Laboratorium Ochrony przed Korozją. Ćw. 3: MECHANIZMY KOROZJI GAZOWEJ
|
|
- Iwona Górecka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 3: MECHANIZMY KOROZJI GAZOWEJ Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznymi metodami nanoszenia markerów oraz nabycie umiejętności określania mechanizmu powstawania zgorzelin na metalach z wykorzystaniem metody markerów. WPROWADZENIE O mechanizmie i kinetyce utleniania materiałów metalicznych decydują przede wszystkim właściwości fizykochemiczne tworzących się na ich powierzchni zgorzelin. Poznanie mechanizmu korozji metali i stopów wymaga więc, oprócz znajomości ruchliwości defektów punktowych w tlenkach tworzących zgorzelinę, pełnej informacji o strukturze defektów oraz ich stężeniu. W przypadku związków wykazujących odstępstwo od stechiometrii, pierwszym krokiem zmierzającym do wyjaśnienia występującej w nich struktury defektów jest stwierdzenie, w której z podsieci (anionowej lub kationowej) występuje dominujące zdefektowanie. Informacje tę można uzyskać przy użyciu czterech podstawowych metod, a mianowicie wyznaczając w bezpośrednich pomiarach współczynniki dyfuzji własnej zarówno metalu (D M ) jak i utleniacza (D X ) w badanym związku przy użyciu trwałych, czy też promieniotwórczych izotopów, metodą dwustopniowego utleniania, metodą rysy lub dzięki zastosowaniu tzw. metody markerów. Jeśli współczynnik dyfuzji własnej metalu, wyznaczony przy użyciu metody bezpośredniej jest znacznie większy od współczynnika dyfuzji własnej utleniacza (D M >> D X ), oznacza to, że dominujące zdefektowanie występuje w podsieci kationowej. Znacznie mniejsza natomiast wartość współczynnika dyfuzji własnej metalu od współczynnika dyfuzji własnej utleniacza (D M << D X ) wskazuje, iż defekty występują głównie w podsieci anionowej. Kolejną metodą pozwalającą na określenie mechanizmu powstawania zgorzelin na metalach jest metoda dwustopniowego utleniania. Polega ona na wstępnym utlenieniu badanego metalu w atmosferze nie zawierającej radioaktywnego izotopu, a następnie nie przerywając reakcji, do przestrzeni reakcyjnej wprowadza się radioaktywny izotop utleniacza. Proces utleniania prowadzony jest nadal w tej samej temperaturze i ciśnieniu utleniacza, aż do uzyskania zgorzeliny o żądanej grubości. Następnie proces utleniania jest przerywany, a próbka po wyjęciu z aparatury jest przecinana
2 w kierunku prostopadłym do powierzchni zgorzeliny. Z tak przygotowanej próbki wykonuje się zgład metalograficzny, na którym badane jest położenie promieniotwórczego izotopu w obrębie zgorzeliny. Jeśli proces utleniania odbywał się wyłącznie w wyniku odrdzeniowej dyfuzji metalu, to promieniotwórczy izotop utleniacza znajdowany będzie przede wszystkim w zewnętrznej części zgorzeliny utworzonej w drugim etapie reakcji. W wewnętrznej części zgorzeliny natomiast, nie rejestruje się jego obecności. W przypadku dordzeniowego transportu masy w zgorzelinie, obecność promieniotwórczego izotopu utleniacza rejestrowana będzie w wewnętrznej części zgorzeliny. Jeżeli zgorzelina powstaje w wyniku równoczesnej i przeciwnie skierowanej dyfuzji sieciowej obu reagentów, radioizotop rejestrowany jest w obrębie całej zgorzeliny, przy czym jego stężenie jest najmniejsze w środkowej części próbki. Badanie mechanizmu utleniania metodą rysy polega na celowym zarysowaniu powierzchni badanego materiału przed rozpoczęciem procesu utleniania. Po przeprowadzeniu utleniania należy określić, czy rysa jest widoczna na powierzchni powstałej zgorzeliny. Obecność rysy na powierzchni próbki sugeruje dominującą rolę dyfuzji dordzeniowej utleniacza w procesie powstawania zgorzeliny. Brak takiej rysy, z kolei, przemawia za dominującym udziałem odrdzeniowej dyfuzji metalu w procesie utleniania. Metoda rysy jest rzadko używana, przede wszystkim z powodu problemów z właściwą interpretacją przeprowadzonych eksperymentów, w przypadku mieszanego udziału dyfuzji poszczególnych reagentów w ogólnym procesie transportu materii przez zgorzelinę. O ile metody radioizotopowe określania dominującego zdefektowania w związkach typu MX są niezwykle pracochłonne, a co za tym idzie - rzadko używane, to metoda markerów, ze względu na swą prostotę jest powszechnie stosowana. Istota metody markerów polega na nałożeniu na powierzchnię czystego metalu lub stopu substancji zwanej markerem, która nie reaguje ani z utleniaczem ani z materiałem podłoża, jak również z produktem reakcji i określeniu jej położenia po zakończeniu procesu utleniania w powstałej zgorzelinie. Położenie markera na granicy faz metal/zgorzelina (w przypadku zgorzeliny jednofazowej, zwartej i ściśle przylegającej do rdzenia metalicznego) świadczy, iż dominujące zdefektowanie występuje w podsieci kationowej. Lokalizacja markera na granicy faz zgorzelina/utleniacz pozwala z kolei na stwierdzenie, że defekty występują praktycznie tylko w podsieci anionowej. Występowanie markera wewnątrz zgorzeliny sugeruje natomiast, że obie podsieci zdefektowane są w porównywalnym stopniu. W celu wiarygodnego określenia względnego udziału reagentów w procesie powstawania zgorzeliny, badania mechanizmu utleniania przeprowadzane są niejednokrotnie przy użyciu nie jednej, lecz kilku z wymienionych wyżej metod. Ważnym zagadnieniem, również z punktu widzenia badania mechanizmu reakcji jest proces tzw. korozji katastrofalnej. Pod pojęciem korozji katastrofalnej należy rozumieć szybkie niszczenie materiału metalicznego w podwyższonych temperaturach, związane ze szczególnie złymi własnościami ochronnymi zgorzelin lub tworzeniem się płynnych, czy też gazowych produktów utleniania. Korozja katastrofalna występuje najczęściej w środowisku gazów spalinowych
3 zawierających popioły. W takich warunkach oprócz tworzenia się zgorzelin tlenkowych na metalach może dochodzić również do korozji materiałów metalicznych w wyniku ich reakcji z agresywnymi składnikami popiołów. Proces korozji katastrofalnej charakteryzuje się pewnym okresem inkubacyjnym, po którym następuje bardzo szybkie niszczenie materiału konstrukcyjnego. Do najbardziej agresywnych składników popiołów, posiadających zróżnicowaną agresywność, należą związki wanadu oraz siarczany i chlorki metali alkalicznych. Na ogół korozja katastrofalna zachodzi w obecności takich związków jak np. V 2 O 5, Na 2 O, K 2 O, SO 2, SO 3, Cl. Inne składniki popiołów nie przyspieszają korozji, a nawet mogą ją w istotny sposób ograniczać (np. CaO i MgO). Reakcje chemiczne zachodzące w gazach spalinowych zawierających popioły są współzależne, co oznacza bardzo złożony mechanizm i kinetykę korozji. Do tej pory nie opracowano ogólnej teorii opisującej procesy niszczenia materiałów w tak złożonych środowiskach. W konsekwencji czego ochrona materiałów w tych warunkach jest niezwykle utrudniona. WYKONANIE ĆWICZENIA Eksperyment markerowy W celu przećwiczenia nakładania różnych rodzajów markerów przygotować trzy płytki stalowe, wyczyścić ich powierzchnie papierem ściernym o gradacji do #1000. Oczyszczone mechanicznie powierzchnie odtłuścić w rozpuszczalniku organicznym wskazanym przez prowadzącego ćwiczenia (alkohol etylowy, aceton, lub inny). Dokładnie wysuszyć oczyszczane powierzchnie. 1. Na pierwszą z próbek nałożyć marker w postaci proszku Al 2 O 3. Proszek powinien być naniesiony na powierzchnię w taki sposób aby utworzył warstwę pojedynczych ziarn równomiernie rozłożonych na całej powierzchni próbki (pokrycie powierzchni: ok. 1 ziarno/mm 2 ). Gotową próbkę odłożyć do łódki alundowej. 2. Przygotować cienki drut platynowy lub złoty o średnicy ok µm. Część tego drutu pociąć na odcinki o długości ok. 2mm, które następnie rozsypać równomiernie po powierzchni przygotowanej wcześniej płytki metalowej (przygotowanie powierzchni analogiczne jak w punkcie 1). Należy zwrócić uwagę na to aby przygotowane odcinki drutu były proste i pewnie leżały na powierzchni bez odstawania. Gotową próbkę odłożyć do łódki alundowej. 3. Pozostałą część drutu nawinąć na trzecią płytkę w taki sposób aby zwoje drutu ciasno i równomiernie oplatały płytkę stalową na całej długości (kierunek nawijania prostopadły do dłuższego boku próbki). Między kolejnymi zwojami zachować równe odstępy ok. 0,5 1 mm. Przygotowane próbki umieścić w elektrycznym piecu oporowym rozgrzanym do temperatury wskazanej przez prowadzącego. Także czas przetrzymania próbek w piecu ustala prowadzący ćwiczenia.
4 Na przygotowanych wcześniej zgładach metalograficznych przeprowadzić obserwacje mikroskopowe. Zwrócić uwagę na grubość zgorzeliny, średnicę markera w stosunku go grubości warstwy, położenie markera względem granic międzyfazowych rdzeń metaliczny-zgorzelina i zgorzelina-utleniacz oraz wszelkie cechy charakterystyczne zgorzeliny (pęknięcia, porowatość, odwarstwienia). Wykonać i opisać rysunki z przeprowadzonych obserwacji oraz przeprowadzić interpretację mechanizmu transportu masy w reagującym układzie. Korozja katastrofalna Utlenianie (opcja) Do tygielka wsypać niewielką ilość proszku tlenku wanadu V 2 O 5 zachowując szczególną ostrożność z uwagi na szkodliwość dla zdrowia tego związku. Wyszlifować i odtłuścić niewielki kawałek miedzi. Po wysuszeniu, umieścić płytkę miedzianą w tygielku, w taki sposób aby tylko część (mniej więcej połowa) płytki kontaktowała się z wcześniej wsypanym proszkiem. Tygielek z próbką miedzianą i proszkiem V 2 O 5 umieścić ostrożnie w elektrycznym piecu oporowym a następnie rozgrzać piec do temperatury 620 o C, z szybkością 10 o C/min. Próbkę przetrzymać w zadanej temperaturze przez czas wskazany przez prowadzącego ćwiczenia (od 15 min. do 1 godz.). Po tym czasie wyłączyć piec, zaczekać do całkowitego ostygnięcia, wyjąć próbkę miedzi i dokonać obserwacji zniszczeń korozyjnych. Zwrócić szczególną uwagę na różnice między powierzchnią kontaktującą się z powietrzem i z V 2 O 5. Obserwacje Sporządzić zgład metalograficzny z wcześniej utlenionej próbki. Na podstawie obserwacji mikroskopowych przygotowanego zgładu opisać morfologię próbki i zinterpretować wynik przeprowadzonego eksperymentu. Zwrócić szczególną uwagę na tę część próbki, która pozostawała w bezpośrednim kontakcie z V 2 O 5. Porównać morfologie zgorzelin tworzących się na miedzi utlenianej w powietrzu oraz w obecności V 2 O 5. W sprawozdaniu należy umieścić: 1. Cel ćwiczenia 2. Krótki opis metod nakładania markerów poznanych na ćwiczeniach 3. Zdjęcie (lub rysunek) układu podłoże-marker-zgorzelina obserwowanego na ćwiczeniach 4. Interpretacja mechanizmu reakcji na podstawie rysunku z punktu 3 5. Obserwacje (zdjęcia i/lub opis) przebiegu korozji katastrofalnej miedzi 6. Krótkie wyjaśnienie mechanizmu przebiegu korozji katastrofalnej 7. Wnioski
5 ZAGADNIENIA DO OPRACOWANIA 1. Metody badania mechanizmu powstawania zgorzelin, 2. Defekty w związkach typu MX, 3. Dysocjacyjny mechanizm powstawania zgorzelin, 4. Zastosowanie metody markerów do badań mechanizmu powstawania zgorzelin wielowarstwowych, 5. Metody nakładania markerów na badany materiał. 6. Korozja w obecności związków wanadu, 7. Mechanizmy procesu korozji w popiołach, 8. Korozja w popiołach zawierających siarczany, 9. Korozja w spalinach zawierających chlorki, 10. Metody ochrony materiałów metalicznych przed korozją wywołaną popiołami. LITERATURA 1. S. Mrowec, Kinetyka i mechanizm utleniania metali, Katowice S. Mrowec, Teoria dyfuzji w stanie stałym, PWN, Warszawa, 1989.
Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA II Ćw. 6: ANODOWE
Metodyka badań struktury defektów punktowych (I)
Metodyka badań struktury defektów punktowych (I) Metoda markerów http://home.agh.edu.pl/~grzesik Metodyka badań struktury defektów 1. Określenie rodzaju podsieci krystalicznej związku jonowego, w której
Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM
TRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY
TRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY BADANIE UDZIAŁU POSZCZEGÓLNYCH REAGENTÓW W PROCESIE TRANSPORTU MATERII PRZEZ ZGORZELINĘ Metoda markerów Metoda dwustopniowego utleniania Badania współczynników
Laboratorium Ochrony przed Korozją. Ćw. 2A: MODELOWANIE KOROZJI W WARUNKACH CYKLICZNYCH ZMIAN TEMPERATURY
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 2A: MODELOWANIE KOROZJI
TRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY
TRANSPORT REAGENTÓW PRZEZ ZWARTĄ WARSTWĘ ZGORZELINY BADANIE UDZIAŁU POSZCZEGÓLNYCH REAGENTÓW W PROCESIE TRANSPORTU MATERII PRZEZ ZGORZELINĘ Metoda markerów Metoda dwustopniowego utleniania Badania współczynników
Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA Część I Ćw.
11. Korozja wysokotemperaturowa
11. Korozja wysokotemperaturowa W tym tygodniu podczas zajęć skupimy się na zagadnieniu wysokotemperaturowej korozji gazowej, a dokładniej na kinetyce procesu tworzenia się zgorzeliny (tlenków/siarczków)
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych
Procesy kontrolowane dyfuzją. Witold Kucza
Procesy kontrolowane dyfuzją Witold Kucza 1 Nawęglanie Nawęglanie jest procesem, w którym powierzchnia materiału podlega dyfuzyjnemu nasyceniu węglem. Nawęglanie (z następującym po nim hartowaniem i odpuszczaniem)
Wydział Inżynierii Materiałowej i Ceramiki
AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Inżynierii Materiałowej i Ceramiki KATEDRA FIZYKOCHEMII I MODELOWANIA PROCESÓW Propozycje tematów prac magisterskich na rok akademickim
INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA
INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA WSTĘP TEORETYCZNY Powłoki konwersyjne tworzą się na powierzchni metalu
REAKCJE W UKŁADACH CIAŁO STAŁE-GAZ KOROZJA GAZOWA CIAŁ STAŁYCH
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 4 Instrukcja zawiera: REAKCJE W UKŁADACH CIAŁO STAŁE-GAZ KOROZJA GAZOWA CIAŁ STAŁYCH 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje
DYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH
DYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH METODA PASTYLKOWA WAGNERA S pastylka Ag S + Ag - e S zgorzelina pastylka Ag zgorzelina + Ag - e pastylka Ag H. Rickert, Z. Phys. Chem. Neue Folge,
INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2
INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 BADANIA ODPORNOŚCI NA KOROZJĘ ELEKTROCHEMICZNĄ SYSTEMÓW POWŁOKOWYCH 1. WSTĘP TEORETYCZNY Odporność na korozję
Laboratorium Ochrony przed Korozją. KOROZJA KONTAKTOWA Część I Ćw. 5: DEPOLARYZACJA WODOROWA
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją KOROZJA KONTAKTOWA Część I Ćw.
PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)
Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 2: Materiały, kształtowniki gięte, blachy profilowane MATERIAŁY Stal konstrukcyjna na elementy cienkościenne powinna spełniać podstawowe wymagania stawiane stalom:
STATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
Laboratorium Ochrony przed Korozją. Ćw. 10: INHIBITORY
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 10: INHIBITORY Cel ćwiczenia
43 edycja SIM Paulina Koszla
43 edycja SIM 2015 Paulina Koszla Plan prezentacji O konferencji Zaprezentowane artykuły Inne artykuły Do udziału w konferencji zaprasza się młodych doktorów, asystentów i doktorantów z kierunków: Inżynieria
DEGRADACJA MATERIAŁÓW
DEGRADACJA MATERIAŁÓW Zmęczenie materiałów Proces polegający na wielokrotnym obciążaniu elementu wywołującym zmienny stan naprężeń Zmienność w czasie t wyraża się częstotliwością, wielkością i rodzajem
KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA. Część II DEPOLARYZACJA TLENOWA. Ćw. 6
KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA Część II DEPOLARYZACJA TLENOWA Ćw. 6 Akademia Górniczo-Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii Ciała tałego Korozja kontaktowa depolaryzacja
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej
Metody badań składu chemicznego
Wydział Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Metody badań składu chemicznego Ćwiczenie : Elektrochemiczna analiza śladów (woltamperometria) (Sprawozdanie drukować dwustronnie
Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4
Zadanie: 1 Do niebieskiego, wodnego roztworu soli miedzi wrzucono żelazny gwóźdź i odstawiono na pewien czas. Opisz zmiany zachodzące w wyglądzie: roztworu żelaznego gwoździa Zadanie 2. Przeprowadzono
KINETYKA UTLENIANIA METALI
KINETYKA UTLENIANIA METALI SCHEMAT PROCESU UTLENIANIA Utleniacz Metal Utleniacz Zgorzelina Metal x Miarą szybkości korozji metalu jest ubytek jego grubości, x, odniesiony do czasu trwania procesu korozji.
Kryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
NORMA ZAKŁADOWA. 2.2 Grubość szkła szlifowanego oraz jego wymiary
NORMA ZAKŁADOWA I. CEL: Niniejsza Norma Zakładowa Diversa Diversa Sp. z o.o. Sp.k. stworzona została w oparciu o Polskie Normy: PN-EN 572-2 Szkło float. PN-EN 12150-1 Szkło w budownictwie Norma Zakładowa
ĆWICZENIE Nr 4/N. Laboratorium Materiały Metaliczne II. Opracowała: dr Hanna de Sas Stupnicka
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 4/N Opracowała:
CHEMIA. Wymagania szczegółowe. Wymagania ogólne
CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [
Laboratorium Ochrony przed Korozją. Ćw. 2: POMIAR SZYBKOŚCI KOROZJI W WARUNKACH CYKLICZNYCH ZMIAN TEMPERATURY
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 2: POMIAR SZYBKOŚCI KOROZJI
WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera
WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera ANALIZA POŁĄCZENIA WARSTW CERAMICZNYCH Z PODBUDOWĄ METALOWĄ Promotor: Prof. zw. dr hab. n. tech. MACIEJ HAJDUGA Tadeusz Zdziech CEL PRACY Celem
PORADNIK. Łączenie tworzyw sztucznych w systemie CHEMOWENT
PORADNIK Łączenie tworzyw sztucznych w systemie CHEMOWENT www.chemowent.pl tel. 74 841 5519 1 Łączenie tworzyw sztucznych w systemie CHEMOWENT Przez zgrzewanie tworzyw sztucznych rozumiane jest nierozdzielne
Daria Jóźwiak. OTRZYMYWANĄ METODĄ ZOL -śel W ROZTWORZE SZTUCZNEJ KRWI.
WYśSZA SZKOŁA INśYNIERI DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Daria Jóźwiak Temat pracy: ODPORNOŚĆ KOROZYJNA STALI CHIRURGICZNEJ 316L MODYFIKOWANEJ POWŁOKĄ CERAMICZNĄ
Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 065 1. Informacje ogólne koordynator modułu rok akademicki 2014/2015
Badanie próbek materiału kompozytowego wykonanego z blachy stalowej i powłoki siatkobetonowej
Badanie próbek materiału kompozytowego wykonanego z blachy stalowej i powłoki siatkobetonowej Temat: Sprawozdanie z wykonanych badań. OPRACOWAŁ: mgr inż. Piotr Materek Kielce, lipiec 2015 SPIS TREŚCI str.
MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl. CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT
ANNA KADŁUCZKA, MAREK MAZUR MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT S t r e s z c z e n i e A b s t r a c t W niniejszym artykule
Zabezpieczanie żelaza przed korozją pokryciami. galwanicznymi.
1 Zabezpieczanie żelaza przed korozją pokryciami galwanicznymi. Czas trwania zajęć: 90 minut Pojęcia kluczowe: - galwanizacja, - miedziowanie. Hipoteza sformułowana przez uczniów: 1. Można zabezpieczyć
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:
KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1
KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik
WPŁYW RÓŻNOWARTOŚCIOWYCH DOMIESZEK NA SZYBKOŚĆ WZROSTU ZGORZELIN NA METALACH (TEORIA HAUFFEGO-WAGNERA)
WPŁYW RÓŻNOWARTOŚCIOWYCH DOMIEZEK NA ZYBKOŚĆ WZROTU ZGORZELIN NA METALACH (TEORIA HAUFFEGO-WAGNERA) 1. K. Hauffe, Progress in Metal Physic, 4, 71 (1953).. P. Kofstad, Nonstoichiometry, diffusion and electrical
Zniszczenie orurowania podgrzewacza powietrza na skutek wykraplania agresywnych roztworów związków zawartych w spalinach
Jasiński Artur ENERGOPOMIAR Sp. z o.o. Zakład Chemii i Diagnostyki Zniszczenie orurowania podgrzewacza powietrza na skutek wykraplania agresywnych roztworów związków zawartych w spalinach Orurowanie podgrzewacza
PŁYTY GIPSOWO-KARTONOWE: OZNACZANIE TWARDOŚCI, POWIERZCHNIOWEGO WCHŁANIANIA WODY ORAZ WYTRZYMAŁOŚCI NA ZGINANIE
PŁYTY GIPSOWO-KARTONOWE: OZNACZANIE TWARDOŚCI, POWIERZCHNIOWEGO WCHŁANIANIA WODY ORAZ WYTRZYMAŁOŚCI NA ZGINANIE NORMY PN-EN 520: Płyty gipsowo-kartonowe. Definicje, wymagania i metody badań. WSTĘP TEORETYCZNY
Doświadczenia eksploatacyjne i rozwój powłok ochronnych typu Hybrid stosowanych dla ekranów kotłów parowych
Doświadczenia eksploatacyjne i rozwój powłok ochronnych typu Hybrid stosowanych dla ekranów kotłów parowych Marek Danielewski AGH Technologia realizowana obecnie przez REMAK-ROZRUCH i AGH w wersjach MD
Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary otworów na przykładzie tulei cylindrowej I Cel ćwiczenia Zapoznanie się z metodami pomiaru otworów na przykładzie pomiaru zuŝycia gładzi
ĆWICZENIE Nr 3/N. zastosowania. 7. Stopy tytanu stosowane w motoryzacji, lotnictwie i medycynie.
Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 3/N Opracowali:
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
Wyznaczanie temperatur charakterystycznych przy użyciu mikroskopu wysokotemperaturowego
Wyznaczanie temperatur charakterystycznych przy użyciu mikroskopu wysokotemperaturowego 1. Cel Wyznaczenie temperatur charakterystycznych różnych materiałów przy użyciu mikroskopu wysokotemperaturowego.
Katedra Inżynierii Materiałowej
Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał
KLASYFIKACJI I BUDOWY STATKÓW MORSKICH
PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 3/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 3/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków
Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu. korozji
Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu korozji KOROZJA to procesy stopniowego niszczenia materiałów, zachodzące między ich powierzchnią i otaczającym środowiskiem.
BUDOWA STOPÓW METALI
BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje
Wpływ popiołów lotnych krzemionkowych kategorii S na wybrane właściwości kompozytów cementowych
Międzynarodowa Konferencja Popioły z Energetyki- Zakopane 19-21.X.2016 r. Wpływ popiołów lotnych krzemionkowych kategorii S na wybrane właściwości kompozytów cementowych Mikołaj Ostrowski, Tomasz Baran
Metody wytwarzania elementów półprzewodnikowych
Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie
Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA I Ćw. 5: POWŁOKI OCHRONNE NIKLOWE I MIEDZIOWE
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA I Ćw. 5: POWŁOKI
MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie
MIKROSYSTEMY Ćwiczenie nr 2a Utlenianie 1. Cel ćwiczeń: Celem zajęć jest wykonanie kompletnego procesu mokrego utleniania termicznego krzemu. W skład ćwiczenia wchodzą: obliczenie czasu trwania procesu
ĆWICZENIE Nr 2/N. 9. Stopy aluminium z litem: budowa strukturalna, właściwości, zastosowania.
Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 2/N Opracowali:
METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH
METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH 1. Określenie rodzaju podsieci krystalicznej związku
Kierunek i poziom studiów: Biotechnologia, pierwszy Sylabus modułu: Chemia ogólna (1BT_05)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Biotechnologia, pierwszy Sylabus modułu: Chemia ogólna (1BT_05) 1. Informacje ogólne koordynator modułu/wariantu rok akademicki 2014/2015
STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN
STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH ZGORZELIN 1. Określenie rodzaju podsieci krystalicznej związku tworzącego zgorzelinę,
CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE).
Temat 2: CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE). Wykład 3h 1) Przyczyny zużycia powierzchni wyrobów (tarcie, zmęczenie, korozja). 2) Ścieranie (charakterystyka
STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN
STRUKTURA DEFEKTÓW I WŁASNOŚCI TRANSPORTOWE ZGORZELIN METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH ZGORZELIN 1. Określenie rodzaju podsieci krystalicznej związku tworzącego zgorzelinę,
OCENA AGRESYWNOŚCI I KOROZJI WOBEC BETONU I STALI PRÓBKI WODY Z OTWORU NR M1 NA DRODZE DW 913
Mysłowice, 08.03.2016 r. OCENA AGRESYWNOŚCI I KOROZJI WOBEC BETONU I STALI PRÓBKI WODY Z OTWORU NR M1 NA DRODZE DW 913 Zleceniodawca: GEOMORR Sp. j. ul. Chwałowicka 93, 44-206 Rybnik Opracował: Specjalista
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 20/14
PL 221805 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221805 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 403264 (22) Data zgłoszenia: 22.03.2013 (51) Int.Cl.
Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji
Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie
ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA
WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera w Ustroniu ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA Magdalena Puda Promotor: Dr inŝ. Jacek Grzegorz Chęcmanowski Cel pracy
Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie
Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz
ĆWICZENIE Nr 5. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż.
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 5 Opracował: dr inż.
Laboratorium Ochrony przed Korozją. Ćw. 4: KOROZJA KONTAKTOWA - DEPOLARYZACJA WODOROWA
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 4: KOROZJA KONTAKTOWA -
ĆWICZENIE Nr 7. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż.
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 7 Opracował: dr inż.
Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ
Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu
Instrukcja wykonania chemicznego cynowania obwodów drukowanych przy użyciu środka cynującego En_Tin. EnSysT inż. Marek Kochniarczyk
INTRUKCJA UZYTKOWANIA Niniejsza instrukcja opisuje krok po kroku wykonanie chemicznej powłoki cyny na miedzi w wykonywaniu obwodów drukowanych. UWAGA ŚRODEK NIEBEZPIECZNY DLA ŚRODOWISKA!! R22: Działa szkodliwie
Synteza Nanoproszków Metody Chemiczne II
Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość
Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów
Pracownia Polimery i Biomateriały INSTRUKCJA DO ĆWICZENIA Spalanie i termiczna degradacja polimerów Opracowała dr Hanna Wilczura-Wachnik Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny Technologii
Zimny cynk składa się z miliardów cząsteczek tworzących szczelną powłokę, które pokrywają powierzchnię w całości (zachowuje się podobnie jak piasek). Z tego powodu pokrycie zimnego cynku jest zawsze elastyczne
Frialit -Degussit Ceramika tlenkowa Rurki z precyzyjnej ceramiki technicznej do analiz termograwimetrycznych
Frialit -Degussit Ceramika tlenkowa Rurki z precyzyjnej ceramiki technicznej do analiz termograwimetrycznych Zastosowanie: Pomiary w ekstremalnych warunkach Materiał: Tlenek glinu (Al2O3) DEGUSSIT AL23
STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stop tworzywo składające się z metalu stanowiącego osnowę, do którego
ĆWICZENIE Nr 4. Laboratorium Struktura i procesy strukturalne. Opracowała: prof. dr hab. Barbara Surowska
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Struktura i procesy strukturalne ĆWICZENIE Nr 4 Opracowała:
Podstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
PL B1. Sposób łączenia stopów aluminium z materiałami kompozytowymi na osnowie grafitu metodą lutowania miękkiego
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 232258 (13) B1 (21) Numer zgłoszenia: 423996 (51) Int.Cl. B23K 1/19 (2006.01) B23K 1/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data
POLITECHNIKA CZĘSTOCHOWSKA
POLITECHNIKA CZĘSTOCHOWSKA Instytut Inżynierii Materiałowej Stale narzędziowe do pracy na zimno CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się ze składem chemicznym, mikrostrukturą, właściwościami mechanicznymi
DYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH
DYSOCJACYJNY MECHANIZM NARASTANIA ZGORZELIN NA METALACH METODA PASTYLKOWA WAGNERA S p a s ty lk a S e + - S z g o r z e lin a p a s ty lk a z g o r z e lin a e + - p a s ty lk a H. Rickert, Z. Phys. Chem.
To jest. Ocena bardzo dobra [ ] energetycznych. s p d f. Ocena dobra [ ] izotopowym. atomowych Z. ,, d oraz f.
34 Wymagania programowe To jest przyrodniczych,,,,, chemicznego na podstawie zapisu A Z E,,,, podaje masy atomowe pierwiastków chemicznych,, n,,,,, s, p, d oraz f przyrodniczych,,,,, oraz Z,,, d oraz f,,
Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1
Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1 L. A. Dobrzański*, K. Labisz*, J. Konieczny**, J. Duszczyk*** * Zakład Technologii Procesów Materiałowych
ODKSZTAŁCALNOŚĆ BLACH PERFOROWANYCH
SERIA MONOGRAFIE NR 6/2013 AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ METALI NIEŻELAZNYCH MONOGRAFIA HABILITACYJNA ODKSZTAŁCALNOŚĆ BLACH PERFOROWANYCH Wacław Muzykiewicz Kraków
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z MATERIAŁÓW KONSTRUKCYJNYCH I EKSPLOATACYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z MATERIAŁÓW KONSTRUKCYJNYCH I EKSPLOATACYJNYCH MATERIAŁY REGENERACYJNE Opracował: Dr inż.
Korozja - na czym polega rdzewienie - korozja jako proces. nielokalny.
1 Korozja - na czym polega rdzewienie - korozja jako proces nielokalny. Czas trwania zajęć: 90 minut Pojęcia kluczowe: - korozja, - niszczenie, - metale, - stopy metali. Hipoteza sformułowana przez uczniów:
ĆW. 11. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW
ĆW.. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW CEL ĆWICZENIA. Zapoznanie się z technologią polimerowych warstw grubych na przykładzie elementów rezystywnych. Określenie wpływu rodzaju i zawartości
Wyznaczanie współczynnika przewodnictwa
Ćwiczenie C5 Wyznaczanie współczynnika przewodnictwa cieplnego wybranych materiałów C5.1. Cel ćwiczenia Celem ćwiczenia jest poznanie mechanizmów transportu energii, w szczególności zjawiska przewodnictwa
Chemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 013/14 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
LABORATORIUM NAUKI O MATERIAŁACH
Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Blok nr 1 Badania Własności Mechanicznych L.p. Nazwisko i imię Nr indeksu Wydział Semestr Grupa
Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy:
STAL O SPECJALNYCH WŁAŚCIWOŚCIACH FIZYCZNYCH I CHEMICZNYCH Zakres tematyczny 1 Podział stali specjalnych, ze względu na warunki pracy: - odporne na korozję, - do pracy w obniżonej temperaturze, - do pracy
Raport końcowy kamienie milowe (KM) zadania 1.2
Wydział Chemii Uniwersytet Warszawski Raport końcowy kamienie milowe (KM) zadania 1.2 za okres: 01.07.2009-31.03.2012 Zadanie 1.2 Opracowanie technologii nanowłókien SiC dla nowej generacji czujnika wodoru
ELEKTROFOREZA. Wykonanie ćwiczenia 8. ELEKTROFOREZA BARWNIKÓW W ŻELU AGAROZOWYM
Wykonanie ćwiczenia 8. ELEKTROFOREZA BARWNIKÓW W ŻELU AGAROZOWYM Zadania: 1. Wykonać elektroforezę poziomą wybranych barwników w żelu agarozowym przy trzech różnych wartościach ph roztworów buforowych.
Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1
PREPARAT NR 1 O H 2 SO 4 COOH + HO t. wrz., 1 godz. O OCTAN IZOAMYLU Stechiometria reakcji Kwas octowy lodowaty Alkohol izoamylowy Kwas siarkowy 1.5 ekwiwalenta 1 ekwiwalentów 0,01 ekwiwalenta Dane do