [Brus, L. E. J. Phys. Chem. 1986, 90, 2555, Brus. L. E. J. Chem. Phys. 1984, 80, 4403] średnica Lokalizacja kwantowa (quantum localization): mniejsza cząstka więcej wektorów potrzebnych do opisu stanu nośnika. Czyli cząstka w studni! ZWIĘKSZA energie przerwy 2 2 Część kulombowska oddz. z uwzględnieniem polaryzacji (sfera) OBNIŻA energię. Potencjał obliczony dla funkcji w postaci Ψ ( 1) : Ψ sin TRENDY: Prawo Moore a Ilość komponentów (tranzystory, połączenia, izolacje itd.) w IC podwaja się co około 18 miesięcy. TRENDY: Prawo Moore a Ilość komponentów (tranzystory, połączenia, izolacje itd.) w IC podwaja się co około 18 miesięcy. Rozmiar liniowy komponentów również zmniejsza się wykładniczo w czasie. Te trendy nie mogą być kontynuowane w nieskończoność. Co zastąpi technologię Si? Z czego będzie wynikała ta zmiana technologii? Źródło: Intel 31 Źródło: Intel 32 8

9 Nanotechnologia CO? Studnie, druty, kropki JAK? Top down, czyli (nano)technologia Bottom up, czyli samoorganizacja Nanotechnologia CO? Studnie, druty, kropki JAK? Top down, czyli (nano)technologia Bottom up, czyli samoorganizacja Struktury niskowymiarowe Low dimensional Semiconductor Systems Bottom up Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa Hubert J. Krenner

10 Nano i bio (gekon) Nano+bio 38 Nano i bio (gekon) Nano i bio (gekon) 50x 100x

11 Nano i bio (gekon) Nano i bio (gekon) 200x 400x Nano i bio (gekon) Nano i bio (gekon) 800x 1500x

12 Nano i bio (gekon) Nano i bio (gekon) 3000x 6000x Nano i bio (gekon) Nano i bio (gekon) 6000x 47 Nature 448, (19 July 2007) 48 12

13 Nano i bio (gekon) Nano i bio (DNA) Nano i bio (DNA) Nano i bio (DNA)

14 Nano i bio (DNA) Nano i bio (DNA) Nano i bio (DNA) Nano i bio (DNA)

15 Nano i bio Nano i bio M13 bacteriophage M13 bacteriophage Nano i bio Nano i bio

16 Nano i bio Nano i bio ZnS Alivisatos A., Małe może więcej. Świat nauki11, s (2001). CoPt Nano i bio Nano i bio Nano Co Nano Co Synteza: Paweł Majewski, TEM: Jolanta Borysiuk

17 Nano i bio Nano i bio Bacillus megatherium + nano Fe 3 O 4 65 Chad Mirkin z Northwestern University Brookhaven National Laboratory (BNL) 66 Pokrycia NANO Nowe urządzenia Żuk pustynny z Namib Liść lotosu, photo: Y T Cheng Nature 67 Scientific American 68 17

18 Pokrycia NANO Nano barcode University of Wisconsin Madison and Bell Laboratories Nan Rong Chiou, Chunmeng Lu, Jingjiao Guan, L. James Lee & Arthur J. Epstein Nature Nanotechnology 2, (2007) Published online: 27 May Nowe urządzenia Fotonika Scientific American, Nanoradio

19 Biologiczne kryształy fotoniczne Biologiczne kryształy fotoniczne Magnetyczne kryształy fotoniczne Magnetyczne kryształy fotoniczne Fe 3 O nm

20 Magnetyczne kryształy fotoniczne Zawiesina nanomagnesów w polu magnetycznym Co dalej? Nanotechnologia kontrola materii w nanoskali jest szansą dla nauk biologicznych i medycznych w badaniach, diagnostyce i terapii. Badania nad nanotechnologią i jej zastosowaniami prowadzą do problemów etycznych (ale jakie badania nie prowadzą?) Istnieją technologie niebezpieczne i akceptowalne społecznie (np. samochody) i bezpieczne i nieakceptowalne społecznie (np. energetyka jądrowa, GMO) Nowe technologie wymagają społecznej akceptacji powinni o nią zabiegać sami naukowcy Dbanie o bezpieczeństwo nowych technologii jest w interesie społeczeństwa i samych naukowców Piotr Habdas Chains of 1 million magnetic nanoparticles have been assembled and disassembled in a solution of suspended particles in a controlled way, scientists at the National Institute of Standards and Technology (NIST) report Podsumowanie Podsumowanie Jacek Majewski

21 Podsumowanie Co dalej? Jaki nowy? Ten ich to ten grat! Internat? Inter net?!! INTERNET!!! Parowóz dziejów nano Przez ostatnie 40 lat na badania technologii krzemowej wydano bilion (ang. trillion) USD mili mikro Myślimy, że tranzystor jest zbudowany tak. Granice miniaturyzacji? State of the Art: Electronic Circuits From macroscopic copper ( 1 μm) Kees Hummelen University of Groningen to nanoscale electronics organic molecules ( nm) wire: X Y diode: CH 2 X Y Source CH 2 25 nm MOSFET Produkcja od 2008 transistor: (FET) Gate CH 2 C 2 H 5 C 2 H 5 C 2 H 5 4,2 nm MOSFET Produkcja??? IEEE Trans Electron Dev 50(9), terminal complex logic elements 3 and 4 terminal junction barrier: CH 2 CH 2 CH 2 Drain Jaszowiec

22 Ile bitów na atom? Illustration showing how to transform an electron from its usual state in an atom (a), in which it exists in a cloud of possible positions surrounding the positively charged nucleus (indicated by a plus sign), to a "Trojan state" (f), in which the electron orbits the nucleus like a planet around the sun. The name comes from Trojan asteroids, the asteroids which orbit the sun in the same orbit as Jupiter but in a place either ahead or behind the planet. To create a Trojan electron, researchers would first use laser light to put the electron into a "circular Rydberg state" in which the electron exists in a thin donut of possible positions (b). Then, a microwave beam would subsequently change the shape of the donut (c e), shrinking the range of possible positions for the electron and ultimately causing the electron to shrink into a small droplet (or alternatively, a shortened sausage) of possible positions. This droplet then orbits the nucleus like a planet around the sun. Although not yet achieved experimentally, researchers believe that current technology could be applied to create Trojan electrons. The figure is not to scale the circular Rydberg and Trojan states are actually hundreds of thousands of times farther away from the nucleus. In addition, the figure essentially shows just the top half of the probability cloud for the Trojan electron. In recent computer simulations, researchers formed the word "optics" by calculating the electron cloud for a specially prepared n=50 state. In the image above, the intensity of the letters represents the relative probability for finding the electron at that place, and the color denotes the phase (relative point in the cycle) of the electron wave associated with that point in the cloud. (Image courtesy Carlos Stroud, University of Rochester, and Michael Noel.) This research is described by Carlos Stroud and Michael Noel in the April 1999 issue of Optics and Photonics News. Synteza kropek kwantowych nano bio CdSe/ZnS 1 10 nm

23 Chemia! Sferyczne kropki kwantowe medicine/gallery/pictures/scientific pictures.php Sferyczne kropki kwantowe Nanorurki, nanowąsy i kropki TiO2 nanotube materials ZnO nanocząstka Au Nanorurka Si DNA

24 Kropki kwantowe + bio Kropki kwantowe + bio A PbSe Quantum Dot as seen through a transmission electon microscope (TEM) Science, Vol 300, Issue 5616, 80 81, 4 April Kropki kwantowe + bio Magnetyczne kropki kwantowe Science, Vol 300, Issue 5616, 80 81, 4 April 2003 Jacek Szczytko Michał Bystrzejewski, Andrzej Huczko, Hubert Lange

25 Magnetyczne kropki kwantowe Magnetyczne kropki kwantowe nano Co nano Co Jacek Szczytko Pracownia Fizykochemii Dielektryków i Magnetyków Ewa Górecka, Paweł Majewski, Jadwiga Szydłowska, Adam Krówczyński Magnetyczne kropki kwantowe Magnetyczne kropki kwantowe Akademia Górniczo Hutnicza

26 Magnetyczne kropki kwantowe Magnetyczne kropki kwantowe C. Buzea et al. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases, 2007; 102 2/4. Zagrożenia Nowe urządzenia Seria eksplozji nanorurek użytych do likwidacji komórek nowotworowych Paul Karason Glukometr z nanorurek, University of Illinois Argyria 103 Heath J., Davis M., Hood L., Rak w sieci nano, Świat Nauki 3, s (2009)

27 Sferyczne kropki kwantowe Sferyczne kropki kwantowe In vivo molecular and cellular imaging with quantum dots Xiaohu Gao Current Opinion in Biotechnology 2005, 16:63 72 Luminescent quantum dots for multiplexed biological detection and imaging W. Chan et al. Current Opinion in Biotechnology 2002, 13: Sferyczne kropki kwantowe Synthesis of multi shell nanocrystals by a single step coating process, Nanotechnology 2006 Sferyczne kropki kwantowe In vivo molecular and cellular imaging with quantum dots Xiaohu Gao Current Opinion in Biotechnology 2005, 16:63 72 Quantum Yield = wydajność kwantowa Wydajność kwantową fluorescencji definiuje się jako stosunek liczby wyemitowanych fotonów do liczby fotonów promieniowania wzbudzającego, pochłoniętych przez substancję w tym samym czasie i tej samej objętości

28 Sferyczne kropki kwantowe Current Opinion in Chemical Biology 2006, 10: Nanoscale controlled self assembled monolayers and quantum dots Sferyczne kropki kwantowe 109 In vivo molecular and cellular imaging with quantum dots Xiaohu Gao Current Opinion in Biotechnology 2005, 16: Sferyczne kropki kwantowe An Ancient Model Organism to Test In Vivo Novel Functional Nanocrystals By Claudia Tortiglione "Biomedical Engineering From Theory to Applications", Edited by Reza Fazel Rezai, Figure 1. Anatomical structure of Hydra vulgaris Figure 18. Labelling Hydra with nanocrystals engineering from theory to applications/an ancientmodel organism to test in vivo novel functional nanocrystals Sferyczne kropki kwantowe Justin Galloway

29 Konstrukcja diagramów pasmowych Konstrukcja diagramów pasmowych Przesuwamy tymczasowe linie w i w, a następnie łączymy ze sobą w miejscu heterozłącza. Pojawiające się nieciągłości dopełniają szkic heterozłącza Kwietniowa Wiedza i Życie 2010 Struktury niskowymiarowe Low dimensional Semiconductor Systems Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa Hubert J. Krenner

30 Jak się robi heterostruktury? Quantum Well E c Jak się robi heterostruktury? Wzrost warstw MBE jest monitorowany przez Reflection High Energy Electron Diffraction (REED). Komputer steruje przesłonami (shutterami) na froncie podgrzewanych komórek efuzyjnych, co pozwala na precyzyjną kontrolę wzrostu do poziomu pojedynczej warstwy atomowej. Wzrost warstw z jamami kwantowymi (quantum wells), kropek kwantowych (quantum dots) struktury LD, LED. t D(E) E 1 E c E 0 MBE Osadzanie z atomową precyzją warstw o różnym składzie lub domieszkowaniu 2D E Hubert J. Krenner Jak się robi heterostruktury? komora UHV wzrostu materiałów II-VI (Zn, Cd, Mg, S, Se, Te, Mn, Co, ZnCl 2, N-plazma) komora UHV przygotowania podłoży (odgazowanie powierzchni) komora załadunkowa komora UHV wzrostu materiałów III-V (Ga, Al, In, As, Sb, N-plazma, Si lub Te, Be lub Zn, Mn lub Cr lub Co) Jak się robi heterostruktury? Urządzenie MBE - do epitaksji z wiązek molekularnych (2 komory wzrostu) producent SVTA (USA). Zakup przez Wydział Fizyki w r. 2010, program CePT

31 Jak się robi heterostruktury? Jak się robi heterostruktury? MBE na Wydziale Fizyki UW 121 MBE na Wydziale Fizyki UW 122 Jak się robi heterostruktury? Reaktor Metal-Organic Chemical Vapour Epitaxy (MOCVD) w Zakładzie Fizyki Ciała Stałego Studnia kwantowa Lasery półprzewodnikowe Aixtron CCS 3x2 Heterostruktury GaInSb, AlGaInAs and AlGaN. 123 Dioda laserowa zawiera ok. 400 różnych warstw

32 Studnia kwantowa Studnia kwantowa Więcej: Philips Struktury niskowymiarowe Low dimensional Semiconductor Systems Druty kwantowe Studnie kwantowe Druty kwantowe Kropki kwantowe t 2D 1D 0D Dyskretna struktura elektronowa Hubert J. Krenner

33 Druty kwantowe Struktury niskowymiarowe Low dimensional Semiconductor Systems Studnie kwantowe Druty kwantowe Kropki kwantowe halle.mpg.de/~mbe/ Photo by Peidong Yang/UC Berkeley, courtesy of Science t 2D 1D 0D Dyskretna struktura elektronowa Hubert J. Krenner Synteza kropek kwantowych Quantum Dot Hubert J. Krenner Walter Schottky Institut and Physik Department E24, TU München 0 cgs e 0 1 X

34 Synteza kropek kwantowych Energia Cu(In,Ga)Se 2 (also called CIGS) compound semiconductor solar electricity conversion efficiency of 12.8% CdSe/ZnS 1 10 nm Nanotechnologia CO? Studnie, druty, kropki JAK? Top down, czyli (nano)technologia Bottom up, czyli samoorganizacja Nanotechnologia CO? Studnie, druty, kropki JAK? Top down, czyli (nano)technologia Bottom up, czyli samoorganizacja

35 Top down Jak To jest zrobione? 1. Dominuje technologia krzemowa 2. Obecne układy ~ tranzystorów 3. Podłoża 300mm, ~ 10 3 chipów 4. Fotolitografia, naświetlanie, trawienie etc 5. Typowo ~20 masek, kroków procesów Vincent Laforet/The New York Times Jak To jest zrobione? Focus Ion Beam 2µm Nano Tech Web [ S. Kawata et al., Nature 412, 697 (2001) ] 7µm (3 hours to make) = 780nm resolution = 150nm JEM 9320 Focused Ion Beam System

36 Jak To jest zrobione? Nanotubes as molecular quantum wires Nanotechnologia CO? Studnie, druty, kropki JAK? Top down, czyli (nano)technologia Bottom up, czyli samoorganizacja

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

FIZYKA + CHEMIA. Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych)

FIZYKA + CHEMIA. Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA od października 2009 wkrótce więcej informacji na stronie http://nano.fuw.edu.pl

Bardziej szczegółowo

NanoTechnologia. Nanotechnologia w kulturze. Nanotechnologia na codzień. Nanotechnologie od półprzewodników do DNA. Nauka InŜynieria Technologia

NanoTechnologia. Nanotechnologia w kulturze. Nanotechnologia na codzień. Nanotechnologie od półprzewodników do DNA. Nauka InŜynieria Technologia Nanotechnologie od półprzewodników do DNA. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Jak działa komputer? a) Od bramki do bramki b) Jak działa tranzystor

Bardziej szczegółowo

NanoTechnologia Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego

NanoTechnologia  Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego NanoTechnologia Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego. Nanotechnologia na codzień 2. Jak działa komputer? a) Trochę

Bardziej szczegółowo

Nanostruktury krystaliczne

Nanostruktury krystaliczne Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy

Bardziej szczegółowo

Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji

Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25

Bardziej szczegółowo

Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo

Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Edukacja przez badania Hoża 69: 1921 2014 r. Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Wydział

Bardziej szczegółowo

Nanostruktury krystaliczne

Nanostruktury krystaliczne Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy

Bardziej szczegółowo

Harmonic potential 2D. Nanostructures. Fermi golden rule Transition rate (probability of transition per unit time) : Harmonic oscillator model: CB p

Harmonic potential 2D. Nanostructures. Fermi golden rule Transition rate (probability of transition per unit time) : Harmonic oscillator model: CB p Nanotructure Harmonic otential 2D Harmonic ocillator model: CB,, d, hell Allowed interband tranition VB PL Intenity d f Wetting layer 0.mW mw 0.5 mw 5mW 0mW GaA ubtrate 200 250 300 350 400 450 500 550

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Jak TO działa? Do czego służą studnie, druty, kropki kwantowe? Półprzewodniki. Heterostruktury półprzewodnikowe

Jak TO działa?   Do czego służą studnie, druty, kropki kwantowe? Półprzewodniki. Heterostruktury półprzewodnikowe Do czego służą studnie, druty, kropki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Półprzewodniki

Bardziej szczegółowo

Nanofizyka co wiemy, a czego jeszcze szukamy?

Nanofizyka co wiemy, a czego jeszcze szukamy? Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO

Bardziej szczegółowo

Nanostruktury krystaliczne

Nanostruktury krystaliczne Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy

Bardziej szczegółowo

Plan wykładu. Pasma w krysztale. Heterostruktury półprzewodnikowe studnie kwantowe. Heterostruktury półprzewodnikowe

Plan wykładu. Pasma w krysztale. Heterostruktury półprzewodnikowe studnie kwantowe. Heterostruktury półprzewodnikowe Heterostruktury półprzewodnikowe studnie kwantowe Heterostruktury półprzewodnikowe studnie kwantowe Plan wykładu Pasma w krysztale Powtórzenie. Pasma w półprzewodnikach Heterostruktury półprzewodnikowe

Bardziej szczegółowo

Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni:

Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni:, sin 013 0 7 Studnia nieskończona Wewnątrz studni: Studnia nieskończona Wewnątrz studni:, sin, sin 9 9 013 0

Bardziej szczegółowo

dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr

dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr WYTWARZANIE I ZASTOSOWANIE NANOCZĄSTEK O OKREŚLONYCH WŁAŚCIWOŚCIACH WROCŁAWSKIE CENTRUM BADAŃ EIT+ WIELKOŚCI OBSERWOWANYCH

Bardziej szczegółowo

Centrum Materiałów Zaawansowanych i Nanotechnologii

Centrum Materiałów Zaawansowanych i Nanotechnologii Centrum Materiałów Zaawansowanych i Nanotechnologii sprawozdanie za okres I 2010 XII 2011 Prof. dr hab. Jan Misiewicz www.cmzin.pwr.wroc.pl Centrum Materiałów Zaawansowanych i Nanotechnologii (CMZiN) Jest

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,

Bardziej szczegółowo

Few-fermion thermometry

Few-fermion thermometry Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

Centrum Materiałów Zaawansowanych i Nanotechnologii

Centrum Materiałów Zaawansowanych i Nanotechnologii Centrum Materiałów Zaawansowanych i Nanotechnologii sprawozdanie za okres X 2008 XII 2009 Prof. dr hab. Jan Misiewicz www.cmzin.pwr.wroc.pl Centrum Materiałów Zaawansowanych i Nanotechnologii (CMZiN) Jest

Bardziej szczegółowo

Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości

Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości Plan Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika 1. Techniki pomiarowe 2. Podstawowe wyniki 3. Struktura

Bardziej szczegółowo

Materiały fotoniczne

Materiały fotoniczne Materiały fotoniczne Półprzewodniki Ferroelektryki Mat. organiczne III-V, II-VI, III-N - źródła III-V (λ=0.65 i 1.55) II-IV, III-N niebieskie/zielone/uv - detektory - modulatory Supersieci, studnie Kwantowe,

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs.

Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs. Kropki samorosnące Optyka nanostruktur InAs/GaAs QDs Si/Ge QDs Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Nanotechnologia Uniwersytet Warszawski 2015 T k E E e B c F e T m k n 2 3 2 0 * 2 2 T k E E

Bardziej szczegółowo

Ogniwa fotowoltaiczne

Ogniwa fotowoltaiczne Ogniwa fotowoltaiczne Efekt fotowoltaiczny: Ogniwo słoneczne Symulacja http://www.redarc.com.au/solar/about/solarpanels/ Historia 1839: Odkrycie efektu fotowoltaicznego przez francuza Alexandre-Edmond

Bardziej szczegółowo

6. Emisja światła, diody LED i lasery polprzewodnikowe

6. Emisja światła, diody LED i lasery polprzewodnikowe 6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka

Bardziej szczegółowo

FIZYKA + CHEMIA. Technologie disruptive czyli ciężkie życie futurologa. Edukacja przez badania. Plan wykładu.

FIZYKA + CHEMIA. Technologie disruptive czyli ciężkie życie futurologa. Edukacja przez badania. Plan wykładu. Technologie disruptive czyli ciężkie życie futurologa Uniwersytet Warszawski Interdyscyplinarny makrokierunek WydziałuFizyki i WydziałuChemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA http://nano.fuw.edu.pl

Bardziej szczegółowo

Układ SI. Nazwa Symbol Uwagi. Odległość jaką pokonujeświatło w próżni w czasie 1/ s

Układ SI. Nazwa Symbol Uwagi. Odległość jaką pokonujeświatło w próżni w czasie 1/ s Układ SI Wielkość Nazwa Symbol Uwagi Długość metr m Masa kilogram kg Czas sekunda s Odległość jaką pokonujeświatło w próżni w czasie 1/299 792 458 s Masa walca wykonanego ze stopu platyny z irydem przechowywanym

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Instytut Metalurgii i Inżynierii Materiałowej Polska Akademia Nauk

Instytut Metalurgii i Inżynierii Materiałowej Polska Akademia Nauk Instytut Metalurgii i Inżynierii Materiałowej Polska Akademia Nauk Biomimetyczne funkcjonalne w urządzeniach wspomagających pracę układu sercowo-naczyniowego K. Trembecka-Wójciga, R. Major, A. Mzyk, B.

Bardziej szczegółowo

Struktury niskowymiarowwe. Nanostruktury druty i kropki kwantowe. Komentarz o paśmie przewodnictwa

Struktury niskowymiarowwe. Nanostruktury druty i kropki kwantowe. Komentarz o paśmie przewodnictwa Nanotruktury druty i kroki kwantowe Struktury nikowymiarowe Pełen Hamiltonian w nazym wzechświecie ma 3 wymiary rzetrzenne,,,, 2 Dla 2 mamy:,,,, Wzdłuż kierunków i mamy ruch wobodny:,, ex ex Można okazać

Bardziej szczegółowo

Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW

Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW Wybrane aspekty nanotechnologii Karol Nogajewski WIELKIE PODSUMOWANIE Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl 2013 02 27 2 Poziomy Landaua Poszerzenie poziomów na skutek rozproszeń Γ / to jednocząstkowy

Bardziej szczegółowo

Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy

Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy Plan 1. Przegląd struktur niskowymiarowych a. studnie kwantowe, supersieci, wytwarzanie b. druty kwantowe, kropki kwantowe; wytwarzanie nanokryształy struktury samorosnące c. charakter widm optycznych

Bardziej szczegółowo

Mobilność - przyszłość zaczęła się wczoraj

Mobilność - przyszłość zaczęła się wczoraj Mobilność - przyszłość zaczęła się wczoraj Jacek Szczytko Wydział Fizyki Uniwersytetu Warszawskiego, Inżynieria nanostruktur 21 maja 2014 Warszawa 1994-2005 Wydział Fizyki UW 1997-2000(?) Fundacja Rozwoju

Bardziej szczegółowo

Stargard Szczecinski i okolice (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition) Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz

Bardziej szczegółowo

Materiały w optoelektronice

Materiały w optoelektronice Materiały w optoelektronice Materiał Typ Podłoże Urządzenie Długość fali (mm) Si SiC Ge GaAs AlGaAs GaInP GaAlInP GaP GaAsP InP InGaAs InGaAsP InAlAs InAlGaAs GaSb/GaAlSb CdHgTe ZnSe ZnS IV IV IV III-V

Bardziej szczegółowo

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS Kompozyty 11: 2 (2011) 130-135 Krzysztof Dragan 1 * Jarosław Bieniaś 2, Michał Sałaciński 1, Piotr Synaszko 1 1 Air Force Institute of Technology, Non Destructive Testing Lab., ul. ks. Bolesława 6, 01-494

Bardziej szczegółowo

Disruptive Technolgies technologie, które zmieniają świat.

Disruptive Technolgies technologie, które zmieniają świat. Disruptive Technolgies technologie, które zmieniają świat. Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski Nowe technologie Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,

Bardziej szczegółowo

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0 lectromagnetism lectromagnetic interaction is one of four fundamental interactions in Nature. lectromagnetism is the theory of electromagnetic interactions or of electromagnetic forces. lectric charge

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,

Bardziej szczegółowo

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki Ostrzeżenia

Bardziej szczegółowo

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

Wiązania. w świetle teorii kwantów fenomenologicznie

Wiązania. w świetle teorii kwantów fenomenologicznie Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja

Bardziej szczegółowo

Centrum Materiałów Zaawansowanych i Nanotechnologii

Centrum Materiałów Zaawansowanych i Nanotechnologii Centrum Materiałów Zaawansowanych i Nanotechnologii sprawozdanie za okres I 2012 IV 2013 Prof. dr hab. Jan Misiewicz www.cmzin.pwr.wroc.pl Centrum Materiałów Zaawansowanych i Nanotechnologii (CMZiN) Jest

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

LCD (Liquid Crystal Display)

LCD (Liquid Crystal Display) LCD (Liquid Crystal Display) Polarizing filter. Thin film with a vertical ais. Liquid crystal Polarizing filter. Thin film with a horizontal ais. Polarizing filter. Thin film with a horizontal ais. Polarizing

Bardziej szczegółowo

The Overview of Civilian Applications of Airborne SAR Systems

The Overview of Civilian Applications of Airborne SAR Systems The Overview of Civilian Applications of Airborne SAR Systems Maciej Smolarczyk, Piotr Samczyński Andrzej Gadoś, Maj Mordzonek Research and Development Department of PIT S.A. PART I WHAT DOES SAR MEAN?

Bardziej szczegółowo

Rev Źródło:

Rev Źródło: KAmduino UNO Rev. 20190119182847 Źródło: http://wiki.kamamilabs.com/index.php/kamduino_uno Spis treści Basic features and parameters... 1 Standard equipment... 2 Electrical schematics... 3 AVR ATmega328P

Bardziej szczegółowo

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Hakin9 Spam Kings FREEDOMTECHNOLOGYSERVICES.CO.UK

Hakin9 Spam Kings FREEDOMTECHNOLOGYSERVICES.CO.UK Hakin9 Spam Kings FREEDOMTECHNOLOGYSERVICES.CO.UK Hi, I m an associate editor at Hakin9 magazine. I came across your blog and think you would make a great author, do you have anything you would like to

Bardziej szczegółowo

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas www.oncotarget.com Oncotarget, Supplementary Materials Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas SUPPLEMENTARY MATERIALS Supplementary

Bardziej szczegółowo

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych)

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Rys. źródło: Internet Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Półprzewodniki a.studnie i.studnie i ekscytony ii.lasery iii.dwuwymiarowe

Bardziej szczegółowo

Opracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych.

Opracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. Opracowanie nowych koncepcji emiterów azotkowych (380 520 nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. (zadanie 14) Piotr Perlin Instytut Wysokich Ciśnień PAN 1 Do

Bardziej szczegółowo

SHP / SHP-T Standard and Basic PLUS

SHP / SHP-T Standard and Basic PLUS Range Features ErP compliant High Pressure Sodium Lamps Long life between 24,000 to 28,000 hours, T90 at 16,000 hours Strong performance with high reliability Car park, Street and Floodlighting applications

Bardziej szczegółowo

Sargent Opens Sonairte Farmers' Market

Sargent Opens Sonairte Farmers' Market Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL

Bardziej szczegółowo

Elementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1

Elementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów Typowe wymagania klasy czystości: 1000/100

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniżonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe.. fulereny, nanorurki, grafen. Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

Has the heat wave frequency or intensity changed in Poland since 1950?

Has the heat wave frequency or intensity changed in Poland since 1950? Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT

Bardziej szczegółowo

Fotowoltaika - jak zamienić fotony na prąd?

Fotowoltaika - jak zamienić fotony na prąd? Fotowoltaika - jak zamienić fotony na prąd? Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Przerwa energetyczna http://www.rpi.edu/~schubert/light-emitting-diodes-dot-org/chap11/f11-04-r.jpg 2013-12-27 2

Bardziej szczegółowo

ONTEC C DYSKRETNA OCHRONA

ONTEC C DYSKRETNA OCHRONA DYSKRETNA OCHRONA niewielki kształt oprawy sprawia, że jest ona dyskretna i dopasowuje się do każdego wnętrza nie naruszając konstrukcji oświetlenia podstawowego idealne chłodzenie elektroniki zapewnia

Bardziej szczegółowo

Nanonauki i nanotechnologie na wiecie - statystyki. Adam Mazurkiewicz MEiN, 07 kwietnia 2006

Nanonauki i nanotechnologie na wiecie - statystyki. Adam Mazurkiewicz MEiN, 07 kwietnia 2006 Nanonauki i nanotechnologie na wiecie - statystyki Adam Mazurkiewicz MEiN, 07 kwietnia 2006 Finansowanie nanotechnologii na wiecie Wydatki publiczne 4500 4000 3500 3000 2500 NNI (USA) 6PR (UE) UE 2000

Bardziej szczegółowo

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Dotacje na innowacje Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Viktor Zavaleyev, Jan Walkowicz, Adam Pander Politechnika Koszalińska

Bardziej szczegółowo

Samoorganizujące się nanokompozyty na bazie metali przejściowych w GaN i ZnO

Samoorganizujące się nanokompozyty na bazie metali przejściowych w GaN i ZnO Samoorganizujące się nanokompozyty na bazie metali przejściowych w GaN i ZnO M. Sawicki, S. Dobkowska, W. Stefanowicz, D. Sztenkiel, T. Dietl Instytut Fizyki PAN, Warszawa Pakiet zadaniowy: PZ2. Lider:

Bardziej szczegółowo

Przejścia optyczne w cząsteczkach

Przejścia optyczne w cząsteczkach Przejścia optyczne w cząsteczkach Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt http://www.sciencecartoonsplus.com/ Podziękowania za pomoc w przygotowaniu zajęć: Prof. dr hab. Paweł Kowalczyk

Bardziej szczegółowo

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego

Bardziej szczegółowo

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs Dr inż. Jan Czerwiec Kierownik pracy: dr hab. Monika Marzec Tytuł pracy w języku polskim: Właściwości fizyczne mieszanin ciekłokrystalicznych związków chiralnych i achiralnych w odniesieniu do zastosowań

Bardziej szczegółowo

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-ID2G-06-s3 Nazwa modułu Fundamentals of Electronics Nazwa modułu w języku angielskim

Bardziej szczegółowo

Układy cienkowarstwowe cz. II

Układy cienkowarstwowe cz. II Układy cienkowarstwowe cz. II Czym są i do czego mogą się nam przydać? Rodzaje mechanizmów wzrostu cienkich warstw Sposoby wytwarzania i modyfikacja cienkich warstw półprzewodnikowych czyli... Jak zrobić

Bardziej szczegółowo

Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin.

Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin. Pola Tunelowanie bariera obszar obszar 2 0 / / / / 0 0 0 0 0 0 W drugą stronę: 0 / / / / 2 Tunelowanie Przykłady: Tunelowanie Poziomy nieskończonej anty studni! 4 4 sin sin 4 4 4 sinh 4 sinh exp 2 2 4

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction

Bardziej szczegółowo

The Lorenz System and Chaos in Nonlinear DEs

The Lorenz System and Chaos in Nonlinear DEs The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of

Bardziej szczegółowo

9. Struktury półprzewodnikowe

9. Struktury półprzewodnikowe 9. Struktury półprzewodnikowe Tranzystor pnp, npn Złącze metal-półprzewodnik, diody Schottky ego Heterozłącze Struktura MOS Tranzystory HFET, HEMT, JFET Technologia planarna, ograniczenia Tranzystor pnp

Bardziej szczegółowo

Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)

Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac

Bardziej szczegółowo

Tychy, plan miasta: Skala 1: (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition) Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000

Bardziej szczegółowo

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu Rejestracja na Portalu Online Job Application jest całkowicie bezpłatna i składa się z 3 kroków: Krok 1 - Wypełnij poprawnie formularz

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniŝonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe fulereny, nanorurki, grafen Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

1945 (96,1%) backlinks currently link back. 1505 (74,4%) links bear full SEO value. 0 links are set up using embedded object

1945 (96,1%) backlinks currently link back. 1505 (74,4%) links bear full SEO value. 0 links are set up using embedded object Website Backlinks Analysis Report 2023 backlinks from 224 domains Report created: Jan 3, 2015 Website: http://wpisz.stronę.odbiorcy Compared with: 7 day(s) old Domain Statistics The domain seo.zgred.pl

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

The role of band structure in electron transfer kinetics at low dimensional carbons

The role of band structure in electron transfer kinetics at low dimensional carbons The role of band structure in electron transfer kinetics at low dimensional carbons Paweł Szroeder Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland Reakcja przeniesienia

Bardziej szczegółowo

9. Struktury półprzewodnikowe

9. Struktury półprzewodnikowe 9. Struktury półprzewodnikowe Tranzystor pnp, npn Złącze metal-półprzewodnik, diody Schottky ego Heterozłącze Struktura MOS Tranzystory HFET, HEMT, JFET Technologia planarna, ograniczenia Tranzystor pnp

Bardziej szczegółowo