STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN
|
|
- Grażyna Czajka
- 6 lat temu
- Przeglądów:
Transkrypt
1 STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN
2 METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH ZGORZELIN 1. Określenie rodzaju podsieci krystalicznej związku tworzącego zgorzelinę, w której występuje dominujące zdefektowanie (np. metodą markerów) 2. Określenie odstępstwa od stechiometrii związku tworzącego zgorzelinę 3. Określenie rodzaju i stężenia defektów punktowych w związku tworzącym zgorzelinę (struktura defektów) 4. Określenie ruchliwości defektów tworzących zgorzelinę (własności transportowe)
3 METODY BADAŃ ODSTĘPSTW OD STECHIOMETRII ZWIĄZKÓW TWORZĄCYCH ZGORZELINY Bezpośrednia metoda grawimetryczna Metoda Rosenburga Metoda volumetryczna lub manometryczna Chemiczna analiza składu zgorzelin Metoda elektrochemiczna Metoda redoksowa Metoda rentgenograficzna
4 BEZPOŚREDNIA METODA GRAWIMETRYCZNA W BADANIACH ODSTĘPSTW OD STECHIOMETRII Przykład I: Me, dominujące zdefektowanie występuje w podsieci kationowej Etapy badań: Zważenie próbki metalu: m Me masa początkowa próbki Całkowite utlenienie metalicznej próbki: m zmiana masy próbki Określenie stosunku molowego metalu do utleniacza w związku tworzącym zgorzelinę: m m Me / / M M Me < 1 Me 1-y = 1 Me > 1 Me 1+y M Me i M masa molowa metalu i utleniacza
5 BEZPOŚREDNIA METODA GRAWIMETRYCZNA W BADANIACH ODSTĘPSTW OD STECHIOMETRII Przykład II: Me, dominujące zdefektowanie występuje w podsieci anionowej Etapy badań: Zważenie próbki metalu: m Me masa początkowa próbki Całkowite utlenienie metalicznej próbki: m zmiana masy próbki Określenie stosunku molowego metalu do utleniacza w związku tworzącym zgorzelinę: m m Me / / M M Me < 1 = 1 Me 1+y Me > 1 Me 1-y
6 BEZPOŚREDNIA METODA GRAWIMETRYCZNA W BADANIACH ODSTĘPSTW OD STECHIOMETRII Przykład III: Me a b, dominujące zdefektowanie występuje w podsieci kationowej Etapy badań: Zważenie próbki metalu: m Me masa początkowa próbki Całkowite utlenienie metalicznej próbki: m zmiana masy próbki Określenie stosunku molowego metalu do utleniacza w związku tworzącym zgorzelinę: m m Me / / M M Me < a/b Me a-y b = a/b Me a b > a/b Me a+y b
7 BEZPOŚREDNIA METODA GRAWIMETRYCZNA W BADANIACH ODSTĘPSTW OD STECHIOMETRII Przykład III: Me a b, dominujące zdefektowanie występuje w podsieci kationowej c.d. m m Me / / M M Me a < Me b a y b a y b = m m Me / / M M Me y = a b mme / M m / M Me
8 METODA ROSENBURGA W BADANIACH ODSTĘPSTW OD STECHIOMETRII Metoda ta przedstawiona zostanie w części dotyczącej badań własności transportowych zgorzelin
9 OKREŚLENIE RODZAJU I STĘŻENIA DEFEKTÓW PUNKTOWYCH W ZWIĄZKU TWORZĄCYM ZGORZELINĘ Przykład: Mn 1-y S, dominujące zdefektowanie występuje w podsieci kationowej y = 1 m m Mn S M M S Mn 10-3 Mn 1-y S y ~ p 1/6 S 2 T = 1273 K T = 1173 K T = 1073 K y T = 973 K / 6 y = [ VMn ] = 4, ps exp 2 410, kj / mol RT p(s 2 ) /Pa S. Mrowec and Z. Grzesik, "Nonstoichiometry and self-diffusion in "α -MnS", Solid State Phenomena, 72, (2000). S. Mrowec, Z. Grzesik, "Defect concentration and their mobility in nonstoichiometric manganous sulphide", Solid State Ionics, 143, (2001).
10 OKREŚLENIE RODZAJU I STĘŻENIA DEFEKTÓW PUNKTOWYCH W ZWIĄZKU TWORZĄCYM ZGORZELINĘ Przykład: Mn 1-y S, dominujące zdefektowanie występuje w podsieci kationowej, c.d. 2 1/ 6 y = [ VMn ] = 4, ps exp 2 410, kj / mol RT 1 2 S2 V Mn 1 2 S2 VMn + h 1 2 S2 VMn + 2 h [ ] K = V p Mn S 1/ 2 2 [ ] [ ] K = V h p Mn S 1/ 2 2 [ ] [ ] K = V h p Mn 2 1 / 2 S 2 [ V ] Mn / = K ps2 1 2 [ ] [ V = h ] Mn [ ] [ V h ] 2 = Mn [ ] V = K p Mn 1/ 2 1/ 4 S 2 [ ] V = K p Mn 1/ 3 1/ 6 S 2
11 OKREŚLENIE RODZAJU I STĘŻENIA DEFEKTÓW PUNKTOWYCH W ZWIĄZKU TWORZĄCYM ZGORZELINĘ Przykład: Mn 1-y S, dominujące zdefektowanie występuje w podsieci kationowej, c.d. [ ] [ ] 2 1/ 6 y = [ VMn ] = 4, ps exp S2 VMn + 2 h 410, kj / mol RT 2 1/ 2 G f Sf = = = V h p K RT RT H f Mn S exp exp exp 2 RT [ ] 1 [ ] 2 [ ] [ V h ] 2 = Mn = = 1/ 6 Sf H f VMn h ps exp exp 2 3R 3RT S f i H f entropia i entalpia formowania się defektów
12 WŁASNOŚCI TRANSPORTOWE ZGORZELIN D d współczynnik dyfuzji defektów [cm 2 s -1 ]; opisuje ~ D ruchliwość defektów w warunkach istnienia równowagi termodynamicznej w związku tworzącym zgorzelinę współczynnik dyfuzji chemicznej [cm 2 s -1 ]; opisuje ruchliwość defektów w warunkach istnienia gradientu stężenia defektów, a więc w warunkach nierównowagowych D Me współczynnik dyfuzji własnej [cm 2 s -1 ]; opisuje ruchliwość atomów (jonów) w związku tworzącym zgorzelinę
13 C d stężenie defektów N d ułamek molowy stężenia defektów p stopień jonizacji defektów WŁASNOŚCI TRANSPORTOWE ZGORZELIN Zależności wiążące współczynniki dyfuzji DMe = Dd Nd ~ D D d ln N d = 2 d ln p d 2 D Me DMe CMe = Dd Cd CMe = Dd C + C C Me d Me C + C CMe > > Cd DMe = Dd Nd d d ~ D = ( 1+ p)d d
14 α współczynik geometryczny ω częstość przeskoków a o droga przebywana przez atom podczas przeskoku κ współczynnik przejścia ν współczynnik częstości H m entalpia aktywacji dyfuzji defektów M masa molowa metalu WŁASNOŚCI TRANSPORTOWE ZGORZELIN 2 Dd = α a 0 ω ω Sm = κ ν exp exp R H RT m D d Sm = α a 2 κ ν exp 0 R exp H RT m ν = π 2 a 0 H M m
15 Grawimetria w badaniach struktury defektów i własności transportowych zgorzelin
16 Schemat aparatury mikrotermograwimetrycznej do badań w atmosferze He-S 2 Przepływomierze Mikrowaga Wylot Sonda ZrO 2 Oczyszczarka Termopara Termopara Bulbutiera Wlot He Termopara 1 Zbiornik z siarką (I) Wymrażarka Piec Zbiornik z siarką (II) Próbka Sonda MnS Pompa Wymrażarka Termopara Z. Grzesik, S. Mrowec, T. Walec and J. Dąbek, "New microthermogravimetric apparatus, kinetics of metal sulphidation and transport properties of transition metal sulphides", Journal of Thermal Analysis and Calorimetry, 59, (2000).
17 GŁÓWNE ZALETY APARATURY czułość: 0,1 μg możliwość dokonywania gwałtownych zmian ciśnienia par siarki możliwość prowadzenia długotrwałych pomiarów
18 Mn zależność k p od ciśnienia /n = 1/ o C k p / g 2 cm -4 s o C 800 o C p S2 Danielewski, 1986 Badania wlasne 10 3 / Pa Z. Grzesik, S. Mrowec, T. Walec and J. Dąbek, "New microthermogravimetric apparatus, kinetics of metal sulphidation and transport properties of transition metal sulphides", Journal of Thermal Analysis and Calorimetry, 59, (2000).
19 Mn kinetyka siarkowania przy gwałtownie zmienionym ciśnieniu par siarki T = 1000 o C ( m/s) 2 / mg 2 cm p S2 = 30 Pa p S2 = 200 Pa czas / min 240 Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, 87, (2005).
20 Schemat aparatury mikrotermograwimetrycznej do badań w mieszaninach H 2 -H 2 S Przeplywomierze Manometr Mikrowaga Próbka Pompa Wylot > Piec He H % H S/H % H S/H Mieszalnik Bulbutiery Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, 87, (2005).
21 METODYKA BADAŃ WŁASNOŚCI TRANSPORTOWYCH metoda reekwilibracji (relaksacji) metoda dwuetapowego utleniania (Rosenburga) S. Mrowec and K. Hashimoto, J. Materials Sci., 30, 4801 (1995) Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal oxides and sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., 90, (2007). Z. Grzesik, S. Mrowec and T. Walec, J. Phys. Chem. Solids, 61, 809 (2000). Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, 87, (2005). A. J. Rosenburg, J. Electrochem. Soc., 107, 795 (1960).
22 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const
23 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
24 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
25 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
26 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
27 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
28 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
29 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
30 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
31 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
32 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
33 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
34 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
35 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
36 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
37 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
38 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
39 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
40 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
41 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
42 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
43 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
44 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
45 Rozkład stężenia defektów punktowych podczas reekwilibracji związku typu Me 1-y Me 1-y C C d C T = const; p = const; p > p
46 METODA REEKWILIBRACJI m m t k = 1 π 2 2 n= ( 2n + 1) exp ( 2n + 1) 4a π ~ Dt ~ D t/a 2 > 0,2: gdzie: m t zmiana masy próbki po czasie t m k całkowita zmiana masy próbki a ~ D m 8 1 t = exp m 2 π ln 1 k m m t k 8 = ln 2 π ~ Dπ połowa grubości próbki 4a współczynnik dyfuzji chemicznej. 2 ~ Dπ 2 4a t 2 2 t
47 Teoretyczny przebieg reekwilibracji - log (1 - m t / m k ) 0,5 0,4 0,3 0,2 0,1 2a = 1 mm ~ D = 10-5 cm 2 s -1 rozwiązanie uproszczone (n = 0) rozwiązanie pełne (n = 20) Czas / s
48 Metoda dwuetapowego utleniania (Rosenburga) I etap siarkowania II etap siarkowania m/s czas
49 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y I etap siarkowania T = const; p = const Metal Zgorzelina C C d C
50 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y Stan równowagi termodynamicznej T = const; p = const Metal Zgorzelina C C d C
51 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
52 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
53 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
54 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
55 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
56 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
57 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
58 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
59 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
60 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
61 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
62 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
63 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
64 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
65 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
66 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
67 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
68 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
69 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
70 Metoda dwuetapowego utleniania rozkład stężenia defektów punktowych w zgorzelinie typu Me 1-y II etap siarkowania T = const; p = const Metal Zgorzelina C C d C
71 C( x) = C ( C C ) x 0 + k C0 1 sin π m= 2m π n = ( ) Ck cos nπ C0 nπ x n π sin exp n 2 2~ π Dt exp 0 2 ( 2m + 1) π x ( 2m + 1) t ~ 2 2 ~ c( x) 2C N d = k 0 1 Dπ n t D dt = exp x 2 2 x= π = n 0 0 n ~ ~ 2 2 DC t C ( + ) k 4 k exp Dπ 2m 1 t 2 2 π = ( m + 0 m 0 2 1) 0 2 ~ DCkt 0Ck ~ Nd = + dla t > 0 2 / 2D 0 3 ~ 2Ck Dt Nd = dla t < < 0 2 / D ~ π ~ Dt
72 Metoda Rosenburga ~, kl D = k p 2 C d = kp 1128, k l 0 2 gdzie: ~ D współczynnik dyfuzji chemicznej, C d stężenie defektów, 0 grubość zgorzeliny w I etapie utleniania, k p (gcm -2 s -0,5 ) i k l (gcm -2 s -1 ) współczynniki kierunkowe prostych wykreślonych odpowiednio w układzie parabolicznym i liniowym.
73 Przykłady badań struktury defektów i własności transportowych zgorzelin
74 Mn 1-y S pomiar odstępstwa od stechiometrii Rau, 1978 metoda pośrednia 2 1/ 6 y = [ VMn ] = 4, ps exp 2 H. Rau, J. Phys. Chem. Solids, 39, 339 (1978). m M y Mn = 1 S ms MMn 2 1/ 6 y = [ VMn ] = 4, ps exp 2 II. Dwuetapowe siarkowanie 2 1/ 6 y = [ VMn ] = 5, ps exp 2 415, kj / mol RT Badania własne metoda bezpośrednia I. Mikrotermograwimetria 410, kj / mol RT 42, 0 kj / mol RT Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal oxides and sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., 90, (2007).
75 Zależność współczynnika dyfuzji własnej od temperatury D Me / cm 2 s T / K Fe 1-y O (12) Cu 2-y O (20) Mn 1-y O (19) Cr 2+y S 3 (8) Co 1-y O (13, 14) MoS 2+y (10) Ni 1-y O (15, 16, 17) Cr 2+y O 3 (18) Ni 1-y S, c (5) Ni 1-y S, a (5) Fe 1-y S (3) Nb 1+y S 2 (11) Mn 1-y S (9) Co 1-y S (4) Ni 1-y S (7) Fe 1-y S (2) Ni 1-y S (6) Fe 1-y S (1) Fe 1-y S Co 1-y S Ni 1-y S Cr 2+y S 3 Mn 1-y S MoS 2+y Nb 1+y S 2 Fe 1-y O Co 1-y O Ni 1-y O Cr 2+y O 3 Mn 1-y O Cu 2-y O Siarczki 1 Condit i wsp., Smeltzer i wsp., Mrowec i wsp., Mrowec i wsp., Klotsman i wsp., Fueki i wsp., Bastow, Wood, Mrowec i wsp., Mrowec i wsp., Rau, Gesmundo i wsp., 1992 Tlenki 12 Desmarescaux i wsp., Mrowec, Grzesik, Mrowec, Przybylski, Haugsrud, Norby, Mrowec, Grzesik, Volpe, Reddy, Lillerud, Kofstad, Peterson, Chen, Haugsrud, Norby, T / K -1 Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, 87, (2005).
76 Mn 1-y S kinetyka reekwilibracji Przyrost masy / µ g T = 1000 o C T = 900 o C utlenianie (10-2 Pa 10 3 Pa) redukcja (10 3 Pa 10-2 Pa) Czas / s Ubytek masy / µ g
77 Mn 1-y S zależność ~ D od ciśnienia T = 1000 o C ~ D / cm 2 s T = 900 o C T = 800 o C T = 700 o C / Pa p S2
78 Porównanie eksperymentalnych i obliczonych wartości k p ~ k = D y p I. Kinetyka siarkowania Mn (eksperyment) / kp = 3, ps exp 2 = / kp 2, ps exp 2 = / kp 2, ps exp 2 127, 0 kj / mol RT cm s II. Reekwilibracja i odstępstwo od stechiometrii (obliczenia) 123, 5 kj / mol RT cm s III. Dwuetapowe siarkowanie (obliczenia) 124, 4 kj / mol RT cm s
79 Zgorzelina siarczkowa na Mn (1000 o C, p(s 2 ) = 10 3 Pa, 240 h) powierzchnia przełam Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, 87, (2005).
80 MnS rzut struktury krystalograficznej w kierunku 100
81 Porównanie szybkości siarkowania i utleniania metali k p / g 2 cm -4 s T / o C Ni Co Nb 1 kpa 10 kpa Cr 10 kpa 1 kpa Cr 100 kpa Fe Fe Mo 67 kpa 21 kpa 0,1 kpa Co Fe Ni Co Cr Nb Mo Fe Ni Co Cr T / K -1 1 kpa Ni 100 kpa Siarkowanie Mrowec i wsp., 1980 Mrowec i wsp., 1962 Mrowec i wsp., 1998 Mrowec i wsp., 1987 Danielewski, 1988 Przybylski, Potoczek, 1993 Utlenianie Footner i wsp., 1967 Mrowec, Grzesik, 2004 Mrowec, Grzesik, 2003 Lillerud, Kofstad, 1980
82 Nb 1+y S 2 ciśnieniowa zależność odstępstwa od stechiometrii 0,4 0,3 y 0, o C 900 o C Nb 1+y S o C 0, p S2 / Pa
83 ~ Zależność D od temperatury dla wybranych siarczków i tlenków metali D / cm 2 s -1 ~ T / o C FeO Nb 2 O 5 MnS NiS Fe 3 O 4 Siarczki Tlenki NiO CoO MnO FeS Cr 2 S 3 CoS MoS 2 Ni 3 S T / K -1
84 ~ Nb 1+y S 2 zależność D od temperatury badania własne T / o C MnS NiS CoO FeO Fe 3 O 4 FeS MoS 2 Cr 2 S 3 ~ D / cm 2 s Nb 2 O 5 MnO NiO FeS CoS Ni 3 S NbS T / K -1 Z. Grzesik, S. Mrowec, On the sulphidation mechanism of niobium and some Nb-alloys at high temperatures, Corrosion Science, 50, (2008).
85 Zgorzelina siarczkowa na Nb a (1000 o C, p(s 2 ) = 1 Pa, 120 h) powierzchnia 10 µ m b przełam 10 µ m
86 2H-NbS 2 rzut perspektywiczny struktury krystalograficznej w kierunku 100
87 Nb 1+y S 2 rzut perspektywiczny struktury krystalograficznej (dla y = 1/3) w kierunku 100
88 ~ Zależność D od temperatury dla siarczków niklu i kobaltu badania własne T Mn 1-y S / o C CoO FeO FeS Cr 2 S Ni 1-y S ~ D / cm 2 s NiO Co 9-y S 8 Ni 3 S 2 Fe 3 O 4 Nb 2 O 5 MnOCo 1-y S Co 4-y S T / K -1
89 Co 4-y S 3 porównanie eksperymentalnych i obliczonych wartości k. p 10-7 T / o C p S2 (Co 4 S 3 / CoS) k p ' / cm 2 s k p ' obliczone k' p eksperymentalne 8,5 T / K -1 9
90 Co 9-y S 8 porównanie eksperymentalnych i obliczonych wartości k. p T / o C p S2 (Co 9 S 8 / CoS) k p ' / cm 2 s k p ' obliczone k' p eksperymentalne T / K -1
91 Ni 1-y S porównanie eksperymentalnych i obliczonych wartości k. p p S2 (NiS / NiS 2 ) T / o C k p ' / cm 2 s ' k p obliczone k p ' eksperymentalne T / K -1
92 Co 4 S 3 Co 9 S 8 50 µ m 50 µ m NiS 50 µ m
93 Co 9 S 8 rzut struktury krystalograficznej w kierunku 100
94 NiS rzut struktury krystalograficznej w kierunku 100
95 KONIEC
STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN
STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH ZGORZELIN 1. Określenie rodzaju podsieci krystalicznej związku tworzącego zgorzelinę,
Bardziej szczegółowoMETODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH
METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH 1. Określenie rodzaju podsieci krystalicznej związku
Bardziej szczegółowoWPŁYW RÓŻNOWARTOŚCIOWYCH DOMIESZEK NA SZYBKOŚĆ WZROSTU ZGORZELIN NA METALACH (TEORIA HAUFFEGO-WAGNERA)
WPŁYW RÓŻNOWARTOŚCIOWYCH DOMIEZEK NA ZYBKOŚĆ WZROTU ZGORZELIN NA METALACH (TEORIA HAUFFEGO-WAGNERA) 1. K. Hauffe, Progress in Metal Physic, 4, 71 (1953).. P. Kofstad, Nonstoichiometry, diffusion and electrical
Bardziej szczegółowoKINETYKA UTLENIANIA METALI
KINETYKA UTLENIANIA METALI SCHEMAT PROCESU UTLENIANIA Utleniacz Metal Utleniacz Zgorzelina Metal x Miarą szybkości korozji metalu jest ubytek jego grubości, x, odniesiony do czasu trwania procesu korozji.
Bardziej szczegółowoMetodyka badań struktury defektów punktowych (I)
Metodyka badań struktury defektów punktowych (I) Metoda markerów http://home.agh.edu.pl/~grzesik Metodyka badań struktury defektów 1. Określenie rodzaju podsieci krystalicznej związku jonowego, w której
Bardziej szczegółowoSIARKOWANIE MATERIAŁÓW METALICZNYCH
SIARKOWANIE MATERIAŁÓW METALICZNYCH Z. Grzesik and K. Przybylski, Sulfidation of metallic materials w Developments in high temperature corrosion and protection of materials, Eds. Wei Gao and Zhengwei Li,
Bardziej szczegółowoTRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY
TRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY BADANIE UDZIAŁU POSZCZEGÓLNYCH REAGENTÓW W PROCESIE TRANSPORTU MATERII PRZEZ ZGORZELINĘ Metoda markerów Metoda dwustopniowego utleniania Badania współczynników
Bardziej szczegółowoTRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY
TRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY BADANIE UDZIAŁU POSZCZEGÓLNYCH REAGENTÓW W PROCESIE TRANSPORTU MATERII PRZEZ ZGORZELINĘ Metoda markerów Metoda dwustopniowego utleniania Badania współczynników
Bardziej szczegółowoTERMODYNAMIKA PROCESÓW KOROZJI WYSOKOTEMPERATUROWEJ
TERMODYNAMIKA PROCESÓW KOROZJI WYSOKOTEMPERATUROWEJ SCHEMAT PROCESU KOROZJI WYSOKOTEMPERATUROWEJ T = const p = const DIAGRAMY ELLINGHAM A-RICHARDSON A (RICHARDSON A-JEFFES A) S. Mrowec, An Introduction
Bardziej szczegółowoKOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH
KOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH Mechanizm korozji typu metal dusting żelaza i stali niskostopowych 1. H.J. Grabke: Mat. Corr. Vol. 49, 303 (1998). 2. H.J. Grabke, E.M. Müller-Lorenz,
Bardziej szczegółowoStabilność związków nieorganicznych - rozwaŝania termodynamiczne.
Stabilność związków nieorganicznych - rozwaŝania termodynamiczne http://home.agh.edu.pl/~grzesik TEMATYKA WYŁADU 1. Ciśnienie dysocjacyjne. 2. Diagramy fazowe. 3. Ciśnienia cząstkowe gazów w mieszaninach
Bardziej szczegółowoKOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH
KOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH Mechanizm korozji typu metal dusting żelaza i stali niskostopowych 1. H.J. Grabke: Mat. Corr. Vol. 49, 303 (1998). 2. H.J. Grabke, E.M. Müller-Lorenz,
Bardziej szczegółowo11. Korozja wysokotemperaturowa
11. Korozja wysokotemperaturowa W tym tygodniu podczas zajęć skupimy się na zagadnieniu wysokotemperaturowej korozji gazowej, a dokładniej na kinetyce procesu tworzenia się zgorzeliny (tlenków/siarczków)
Bardziej szczegółowoDYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH
DYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH METODA PASTYLKOWA WAGNERA S pastylka Ag S + Ag - e S zgorzelina pastylka Ag zgorzelina + Ag - e pastylka Ag H. Rickert, Z. Phys. Chem. Neue Folge,
Bardziej szczegółowoElektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony
Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów
Bardziej szczegółowoTo jest. Ocena bardzo dobra [ ] energetycznych. s p d f. Ocena dobra [ ] izotopowym. atomowych Z. ,, d oraz f.
34 Wymagania programowe To jest przyrodniczych,,,,, chemicznego na podstawie zapisu A Z E,,,, podaje masy atomowe pierwiastków chemicznych,, n,,,,, s, p, d oraz f przyrodniczych,,,,, oraz Z,,, d oraz f,,
Bardziej szczegółowoDefekty punktowe II. M. Danielewski
Defekty punktowe II 2008 M. Danielewski Defekty, niestechiometria, roztwory stałe i przewodnictwo jonowe w ciałach stałych Atkins, Shriver, Mrowec i inni Defekty w kryształach: nie można wytworzyć kryształu
Bardziej szczegółowoElektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony
Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Jony dodatnie - kationy: atomy pozbawione elektronów walencyjnych, np. Li +, Na +, Ag +, Ca 2+,
Bardziej szczegółowoLaboratorium Ochrony przed Korozją. Ćw. 3: MECHANIZMY KOROZJI GAZOWEJ
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 3: MECHANIZMY KOROZJI GAZOWEJ
Bardziej szczegółowoPodstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
Bardziej szczegółowoSeria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii
Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)
Bardziej szczegółowoZACHOWANIE SIĘ STOPÓW NiAl W WARUNKACH WYSOKOTEMPERATUROWEGO UTLENIANIA. HIGH TEMPERATURE OXIDATION OF NiAl ALLOYS
DOROTA ŁATKA ZACHOWANIE SIĘ STOPÓW NiAl W WARUNKACH WYSOKOTEMPERATUROWEGO UTLENIANIA HIGH TEMPERATURE OXIDATION OF NiAl ALLOYS Streszczenie Abstract W niniejszym artykule przedstawiono dotychczasowy stan
Bardziej szczegółowoWYSOKOTEMPERATUROWE SIARKOWANIE STALI TYPU Fe-Cr-Al: AKTUALNY STAN I PERSPEKTYWY BADAŃ
PRACE INSTYTUTU ODLEWNICTWA Tom XLVIII Rok 008 Zeszyt 4 WYSOKOTEMPERATUROWE SIARKOWANIE STALI TYPU Fe-Cr-Al: AKTUALNY STAN I PERSPEKTYWY BADAŃ HIGH-TEMPERATURE SULPHIDATION OF Fe-Cr-Al STEELS: THE PRESENT
Bardziej szczegółowoKOROZJA STALI ZAWOROWYCH WYWOŁANA SPALINAMI BIOPALIW
KOROZJA STALI ZAWOROWYCH W SILNIKACH SAMOCHODOWYCH, WYWOŁANA SPALINAMI BIOPALIW Plan prezentacji 1. Wprowadzenie a) sytuacja na ogólnoświatowym rynku paliw b) alternatywne źródła energii c) innowacyjne
Bardziej szczegółowoJon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja)
Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu chmury dipoli i chmury jonowej. W otoczeniu jonu dodatniego (kationu) przewaga
Bardziej szczegółowoElektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1
Elektrochemia elektroliza Wykład z Chemii Fizycznej str. 4.3 / 1 ELEKTROLIZA POLARYZACJA ELEKTROD Charakterystyka prądowo-napięciowa elektrolizy i sposób określenia napięcia rozkładu Wykład z Chemii Fizycznej
Bardziej szczegółowoDYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH
DYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH METODA PASTYLKOWA WAGNERA S p a s ty lk a S e + - S z g o r z e lin a p a s ty lk a z g o r z e lin a e + - p a s ty lk a H. Rickert, Z. Phys. Chem.
Bardziej szczegółowoTEORIA WAGNERA UTLENIANIA METALI
TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA
Bardziej szczegółowoKorozja stali zaworowych w silnikach samochodowych, wywołana spalinami biopaliw
Korozja stali zaworowych w silnikach samochodowych, wywołana spalinami biopaliw Zbigniew Grzesik http://home.agh.edu.pl/~grzesik Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie Wydział Inżynierii
Bardziej szczegółowoKLASYFIKACJI I BUDOWY STATKÓW MORSKICH
PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 3/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 3/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków
Bardziej szczegółowoCHEMIA. Wymagania szczegółowe. Wymagania ogólne
CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [
Bardziej szczegółowoIII Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1
III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13
Bardziej szczegółowoWŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Bardziej szczegółowo1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Bardziej szczegółowoPODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2
PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-
Bardziej szczegółowoWysokotemperaturowa korozja zaworów silnikowych
Wysokotemperaturowa korozja zaworów silnikowych Plan prezentacji 1. Wprowadzenie a) sytuacja na ogólnoświatowym rynku paliw b) alternatywne źródła energii c) innowacyjne nośniki energii w przemyśle motoryzacyjnym
Bardziej szczegółowoKOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1
KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik
Bardziej szczegółowoĆ W I C Z E N I E 5. Kinetyka cementacji metali
Ć W I C Z E N I E Kinetyka cementacji metali WPROWADZENIE Proces cementacji jest jednym ze sposobów wydzielania metali z roztworów wodnych. Polega on na wytrącaniu jonów metalu bardziej szlachetnego przez
Bardziej szczegółowoPIERWIASTKI W UKŁADZIE OKRESOWYM
PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy
Bardziej szczegółowoanalogicznie: P g, K g, N g i Mg g.
Zadanie 1 Obliczamy zawartość poszczególnych składników w 10 m 3 koncentratu: Ca: 46 g Ca - 1 dm 3 roztworu x g Ca - 10000 dm 3 roztworu x = 460000 g Ca analogicznie: P 170000 g, K 10000 g, N 110000 g
Bardziej szczegółowoZwiązek rzeczywisty TiO TiO x 0.65<x<1.25 TiO 2 TiO x 1.998<x<2.0 VO VO x 0.79<x<1.29 MnO Mn x O 0.848<x<1.0 NiO Ni x O 0.999<x<1.
8. Defekty chemiczne 8.1. Związki niestechiometryczne Na poprzednich zajęciach rozważaliśmy defekty punktowe, powstałe w związkach stechiometrycznych. Niestety, rzeczywistość jest dużo bardziej złożona
Bardziej szczegółowo2.4. ZADANIA STECHIOMETRIA. 1. Ile moli stanowi:
2.4. ZADANIA 1. Ile moli stanowi: STECHIOMETRIA a/ 52 g CaCO 3 b/ 2,5 tony Fe(OH) 3 2. Ile g stanowi: a/ 4,5 mmol ZnSO 4 b/ 10 kmol wody 3. Obl. % skład Fe 2 (SO 4 ) 3 6H 2 O 4. Obl. % zawartość tlenu
Bardziej szczegółowoTemodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7
Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę
Bardziej szczegółowoTransport zanieczyszceń. Mykola Shopa
Transport zanieczyszceń Mykola Shopa Transport zanieczyszczeń Co można zrobić? a) metodami chemicznymi, biologocznymi lub przez napromieniowanie zmienić zanieczyszczenia w substancje nieszkodliwe b) Rozcieńczyć
Bardziej szczegółowoKinetyka. energia swobodna, G. postęp reakcji. stan 1 stan 2. kinetyka
Kinetyka postęp reakcji energia swobodna, G termodynamika kinetyka termodynamika stan 1 stan 2 Kinetyka Stawia dwa pytania: 1) Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? 1) Jak szybko
Bardziej szczegółowoTermodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle
Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Marcela Trybuła Władysław Gąsior Alain Pasturel Noel Jakse Plan: 1. Materiał badawczy 2. Eksperyment Metodologia 3. Teoria Metodologia
Bardziej szczegółowoElektrochemia - szereg elektrochemiczny metali. Zadania
Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości
Bardziej szczegółowoMAŁOPOLSKI KONKURS CHEMICZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu
MAŁOPOLSKI KONKURS CHEMICZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu Etap III (wojewódzki) Materiały dla nauczycieli Rozwiązania zadań
Bardziej szczegółowoMODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II
MODEL ODPOWIEDZI I SCEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Gdy do jednego polecenia
Bardziej szczegółowoVII Podkarpacki Konkurs Chemiczny 2014/2015
II Podkarpacki Konkurs Chemiczny 2014/2015 ETAP I 12.11.2014 r. Godz. 10.00-12.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Który z podanych zestawów zawiera wyłącznie
Bardziej szczegółoworelacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
Bardziej szczegółowoKinetyka. Kinetyka. Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? energia swobodna, G. postęp reakcji.
Kinetyka energia swobodna, G termodynamika stan 1 kinetyka termodynamika stan 2 postęp reakcji 1 Kinetyka Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? 2 Jak szybko
Bardziej szczegółowoMETODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!
METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH Spektrometry IRMS akceptują tylko próbki w postaci gazowej! Stąd konieczność opracowania metod przeprowadzania próbek innych
Bardziej szczegółowoTransport jonów: kryształy jonowe
Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie
Bardziej szczegółowoĆwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
Bardziej szczegółowoZagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I
Nr zajęć Data Zagadnienia Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I 9.10.2012. b. określenie liczby cząstek elementarnych na podstawie zapisu A z E, również dla jonów; c. określenie
Bardziej szczegółowoKINETYKA REAKCJI CO 2 Z WYBRANYMI TYPAMI AMIN W ROZTWORACH WODNYCH
XXI Ogólnopolska Konferencja Inżynierii Chemicznej i Procesowej Kołobrzeg, 2-6 września 213 ANDRZEJ CHACUK, HANNA KIERZKOWSKA PAWLAK, MARTA SIEMIENIEC KINETYKA REAKCJI CO 2 Z WYBRANYMI TYPAMI AMIN W ROZTWORACH
Bardziej szczegółowoChemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Bardziej szczegółowoKI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa
Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega
Bardziej szczegółowoInne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
Bardziej szczegółowoLaboratorium Ochrony przed Korozją. Ćw. 2A: MODELOWANIE KOROZJI W WARUNKACH CYKLICZNYCH ZMIAN TEMPERATURY
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 2A: MODELOWANIE KOROZJI
Bardziej szczegółowoTematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.
Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.
Bardziej szczegółowoWĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW. Rafał Kozubski. Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński
WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW Rafał Kozubski Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński TWARDOŚĆ: Odporność na odkształcenie plastyczne Co to jest
Bardziej szczegółowoII Podkarpacki Konkurs Chemiczny 2009/10. ETAP II r. Godz Zadanie 1 (10 pkt.)
II Podkarpacki Konkurs Chemiczny 2009/10 ETAP II 19.12.2009 r. Godz. 10.00-12.00 KPKCh Zadanie 1 (10 pkt.) 1. Gęstość 22% roztworu kwasu chlorowodorowego o stężeniu 6,69 mol/dm 3 wynosi: a) 1,19 g/cm 3
Bardziej szczegółowoChemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Bardziej szczegółowoUkład okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Bardziej szczegółowoIX Podkarpacki Konkurs Chemiczny 2016/2017. ETAP I r. Godz Zadanie 1 (11 pkt)
IX Podkarpacki Konkurs Chemiczny 016/017 ETAP I 10.11.016 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. KOPKCh Zadanie 1 (1) 1. Liczba elektronów walencyjnych w atomach bromu
Bardziej szczegółowoWzrost fazy krystalicznej
Wzrost fazy krystalicznej Wydzielenie nowej fazy może różnić się of fazy pierwotnej : składem chemicznym strukturą krystaliczną orientacją krystalograficzną... faza pierwotna nowa faza Analogia elektryczna
Bardziej szczegółowoKI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa
Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega
Bardziej szczegółowoSeminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych
Seminarium 4 Obliczenia z wykorzystaniem przekształcania wzorów fizykochemicznych Zad. 1 Przekształć w odpowiedni sposób podane poniżej wzory aby wyliczyć: a) a lub m 2 b) m zred h E a 8ma E osc h 4 2
Bardziej szczegółowoTERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.
1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w
Bardziej szczegółowoc. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.
Zadanie 1. Nitrogliceryna (C 3H 5N 3O 9) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: 4 C 3 H 5 N 3 O 9 (c) 6 N 2 (g) + 12 CO 2 (g) + 10 H 2 O (g) + 1 O 2 (g) H rozkładu =
Bardziej szczegółowoĆwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Bardziej szczegółowoKinetyka reakcji chemicznych. Dr Mariola Samsonowicz
Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego
Bardziej szczegółowoVIII Podkarpacki Konkurs Chemiczny 2015/2016
III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem
Bardziej szczegółowoFragmenty Działu 7 z Tomu 1 REAKCJE UTLENIANIA I REDUKCJI
Fragmenty Działu 7 z Tomu 1 REAKCJE UTLENIANIA I REDUKCJI Zadanie 726 (1 pkt.) V/2006/A1 Konfigurację elektronową atomu glinu w stanie podstawowym można przedstawić następująco: 1s 2 2s 2 2p 6 3s 2 3p
Bardziej szczegółowoKryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
Bardziej szczegółowoWłaściwości defektów punktowych w stopach Fe-Cr-Ni z pierwszych zasad
Właściwości defektów punktowych w stopach Fe-Cr-Ni z pierwszych zasad Jan S. Wróbel Wydział Inżynierii Materiałowej Politechnika Warszawska we współpracy z: D. Nguyen-Manh, S.L. Dudarev, K.J. Kurzydłowski
Bardziej szczegółowoTermochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
Bardziej szczegółowo5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ
5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą
Bardziej szczegółowoPODSTAWY KOROZJI ELEKTROCHEMICZNEJ
PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz
Bardziej szczegółowoWyznaczanie współczynnika dyfuzji wodoru w stopach wodorochłonnych typu AB5 metodami elektrochemicznymi
Wyznaczanie współczynnika dyfuzji wodoru w stopach wodorochłonnych typu AB5 metodami elektrochemicznymi Pracownia Elektrochemicznych Źródeł Energii Jakub Lach Kierownik pracy: dr Zbigniew Rogulski Plan
Bardziej szczegółowoChemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Bardziej szczegółowoPodstawy elektrochemii i korozji Ćwiczenie 5. Korozja. Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji.
Podstawy elektrochemii i korozji Ćwiczenie 5 Korozja Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji. O zachowaniu metalu w środowisku korozyjnym (jego odporności, korozji
Bardziej szczegółowo7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych
7. Defekty samoistne 7.1. Typy defektów Zgodnie z trzecią zasadą termodynamiki, tylko w temperaturze 0[K] kryształ może mieć zerową entropię. Oznacza to, że jeśli temperatura jest wyższa niż 0[K] to w
Bardziej szczegółowoReakcje utleniania i redukcji
Reakcje utleniania i redukcji Reguły ustalania stopni utlenienia 1. Pierwiastki w stanie wolnym (nie związane z atomem (atomami) innego pierwiastka ma stopień utlenienia równy (zero) 0 ; 0 Cu; 0 H 2 ;
Bardziej szczegółowoTRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI
Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.
Bardziej szczegółowoMateriały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1.
Materiały Reaktorowe Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Uszkodzenie radiacyjne Uszkodzenie radiacyjne przekaz energii od cząstki inicjującej do materiału oraz rozkład jonów w ciele stałym
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
POLITECHNIA POZNAŃSA ZAŁAD CHEMII FIZYCZNEJ ATALIZA HOMOGENICZNA WSTĘP ataliza: Jest to zjawisko przyspieszenia reakcji w obecności katalizatora. atalizator to substancja, która choć uczestniczy w reakcji
Bardziej szczegółowoO C O 1 pkt Wzór elektronowy H 2 O: Np.
PRÓBNA MATURA Z EMII RK SZKLNY 2011/2012 PZIM RZSZERZNY PRZYKŁADWE RZWIĄZANIA ZADANIE 1 a) konfiguracja elektronów walencyjnych : 4s 2 3d 6 lub 3d 6 4s 2 b) konfiguracja powłokowa E 2+ : K 2 L 8 M 14 ZADANIE
Bardziej szczegółowoWykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Bardziej szczegółowoPrzewodnictwo jonowe w kryształach
Przewodnictwo jonowe w kryształach Wykład 1. Wprowadzenie do przedmiotu Prowadzący dr inż. Sebastian Wachowski dr inż. Tadeusz Miruszewski Podstawowe informacje o przedmiocie Przedmiot składa się z: Wykład
Bardziej szczegółowoZMIANY KINETYKI UTLENIANIA STALIWA Cr-Ni MODYFIKOWANEGO TYTANEM I CYRKONEM
77/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 ZMIANY KINETYKI UTLENIANIA STALIWA Cr-Ni MODYFIKOWANEGO
Bardziej szczegółowod[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH
1 Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny. Chemiczna stabilność leków jest ważnym terapeutycznym problemem W przypadku chemicznej niestabilności
Bardziej szczegółowoZadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O
Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY
Próbny egzamin maturalny z chemii 0r. ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach.
Bardziej szczegółowoZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 975
PCA ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 975 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 10, Data wydania: 27 lipca 2015 r. Nazwa i adres ENVI-CHEM
Bardziej szczegółowoZastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak
Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym
Bardziej szczegółowo