Cyfrowe przetwarzanie sygnałów. Wykład. Podstawowe przekształcenia morfologiczne. dr inż. Robert Kazała

Wielkość: px
Rozpocząć pokaz od strony:

Download "Cyfrowe przetwarzanie sygnałów. Wykład. Podstawowe przekształcenia morfologiczne. dr inż. Robert Kazała"

Transkrypt

1 Cyfrowe przetwarzanie sygnałów Wykład Podstawowe przekształcenia morfologiczne dr inż. Robert Kazała

2 Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest określony warunek. Przekształcenia morfologiczne są jednym z najważniejszych operacji w komputerowej analizie obrazu, pozwalają na najbardziej złożone operacje związane z analizą kształtu elementów obrazu. Wadą przekształceń morfologicznych jest duża złożoność obliczeniowa. 2

3 Element strukturalny Element strukturalny obrazu - podzbiór obrazu (przy dyskretnej reprezentacji obrazu - pewien podzbiór jego elementów) z wyróżnionym jednym punktem (tzw. punktem centralnym). Najczęściej stosowanym elementem strukturalnym jest koło o promieniu jednostkowym. 3

4 Element strukturalny Element strukturalny jest bardziej zbliżony do koła. Element strukturalny składa się z 7 elementów a nie 9 co zmniejsza złożoność obliczeniową. Element strukturalny nie preferuje dwóch abstrakcyjnych kierunków poziomego i pionowego. 4

5 Element strukturalny Tradycyjnie przyjmowany jest element strukturalny w postaci siatki prostokątnej gdyż jest prostszy w realizacji. 5

6 Element strukturalny 6

7 Algorytm przekształcenia morfologicznego 1. Przyłożenie punktu centralnego do wszystkich punktów obrazu 2. Sprawdzenie czy lokalna konfiguracja punktów odpowiada układowi zapisanemu w elemencie strukturalnym 3. Wykonanie, w przypadku zgodności konfiguracji punktów, operacji określonej dla danego przekształcenia 7

8 Różnica pomiędzy przekształceniami morfologicznymi a innymi przekształceniami obrazów Różnica pomiędzy przekształceniami morfologicznymi a innymi przekształceniami obrazów polega na tym, że: przekształcenia punktowe transformują każdy punkt obrazu w taki sam sposób bez względu na to jakich ma sąsiadów, filtry uzależniają wynik od sąsiedztwa danego punktu, ale przekształcenie jest wykonywane zawsze nawet jeśli wartość obrazu w danym punkcie nie ulega zmianie, przekształcenia morfologiczne przekształcają tylko tę cześć punktów obrazu, których otoczenie jest zgodne z elementem strukturalnym, co pozwala na bardziej rozbudowane planowanie przekształceń. 8

9 Podstawowe przekształcenia morfologiczne Erozja Dylatacja Otwarcie Zamknięcie 9

10 Erozja Przy założeniu, że istnieje nieregularny obszar X i koło B o promieniu r, które będzie elementem strukturalnym (za punkt środkowy elementu strukturalnego przyjmuje się środek koła B) to erozję obszaru X elementem B można zdefiniować na dwa sposoby: figura zerodowana to zbiór środków wszystkich kół o promieniu r, które w całości zawarte są w obszarze X, koło B przetacza się po wewnętrznej stronie brzegu figury. Kolejne położenia środka koła B wyznaczają brzeg figury zerodowanej. 10

11 Erozja 11

12 Erozja definicja W implementacji komputerowej erozja jednostkowa polega na usunięciu tych wszystkich punktów obrazu o wartości 1, które posiadają choć jednego sąsiada o wartości 0. 12

13 Erozja definicja Erozję można również zinterpretować jako tzw. filtr minimalny, tzn. taki operator, który każdemu punktowi przypisuje minimum z wartości jego sąsiadów. 13

14 Przeprowadzanie erozji Proces przeprowadzenia erozji można wykonać posługując się następującym elementem strukturalnym: gdzie zastosowane symbole oznaczają: Jeżeli punkt centralny i otoczenie elementu strukturalnego zgadza się z lokalną konfiguracją punktów obrazu to nowa wartość punktu centralnego obrazu przyjmuje wartość 1, natomiast w przeciwnym przypadku 0. 14

15 Wpływ kształtu elementu strukturalnego Najczęściej erozję przeprowadza się za pomocą elementu strukturalnego przypominającego kształtem koło, ale można też używać innych elementów strukturalnych np.: pary punktów, odcinków trójkątów itp. Elementy liniowe jako elementy strukturalne są przydatne do wyszukiwania fragmentów obrazu zorientowanych liniowo w tym samym kierunku co element strukturalny. Np. sprawdzenie czy w badanym obrazie przedstawiającym materiał włóknisty nie ma zakłóceń. 15

16 Erozja - przykłady 16

17 Cechy erozji o znaczeniu praktycznym Jest addytywna co oznacza, że erozję o złożonej wielkości można interpretować jako złożenie odpowiedniej ilości erozji o wielkości jednostkowej. Bardzo ważna cecha przy praktycznej realizacji przekształcenia. Erozja złożonym elementem strukturalnym jest równoważna złożeniu erozji poszczególnymi tego elementu strukturalnego Położenie punktu centralnego elementu strukturalnego nie ma większego znaczenia. Translacja punktu centralnego o wektor powoduje translację obrazu wynikowego o ten sam wektor. Erozja ma zdolność do eliminowania drobnych szczegółów i wygładzania brzegu figury. 17

18 Cechy erozji o znaczeniu praktycznym Erozja elementami strukturalnymi o podłużnym kształcie pozwala uwypuklić fragmenty obrazu zorientowane liniowo w tym samym kierunku co element strukturalny. Erozja dokonuje generalizacji obrazu. Odizolowane, drobne wyróżnione obszary zostają usunięte. Brzegi wyróżnionych obszarów zostają wygładzone, ich długość zostaje zdecydowania zmniejszona. Zmniejszone zostają także ich powierzchnie. Często większe wyróżnione obrazy zostają podzielone na mniejsze. Spada nasycenie obrazu. 18

19 Przykłady działania erozji na obrazy naturalne 19

20 Dylatacja Dylatacja jest przekształceniem odwrotnym do erozji. Aby zdefiniować operację dylatacji zakłada się, że istnieje nieregularny obszar na obrazie X i koło B o promieniu r, które będzie elementem strukturalnym. Wówczas dylatację figury X elementem B można zdefiniować na trzy różne sposoby: figura po dylatacji jest zbiorem środków wszystkich kół B, dla których choć jeden punkt pokrywa się z jakimkolwiek punktem figury właściwej, koło B przetacza się po zewnętrznej stronie brzegu figury; kolejne położenia środka koła B wyznaczają brzeg figury po dylatacji, analogicznie jak w przypadku erozji, dylatację można zdefiniować jako filtr maksymalny. 20

21 Dylatacja 21

22 Dylatacja Operację dylatacji można przeprowadzić posługując się elementem strukturalnym: Jeżeli punkt centralny i otoczenie elementu strukturalnego zgadza się z lokalną konfiguracją punktów obrazu to nowa wartość punktu centralnego obrazu przyjmuje wartość 1, ale pod warunkiem, że nie wszystkie wartości otoczenia obrazu są równe 0. W przeciwnym razie wartość punktu centralnego w obrazie pozostaje bez zmian. 22

23 Dylatacja - definicja 23

24 Dylatacja - definicja 24

25 Podstawowe własności dylatacji Podstawowe własności dylatacji są następujące: zamykanie małych otworów i wąskich zatok w konturach obiektów na obrazie, zdolność do łączenia obiektów, które położone są blisko siebie, dylatację obrazu kolorowego można przedstawić jako złożenie dylatacji przeprowadzonych dla poszczególnych składowych. 25

26 Przykłady dylatacji dla obrazu sztucznego 26

27 Przykłady dylatacji dla obrazów rzeczywistych 27

28 Otwarcie i zamknięcie Omówione wcześniej operacje erozji i dylatacji mają niestety określone wady. Zmieniają one w sposób wyraźny pole powierzchni przekształcanych obszarów. Erozja zmniejsza je a dylatacji zwiększa. Aby wyeliminować te wady wprowadzono przekształcenia będące złożeniem poprzednich. Są nimi otwarcie i zamknięcie, które można zdefiniować następująco: 28

29 Otwarcie 29

30 Zamknięcie 30

31 Otwarcie i zamknięcie - własności 31

32 Otwarcie i zamknięcie - własności 32

33 Otwarcie i zamknięcie - własności Operacja zamknięcia jest operacją: zwiększającą, idempotentną, czyli wielokrotne wykonanie operacji dylatacji tym samym elementem strukuralnym jest równoważne wykonaniu jednokrotnej operacji zamknięcia. Otwarcie jest operacją: zmniejszającą, idempotentną, czyli wielokrotne wykonanie operacji otwarcia tym samym elementem strukuralnym jest równoważne wykonaniu jednokrotnej operacji otwarcia. 33

34 Przykłady otwarcia i zamknięcia obraz testowy 34

35 Jedynie operacja domknięcia 35

36 Jedynie operacja otwarcia 36

37 Operacja domknięcia i otwarcia zastosowana jednocześnie 37

38 Operacje zamknięcia i otwarcia zniekształcają przetwarzany obraz 38

39 Otwarcie, zamknięcie właściwe, automediana Kolejne przekształcenia morfologiczne mogą być budowane jako coraz bardziej złożone transformacje obrazu w oparciu o zdefiniowane wcześniej otwarcie i zamknięcie. Serię interesujących przekształceń figury f można zrealizować poprzez porównanie złożeń otwarcia i zamknięcia z obrazem wyjściowym figury f przed wykonaniem jakichkolwiek przekształceń. Powstać w ten sposób mogą następujące przekształcenia: 39

40 Detekcja ekstremów- maksima Aby wyodrębnić z obrazu lokalne ekstrema (maksima i minima) można wykorzystać zdefiniowane wcześniej przekształcenia otwarcia i zamknięcia. Aby wyszukać lokalne maksima należy od wyniku otwarcia danego obrazu odjąć obraz wyjściowy, a następnie dokonać binaryzacji z dolnym progiem otrzymanej różnicy: 40

41 Detekcja ekstremów- minima Aby wyszukać lokalne minima należy dokonać podobnej operacji, z tym, że pierwszą operacją będzie domknięcie: Łatwo zauważyć, że operacja ta daje podobny wynik, jak operatory wydzielające krawędzie (na przykład Laplasjan) 41

42 Ścienianie Ścienianie jest odmianą przekształceń morfologicznych. Ścienianie obiektu X przy użyciu elementu strukturalnego B polega na przyłożeniu tego elementu do każdego punktu obrazu w ten sposób,że punkt centralny pokrywa się z analizowanym punktem i podjęciem jednej z dwóch decyzji: nie zmieniać punktu gdy element nie pokrywa się z jego sąsiedztwem zmieniać wartość punktu na 0 jeżeli element strukturalny pasuje do sąsiedztwa analizowanego punktu Ścienianie może być powtarzane wielokrotnie, aż do momentu gdy następny krok nie wprowadza żadnych zmian w obrazie 42

43 Przykład elementów strukturalnych wykorzystywanych do ścieniania Wynikiem ścieniania jest zawsze obraz binarny W większości przypadków obrazem wejściowym dla operacji ścieniania jest również obraz binarny, chociaż to nie jest konieczne 43

44 Przykład ścieniania - wyodrębnianie krawędzi 44

45 Przykład ścieniania - wyodrębnianie krawędzi 45

46 Szkieletyzacja Szkieletyzacjajest operacją pozwalającą wyodrębnić osiowe punkty (szkielety) w analizowanym obrazie. Definicja Szkielet figury jest zbiorem wszystkich punktów, które są równoodległe od co najmniej dwóch punktów należących do brzegu. 46

47 Szkieletyzacja - własności Szkielet figury jest znacznie od niej mniejszy, a odzwierciedla w pełni jej topologiczne własności. Analiza szkieletu figur umożliwia przeprowadzenie następujących analiz obrazu: klasyfikacja cząstek na podstawie ich kształtu określenie orientacji podłużnych obiektów rozdzielenie posklejanych obiektów wyznaczanie linii środkowej szerszej linii symulacja procesu rozrostu cząstek oraz tworzenia struktury ziarnistej 47

48 Szkieletyzacja element strukturalny Szkieletyzacja może być realizowana jako ścienianie z następującycm elementem strukturalnym: 48

49 Szkieletyzacja alfabet Golay'a W praktyce do ścieniania często stosowane są różne elementy strukturalne naprzemiennie, np.: elementy alfabetu Golay a 49

50 Szkieletyzacja - zakłócenia Niestety proces szkieletyzacji może wprowadzać do obrazu pewne artefakty w postaci bocznego gałązkowania linii szkieletu. Efekt ten jest szczególnie dokuczliwy, jeśli obraz oryginalny posiada zakłócenia. 50

51 Szkieletyzacja - przykład Szkieletyzacja jest techniką przetwarzania obrazu o dużym znaczeniu aplikacyjnym. Przykładowym zadaniem praktycznym, w którym ważną rolę odgrywa szkieletyzacja jest np. zadanie analizy przebiegu głównego przewodu trzustkowego w obrazach ERCP. 51

52 Szkieletyzacja - przykład 52

53 Obcinanie gałęzi Czasami operacja szkieletyzacji wprowadza pewne zniekształcenia (gałązkowanie). Aby usunąć zniekształcenia gałązkowania redukuje się stopniowo odcinki posiadające wolne zakończenie. W ostateczności pozostają jedynie zamknięte pętle i odcinki przecinające brzeg obrazu. W rzeczywistości obcinanie gałęzi przeprowadza się w ograniczonym stopniu uzależnionym od ilości iteracji. 53

54 Obcinanie gałęzi Algorytm obcinania gałęzi może być realizowany jako ścienianie przy elemencie strukturalnym pokazanym obok (5 iteracji): 54

55 Przykład obcinania gałęzi dla obrazu ERCP 55

56 Python - Operacje morfologiczne scipy.ndimage.morphology skimage.morphology 56

57 Python generowanie elementów strukturalnych scipy.ndimage.morphology.iterate_structure(structure, iterations[,...]) Iterate a structure by dilating it with itself. scipy.ndimage.morphology.generate_binary_structure(rank, connectivity) Generate a binary structure for binary morphological operations. skimage.morphology.ball(radius[, dtype]) given radius Generates a ball-shaped structuring element of a skimage.morphology.disk(radius[, dtype]) Generates a flat, disk-shaped structuring element of a given radius. skimage.morphology.octagon(m, n[, dtype]) Generates an octagon shaped structuring element with a given size of horizontal and vertical sides and a given height or width of slanted sides. skimage.morphology.octahedron(radius[, dtype]) Generates a octahedron-shaped structuring element of a given radius skimage.morphology.rectangle(width, height) element of a given width and height. skimage.morphology.square(width[, dtype]) element. Generates a flat, rectangular-shaped structuring Generates a flat, square-shaped structuring skimage.morphology.star(a[, dtype]) Generates a star shaped structuring element that has 8 vertices and is an overlap of square of size 2*a + 1 with its 45 degree rotated version. 57

58 Python scipy.ndimage.morphology binary_closing(input[, structure,...]) binary_dilation(input[, structure,...]) Multi-dimensional binary dilation with the given structuring element. binary_erosion(input[, structure,...]) Multi-dimensional binary erosion with a given structuring element. binary_fill_holes(input[, structure,...]) binary_hit_or_miss(input[, structure1,...]) Multi-dimensional binary hit-or-miss transform. binary_opening(input[, structure,...]) Multi-dimensional binary opening with the given structuring element. Multi-dimensional binary closing with the given structuring element. Fill the holes in binary objects. binary_propagation(input[, structure, mask,...]) Multi-dimensional binary propagation with the given structuring element. black_tophat(input[, size, footprint,...]) Multi-dimensional black tophat filter. distance_transform_bf(input[, metric,...]) Distance transform function by a brute force algorithm. distance_transform_cdt(input[, metric,...]) Distance transform for chamfer type of transforms. distance_transform_edt(input[, sampling,...]) grey_closing(input[, size, footprint,...]) Multi-dimensional greyscale closing. Exact euclidean distance transform. grey_dilation(input[, size, footprint,...]) Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element. grey_erosion(input[, size, footprint,...]) Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element. grey_opening(input[, size, footprint,...]) Multi-dimensional greyscale opening. morphological_gradient(input[, size,...]) morphological_laplace(input[, size,...]) Multi-dimensional morphological laplace. white_tophat(input[, size, footprint,...]) Multi-dimensional white tophat filter. Multi-dimensional morphological gradient. 58

59 Python skimage.morphology skimage.morphology.binary_closing(image, selem) Return fast binary morphological closing of an image. skimage.morphology.binary_dilation(image, selem) Return fast binary morphological dilation of an image. skimage.morphology.binary_erosion(image, selem) Return fast binary morphological erosion of an image. skimage.morphology.binary_opening(image, selem) Return fast binary morphological opening of an image. skimage.morphology.black_tophat(image, selem) Return black top hat of an image. skimage.morphology.closing(image, selem[, out]) Return greyscale morphological closing of an image. skimage.morphology.cube(width[, dtype]) Generates a cube-shaped structuring element (the 3D equivalent of skimage.morphology.diamond(radius[, dtype]) Generates a flat, diamond-shaped structuring element of a given radius. skimage.morphology.dilation(image, selem[,...]) skimage.morphology.erosion(image, selem[,...]) Return greyscale morphological erosion of an image. skimage.morphology.greyscale_black_top_hat(...) skimage.morphology.greyscale_close(*args,...) skimage.morphology.greyscale_dilate(*args,...) skimage.morphology.greyscale_erode(*args,...) skimage.morphology.greyscale_open(*args,...) skimage.morphology.greyscale_white_top_hat(...) skimage.morphology.opening(image, selem[, out]) skimage.morphology.reconstruction(seed, mask) Perform a morphological reconstruction of an image. skimage.morphology.remove_small_objects(ar) skimage.morphology.skeletonize(image) skimage.morphology.watershed(image, markers) Return a matrix labeled using the watershed segmentation algorithm skimage.morphology.white_tophat(image, selem) Return white top hat of an image. Return greyscale morphological dilation of an image. Return greyscale morphological opening of an image. Remove connected components smaller than the specified size. Return the skeleton of a binary image. 59

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de

Bardziej szczegółowo

Analiza obrazu. wykład 7. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 7. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 7 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, Filtry morfologiczne

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie czwarte Przekształcenia morfologiczne obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie czwarte Przekształcenia morfologiczne obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 3

Analiza obrazów - sprawozdanie nr 3 Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i

Bardziej szczegółowo

Metody komputerowego przekształcania obrazów

Metody komputerowego przekształcania obrazów Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX6 Operacje morfologiczne Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami podstawowych

Bardziej szczegółowo

Operacje morfologiczne w przetwarzaniu obrazu

Operacje morfologiczne w przetwarzaniu obrazu Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie 9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

Filtracja nieliniowa obrazu

Filtracja nieliniowa obrazu Informatyka, S1 sem. letni, 2014/2015, wykład#4 Filtracja nieliniowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów Obraz

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

Przekształcenia morfologiczne II i operacje na obrazach logicznych

Przekształcenia morfologiczne II i operacje na obrazach logicznych Przekształcenia morfologiczne II i operacje na obrazach logicznych 1 Przekształcenia morfologiczne 1.1 Ścienianie i Pogrubianie Pogrubianie i ścienianie: Operacje te polegają na nałożeniu lub ściągnięciu

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)

Bardziej szczegółowo

Operacje morfologiczne

Operacje morfologiczne Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Operacje morfologiczne 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami prostych operacji morfologicznych: zw»ania/erozji

Bardziej szczegółowo

Komputerowe przetwarzanie obrazu Laboratorium 5

Komputerowe przetwarzanie obrazu Laboratorium 5 Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

POB Odpowiedzi na pytania

POB Odpowiedzi na pytania POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej

Bardziej szczegółowo

Detekcja punktów zainteresowania

Detekcja punktów zainteresowania Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów

Bardziej szczegółowo

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia

Bardziej szczegółowo

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany

Bardziej szczegółowo

Grenlandia się topi badanie rozkładu kątów pomiędzy strumykami na lądolodzie na podstawie analizy obrazu

Grenlandia się topi badanie rozkładu kątów pomiędzy strumykami na lądolodzie na podstawie analizy obrazu Grenlandia się topi badanie rozkładu kątów pomiędzy strumykami na lądolodzie na podstawie analizy obrazu Małgorzata Bąk, Marcin Byra, Filip Chudzyński, Marcin Osiekowicz Opiekun: dr hab. Piotr Szymczak

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Implementacja filtru Canny ego

Implementacja filtru Canny ego ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi

Bardziej szczegółowo

SEGMENTACJA OBRAZU Wprowadzenie

SEGMENTACJA OBRAZU Wprowadzenie Oprogramowanie Systemów Obrazowania SEGMENTACJA OBRAZU Wprowadzenie Segmentacja obszarów to operacja wydzielenia z obrazu obszarów w oparciu o zdefiniowane kryterium. Głównym uzasadnieniem celowości takiego

Bardziej szczegółowo

zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych

zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w

Bardziej szczegółowo

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.

6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT. WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie trzecie Operacje na dwóch obrazach Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

Szkieletyzacja 2. Rysunek 1.1. Siatka: a), b) h

Szkieletyzacja 2. Rysunek 1.1. Siatka: a), b) h Szkieletyzacja Jednymi z najważniejszych operacji w przetwarzaniu obrazów są przekształcenia morfologiczne, pozwalające na analizę kształtów elementów obrazu oraz ich wzajemnego położenia. Typowym przekształceniem

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie trzecie Operacje na dwóch obrazach 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

OPERACJE MORFOLOGICZNE NA OBRAZACH W ODCIENIACH SZAROŚCI ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ

OPERACJE MORFOLOGICZNE NA OBRAZACH W ODCIENIACH SZAROŚCI ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ STUDIA INFORMATICA 2004 Volume 25 Number 2 (58) Adam ŚWITOŃSKI, Katarzyna STĄPOR Politechnika Śląska, Instytut Informatyki OPERACJE MORFOLOICZNE NA OBRAZACH W ODCIENIACH SZAROŚCI ZASTOSOWANIE NA POTRZEBY

Bardziej szczegółowo

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

Segmentacja przez detekcje brzegów

Segmentacja przez detekcje brzegów Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie

Bardziej szczegółowo

Metody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/

Bardziej szczegółowo

1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający

1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający Instrukcja laboratoryjna 3 Grafika komputerowa 2D Temat: Obcinanie odcinków do prostokąta Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1

Bardziej szczegółowo

CECHY BIOMETRYCZNE: ODCISK PALCA

CECHY BIOMETRYCZNE: ODCISK PALCA CECHY BIOMETRYCZNE: ODCISK PALCA Odcisk palca można jednoznacznie przyporządkować do osoby. Techniki pobierania odcisków palców: Czujniki pojemnościowe - matryca płytek przewodnika i wykorzystują zjawisko

Bardziej szczegółowo

Analiza obrazów. Segmentacja i indeksacja obiektów

Analiza obrazów. Segmentacja i indeksacja obiektów Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III 1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla): WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

Automatyczne nastawianie ostrości

Automatyczne nastawianie ostrości Automatyczne nastawianie ostrości Systemy automatycznego nastawiania ostrości (AF) - budowa, działanie, zalety, wady, zastosowanie, algorytmy wyostrzania - przykłady Jakub Skalak http://www.fis.agh.edu.pl/~4skalak/

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.

Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych

Bardziej szczegółowo

Filtracja splotowa obrazu

Filtracja splotowa obrazu Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)

Bardziej szczegółowo

Instalacja. pip install opencv-python. run pip install opencv-contrib-python CZĘŚĆ II

Instalacja. pip install opencv-python. run pip install opencv-contrib-python CZĘŚĆ II Instalacja pip install opencv-python run pip install opencv-contrib-python CZĘŚĆ II Przydatne Potrzebne importy: import cv2 import numpy as np Odczyt, zapis i wyświetlanie obrazu: img=cv2.imread('cell.jpg')

Bardziej szczegółowo

Przekształcenia punktowe

Przekształcenia punktowe Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze

Bardziej szczegółowo

KOMPUTEROWE MODELOWANIE PĘKNIĘĆ NA BAZIE ZDJĘĆ RADIOGRAFICZNYCH

KOMPUTEROWE MODELOWANIE PĘKNIĘĆ NA BAZIE ZDJĘĆ RADIOGRAFICZNYCH Lech NAPIERAŁA KOMPUTEROWE MODELOWANIE PĘKNIĘĆ NA BAZIE ZDJĘĆ RADIOGRAFICZNYCH STRESZCZENIE W pracy zaprezentowano algorytm generacji pęknięć jako komputerowych obiektów trójwymiarowych. Przedstawiono

Bardziej szczegółowo

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:

Bardziej szczegółowo

Spis treści. Morfologia matematyczna. 1 Morfologia matematyczna 1.1 Dylacja 1.2 Erozja 1.3 Otwarcie i zamknięcie 1.

Spis treści. Morfologia matematyczna. 1 Morfologia matematyczna 1.1 Dylacja 1.2 Erozja 1.3 Otwarcie i zamknięcie 1. Spis treści 1 Morfologia matematyczna 1.1 Dylacja 1.2 Erozja 1.3 Otwarcie i zamknięcie 1.4 Filtr medianowy Morfologia matematyczna Morfologia matematyczna to bardzo przydatna metoda przetwarzania obrazów

Bardziej szczegółowo

Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki.

Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Zespół bibliotek cyfrowych PCSS 6 maja 2011 1 Cel aplikacji Aplikacja wspomaga przygotowanie poprawnego materiału uczącego dla

Bardziej szczegółowo

Opis i wydzielanie (ekstrakcja) cech

Opis i wydzielanie (ekstrakcja) cech Opis i wydzielanie (ekstrakcja) cech Po segmentacji jest otrzymywany obraz wynikowy (np. binarny) na podstawie którego jest łatwiej wydzielać cechy/parametry obiektów wyodrębnionych w etapie segmentacji.

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna

Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Segmentacja obrazu. Segmentacja obrazu

Segmentacja obrazu. Segmentacja obrazu Cel segmentacji Podział obrazu na obszary odpowiadające poszczególnym, widocznym na obrazie obiektom. Towarzyszy temu zwykle indeksacja (etykietowanie) obiektów, czyli przypisanie każdemu obiektowi innej

Bardziej szczegółowo

Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych

Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci

Bardziej szczegółowo

Detekcja twarzy w obrazie

Detekcja twarzy w obrazie Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów

Bardziej szczegółowo

maska 1 maska 2 maska 3 ogólnie

maska 1 maska 2 maska 3 ogólnie WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

WYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.

WYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła. WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy

Bardziej szczegółowo

Odciski palców ekstrakcja cech

Odciski palców ekstrakcja cech Kolasa Natalia Odciski palców ekstrakcja cech Biometria sprawozdanie z laboratorium 4 1. Wstęp Biometria zajmuje się rozpoznawaniem człowieka na podstawie jego cech biometrycznych. Jest to możliwe ponieważ

Bardziej szczegółowo

Operacje przetwarzania obrazów monochromatycznych

Operacje przetwarzania obrazów monochromatycznych Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 7

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 7 7. NORMALIZACJA I BINARYZACJA ADAPTATYWNA 7.1. Normalizacja lokalna Zwykłe konwolucje działają w jednakowy sposób na całym obrazie. Plugin Local Normalization przeprowadza filtrowanie Gaussa w zależności

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo