Sieć Hopfielda. Zdefiniowana w roku 1982, wprowadziła sprzężenie zwrotne do struktur sieci. Cechy charakterystyczne:
|
|
- Angelika Murawska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Sc Hopflda... Sć Hopflda Zdfnoana roku 98, proadzła sprzężn zrotn do struktur sc. Cch charaktrstczn: brak dnokrunkogo przpłu sgnału n oż różnć arst śco, śco, pośrdn k W,,W,...Wn,_ W,,W,..Wn, W,,W,k...Wn,k x x xk Jdnoarsto, dnoaro odl sc. W sc t nuron aą nlno charaktrstk : a nlnoość ϕ gdz: * + x ξ ϕ dana st prostą bnarną funkcą: + > <
2 Sc Hopflda... spółcznnk ago łącząc śc - tgo nuronu z śc - tgo nuronu n zalżą od, prz cz okrśla chlę czasoą procs dnaczngo pobudzna sc, któr sę ona obcn znadu. suoan sgnałó ścoch z poszczgólnch nuronó zorz dfnuąc łączn pobudzn odba sę po szstkch lntach sc, a zat sc przdzan są połączna z arst ścoch do arst czśnszch - czl sprzężna zrotn. Sć o tak schac połączń nazać będz scą autoasocacną. Procs scach Hopflda Z zględu na spcfczną archtkturę sc ożl sta sę gnroan przbgó dnacznch na skutk tgo, ż pn onc sgnał śco staą sę autoatczn artośca śco +. Ralzoan st ęc nlno ktoro odzoroan : Y + Ξ X, Y prz założnu ż x szstkch szstkch > zalżność upraszcza sę do : Y + Ξ Y Koln artośc Y, Y,..., Y -, Y obsru przstrzn stanu γ R k do któr nalżą szstk ktor sgnałó ścoch Y. Możl ęc st poan sę osclac, przbgó rozbżnch, a nat poan sę chaosu. W 983 Cohn Grossbrg kazal, ż sć gnru stabln rozązana, śl unożl sę autoasocacność podnczch nuronó : oraz zapn sę strę sc:
3 Sc Hopflda... 3 Stan rónoag sc Hopflda Stan rónoag sc ożna potraktoać ako probl boru stanu o naln,,nrg sc. Dfnu sę ęc funkcę nrg funkcę Lapunoa o następuąc postac: E x + ξ ξ ξ ξ Zana δe zachodząca na skutk zan stanu sc spoodoan zaną sgnału ścogo - tgo nuronu nos: δ E [ + x ] δ albo: δ E [ ] δ Prz, ż kroku pobudzn nuronu przkracza próg. Wóczas na ścu poaa sę sgnał, zat cznnk δ us bć dodatn lub zro. Rónoczśn z zględu na: > cznnk naas kadrato us bć dodatn, a ęc zana nrg oż bć dn una lub zroa. Analogczn : <, zana nrg st rónż una lub zroa, natoast prz nrga n zna sę. Poższ rozuoan potrdza, ż sć dąż do osągnęca nu, następn do zahaoana zan osągnęca stanu stablngo.
4 Sc Hopflda... 4 Paęć autoasocacna Paęć autoasocacna paęć skoarznoa nazana czasa CAM od Contnt Adrssabl Mor. Sć ponna zapaętać szrg zorcó D, a po poanu sę ktora X podobngo do dngo z zapaętanch zorcó sć ponna odtorzć zapaętan ktor D podobn do ktora X. Algort uczna - toda Hbba : gdz: st -tą składoą ktora D. M Macrz W połączń poędz lnta sc a postać: W M D T D Dzałan sc polga na dnorazo podanu sgnałó ścoch X oczkanu na okrślon stan stabln odpodz zorca D skoarzongo z sgnał śco. Poność tak utorzon sc szacu sę na około.5n, gdz N st lczbą nuronó sc. Sgnał śco prz paęcach skoarznoch traktu sę ako cągł z przdzału doknętgo <-,> [-,].
5 Sc Hopflda... 5 Nlnoa funkca aktac ϕ oż bć przdstaona postac: funkc lno ϕ k, gdz k st zadan spółcznnk, funkc skoku dnostkogo > ϕ, funkc sgnu < > ϕ, zodfkoan funkc sgnu > ϕ, funkc prcptronoa > ϕ, funkc sgodaln xp β ϕ +, gdz β st zadan paratr. Pożądan st duż β, którgo funkca przpona funkcę progoą przkład β : funkc tangnsodaln xp xp tgh α α α ϕ +, gdz: α st zadan paratr, a tgh st funkcą tangns hprbolczn.
6 Sc Hopflda... 6 Maszn Bolzanna Koncpca aszn Bolzanna oparta st na założnu, ż stan każdgo nuronu sgnału ścogo oż znać sę sposób loso z okrślon pradopodobńst zalżn od nrg tpratur. p E, T W odnsnu do sstu nforatczngo zór poższ przu postać: p /[ + xp δe E kt / T gdz: E - st nadżką nrg łączngo pobudzna ponad próg pobudzna każdgo kroku δ - pna arbtraln dobrana stała T - suloana tpratura sc kroku -tgo ] Algort doproadzana sc do rónoag:. Dla ustalongo T lczan są szstk artośc p, a następn losoo z pradopodobńst p ustaan są artośc sgnałó ścoch. Konkrtn każdgo kroku każdgo nuronu losoana st z konkrtn rozkład pradopodobństa artość przpadkoa ξ [, ], a następn ustala sę artość zgodn z rgułą: ξ p przcn padku. Obnża sę stopnoo artość T kolnch krokach np. dług rguł: + T T ε albo + T T ε potarza sę aż do osągnęca stanu rónoag.
7 Sc Hopflda... 7 Uogólnon algort Hntona Snoskgo k zbór ucząc U { < X k, Z >, k,, N} X-ktor nktórch sgnałó ścoch Z-ktor okrślaąc oczkan sgnał śco nktórch lntó sc A. Oblczan,, zązanch pradopodobńst.. Wusza sę nkaąc z cągu uczącgo artośc ść X k ść Z k różnonch nuronó ścoch ścoch.. Pozala sę sc dość do stanu rónoag 3. Rstru sę sgnał śco k szstkch lntó sc 4. Potarza sę poższ punkt szstkch lntó cągu uczącgo x zbraąc statstkę, dzęk któr po zakończnu pokazó szstkch lntó cągu uczącgo ożl st oblczn pradopodobństa P + tgo ż sgnał nuronó o nurach oraz aą rónoczśn artość B. Oblczan,,n zązanch pradopodobńst.. Wusza sę przpadko artośc sgnałó ścoch szstkch lntó sc. Pozala sę dość sc do stanu rónoag 3. Rstru sę sgnał śco k szstkch lntó sc 4. Potarza sę poprzdn punkt lokrotn, zbraąc statstkę, dzęk któr po zakończnu pokazó szstkch lntó cągu uczącgo ożl st oblczn pradopodobństa P - tgo, ż sgnał śco nuronó o nurach oraz aą rónoczśn artość C. Na podsta P + oraz P - korgu sę artośc spółcznnkó agoch oraz łączącch nuron o nurach oraz. Wartośc t są zększan o artość δ lczoną z zoru : δ η[ P + P] Wartośc odpodnch spółcznnkó daą sę znalźć uż po klku tracach.
8 Sc Hopflda... 8 Rozązan problu kooażra Probl polga na ustalnu optaln tras obazdu n ast przz ędrongo sprzdacę, któr chc oddzć szstk asta przbć nakrótszą drogę. Czas rozązana tgo problu rośn kładnczo prz zrośc lczb ast n ożl st utorzn D n!/n rozróżnalnch tras. n6 to D * 78 Prz zastosoanu do oblczń sc nurono klucz st odpodna rprzntaca danch ścoch. Jdno z ożlch ożlośc zakłada, ż: - każd asto rprzntoan st przz dn rsz zaraąc n nuronó, - - każd rszu dokładn dn nuron ponn przoać artość, - - pozca na któr nuron przu artość okrśla dnoznaczn nr asta kolność, któr a bć ono oddzon. Łączna lczba nuronó nos n.
9 Sc Hopflda... 9 Funkcę nrg opsuą cztr składnk: E A x x x E B x z x x z E C Znaczn poszczgólnch składnkó: 3 [ x n] x D E 4 d xz x z, + + z, x z x E - a zroą artość td tlko td śl każd rszu st naż dna dnka, E - artość zroa td tlko td, gd kolun oznaczaąc konkrtn tap podróż będz naż dna dnka, E 3 - zro, gd acrz st dokładn n dnk, E 4 - długość bran drog. Wbran arbtraln spółcznnk A,B,C,D są zględn aga poszczgólnch składnkó. Przkłado artośc tch spółcznnkó są pakc NuralWorks Profssonal II/PLUS fr NuralWar następuąc: A B D C dobran st zalżnośc od rlac poędz paratr n użan zorz składnka E 3, a rzczstą lczbą ast n* C 3/4*n - n*
10 Sc Hopflda... W rozażan pakc odluąc sć nuronoą spółcznnk ago okrślaąc paratr połączń poędz -t nuron z x-t arst, a - t nuron z - t arst rażaą sę zor: x, z Aδ xz xz xz + + δ δ Bδ δ C Dδ δ,, gdz: δ oznacza funkcę Kronckra δ przcn padku Paratra dodatko są raz oln prog pobudzna dntczn szstkch lntó: xz Cn Głóną zaltą zastosoana sc nurono do rozązana problu TSP st to, ż zrost rozaru problu n n poodu dłużna czasu oblczń, a dn pocąga za sobą rozbudoę sc.
Wyróżnić należy następujące sieci rekurencyjne: sieć Hopfielda, jej uogólnienie sieć BAM, sieć Hamminga oraz sieci rezonansowe.
1. Seć Hopfelda 1.1 Sec ze sprzężene zrotn Sec ze sprzężene zrotn torzą odrębną grupę sec neuronoch, stępuącą róneż pod nazą sec rekurencnch bądź asocacnch. Zaknęce pętl sprzężena zrotnego poodue, ż seć
Ś ć Ó Ś Ó Ą Ł Ą Ź Ź Ó ć ć Ó Ź Ą Ą Ś Ą Ł Ó Ł Ń Ź Ź ź Ź ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ć Ą Ź ź ć ć ć ź Ą Ź Ą Ó Ó Ą Ń Ź ć ź ć ć ć Ą ź Ó ć Ą Ą ć ć ź Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ł Ź Ź ć ć ź ź ć ć ć ć ć ć Ó
ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH
ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor
Ó ć ć Ł ć ć Ó ć ć ć ć ć Ć ć ź ć ć ć ź ć ć Ó Ó ć Ó Ó Ą Ó Ź Ó Ł Ó Ó Ó Ź Ó Ó ć Ć ć Ó Ł ć ć ć Ć ć ć Ó Ó ć ć Ó Ć ć ć Ą ć Ó Ć Ó ć ć Ć Ć Ó Ź ć Ó Ą ć ć ć ź ć Ś ć ź Ć ć ć Ć Ź ĄĄ Ą Ó Ć ć Ć Ć Ć ć Ć Ć Ć Ą ĄĄ ź Ą Ś
ź Ł Ą ź ż ź ż ż ć ż ć ź ć Ą ć Ź ć Ą ż Ś Ą ż ź ń ź Ź ż Ą ż ć ć ż ń ż Ś ż ż ż ć ń ż ż Ź ń Ś ć ć ź Ą ż ć ń ż ż ż Ź ń ć Ę ż ż ń Ź ż ż ć ż ć ć ż ń Ś ć Ć ć ń ć ć ż ć ń ż Ś ż Ó ń Ś Ś Óż Ą Ą Ą ń ż Ń Ń Ł ż Ś Ą
1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy
.7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Ą ń Ź Ą ń ń Ą ń Ą ń Ć ń Ń Ą ń ń ńń ń ń ń ń Ś ń Ó ń ń ń Ć ń ń Ś ń ń Ś ń ń ń ń Ą ń Ą ń Ć ń ń Ó ń Ń Ł Ą Ą ń ń ń Ż ń Ą ń Ą Ą ń ńń Ł Ś ń ń ń ń ń ń ń ń Ś Ś Ż ń Ś ń ń ń Ż ń Ń Ś Ś Ś ń ń ń Ó Ą ń ń ń ń Ś Ó Ó Ó ń
f (3) jesli 01 f (4) Rys. 1. Model neuronu
Wstęp tortyczny. Modl sztuczngo nuronu Podobn jak w przypadku nuronowych sc bologcznych, podstawowym lmntam z których buduj sę sztuczn sc nuronow są sztuczn nurony. Sztuczny nuron jst lmntm, którgo własnośc
ń ż ń ń ź ć ż ń ż ń ć ć ń ć ń ć ć Ź ń ć Ź ć ń ń ć ż ń ż ćź Ę ż ń ń ć ć ć ż ż ń ń Ę ć ć ń ż Ś Ś Ó Ź ń Ó ź Ś Ź Ę ż ń ż ź Ś ż ż ń ć ń ż ż ń Ż Ń Ź ż ż ć ć ż ć ń ż ż ń ń ń ć ń ż ć ź ć ń Ś Ę Ę ż Ę ń Ź ń Ó ż
Pienińskich Portali Turystycznych
Ofrta Pńskch Portal Turstczch b s z tu P w z c r st la m uj m C S ku z c t r k www.p.com www.szczawca.com www.czorszt.com facbook.com/p c a h Krótko o Pńskch Portalach Turstczch Pńsk Portal Turstcz został
2. Architektury sztucznych sieci neuronowych
- 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak
Sieci neuronowe - uczenie
Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra
1. Wprowadzenie, sieć naśladująca psa Pawłowa
. Wroadzee, seć aśladuąca sa ałoa Cz oża zbudoać seć eurooą aśladuącą SA AWŁOWA? Trudo udzelć a to tae atchastoe odoedz zakładaąc, że korzstalbś tlko łącze z sec edokerukoch. okuś sę ęc a róbę zaroektoaa
Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak
Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
1 ZASADA DZIAŁANIA SCHEMAT FUNKCJONALNY PARAMETRY...7
Automatka_AWSCz_UTXvL 15.01.10 Automatka AWSCz. Spis trśi 1 ZASADA DZIAŁANIA...2 2 SCHEMAT FUNKCJONALNY...6 3 PARAMETRY...7 Zabzpizni : ZSN 5/L+ od: v. 1.2 ZSN 5E-Lv2 od: v. 2.0 UTX vl, vp od: v. 3.8 C
śą ś ć Ą Ó ó Ę ń ó
ć Ł Ś Ó ó ś ą ś Ł ń Ą Ę ń śą ś ć Ą Ó ó Ę ń ó Ę ń Źą ń ó Ą ś ś ń Ń ó ń ń ń ń ę ś Ę ń ń ś ą ą ą ę śó ń Ó Ś ę Ź ę ść ń ó ę Ę ń ó ą ó ą ą ą ę ą ó ń ń ę ć ń ó ó ń ą ń ę ó ś ą ś Ł ą ń ą ń Źą ń ę ś ń Ź ó ę ń
Podstawy teorii falek (Wavelets)
Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc
Schematy zastępcze tranzystorów
haty zastępz tanzystoów kst tn pztawa kótko zasady spoządzana odl zastępzyh dla tanzystoów bpolanyh oaz unpolanyh Nalży paętać, ż są to odl ałosynałow, a wę słuszn tylko wyłązn pzy założnu, ż dany lnt
Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.
MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko
Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter
Scntfc ournal Martm Unvrt of Szczcn Zzt Naukow Akadma Morka w Szczcn 8, 13(85) pp. 5 9 8, 13(85). 5 9 ozcjonowan bazując na wlonorowm fltrz Kalmana otonng bad on th mult-nor Kalman fltr otr Borkowk, anuz
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
ć ć Ą Ą Ę ć ń ć Ę ć ć Ę Ń Ą ćń ć ć Ą ź ń ć ć ć ć ć Ę ń ńć ć ć Ń ń ć ć ć ć ć ć ć ń ć ź ń ć ć ć ć ć ć ć ć ń ń ń ń ć Ę Ń ÓŁ ź ń ń ź ń Ś ć Ą Ę Ą ń Ń ń Ń Ń ź Ę ć Ń Ą Ą ŚĆ ń ź ń Ą ć ń ć Ą ń Ę ń ń ć ń Ą ź ć Ę
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Wykład 6. Klasyczny model regresji liniowej
Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,
Ą ć ć ć ć ć ź
Ą ź ź ź ć ć ć ć ć ć Ą ć ć Ą ć ć ć ć ć ź Ż Ą ć ź Ź Ż ź Ą Ą ć ź ź ź ź Ż Ń Ź Ś ź ź Ź Ź Ź Ą ć Ź Ż ć Ś ź Ą Ń Ś ć Ć Ś ć Ż ź Ż Ą Ż Ą ć ź Ź ź ź ź Ą Ś Ś Ś Ś Ą Ś Ź Ś ź ć ć Ż Ź ć Ż Ś Ś ć ć ć Ś Ż ć ć Ś Ą ć ć Ą Ś
5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź
ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó
Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś
Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą
Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż
Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź
Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź
Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć
Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć
Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś
ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć
Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć
Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę
ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Odtworzenie wywodu metodą wstępującą (bottom up)
Przeglądane wejśca od lewej strony do prawej L (k) Odtwarzane wywodu prawostronnego Wystarcza znajomosc "k" następnych symbol łańcucha wejścowego hstor dotychczasowych redukcj, aby wyznaczyc jednoznaczne
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH
ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Moc wydzielana na rezystancji
Opracoał: mgr inż. Marcin Wieczorek.marie.net.pl Moc ydzielana na rezystancji moc oddaana na odcinku, przez który płynie prąd ipomiędzy końcami którego panuje napięcie, ynosi za pomocą praa Ohma =, = /
Automatyka ABK. Computers & Control Katowice Al. Porcelanowa ZASADA DZIAŁANIA SCHEMAT FUNKCJONALNY PARAMETRY...
Automatka ABK. 1. ZASADA DZIAŁANIA....2 2. SCHEMAT FUNKCJONALNY.... 9 3. PARAMETRY.... 10 Zabzpizni : ZSN 5Lv2 od: v. 1.2 Computrs & Control Katoi Al. Porlanoa 11 1 1. Zasada działania. Automatka ABK (automatka
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
Wpływ pola magnetycznego na plazmę w półprzewodnikach
Włw ola agntngo na laę w ółwodnkah Założna ol agntn B n włwa na olaaję dn atoowh at n alż od B ol agntn n włwa na olaaję, an na ęstoś własn odów fononowh Jdn włw ola agntngo na olaaję wnka jgo włwu na
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Rozkład prędkości cząsteczek.
Rozkład prędkośc czątczk. Jak było powdzan wczśnj n oŝy oczkwać, Ŝ wzytk czątczk gazu ają tę aą prędkość. a podtaw znajoośc cśnna gazu oŝy jdyn polczyć dną prędkość kwadratową, a ty ay dną nrgę czątczk
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +
REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.
ÓŁ Ą Ś Ą Ś ę ń Ń ę ę ą ó Ź Ł ó ą ę ę ó ó ą ę Ś Ą ŚÓ ą ą ę Ó ó ę Ł ę ą ą ą Ż ęś ą ń Łą ó ń ó ó ą ę ą Ż ę ę ę ę ó ę ę ę ę ę ę ó ę ą ę ć ę ą ó ź ę ę ó ó óź ę ę ń ą ę ó ó ń ą ę ó ę ą ę ó ó ó ó ó ę ę ę ę ę
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
q (s, z) = ( ) (λ T) ρc = q
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
ď ź ź Ä Ď É Ě Ź Ą Ü Á Ą Ń Đ ő ý ý ő ý Ú Ä Á Ą ô Ó Ó ŕ đ ý Á Ą Đ í ő É ä Ä Ä Ď ď ŕ Ń ř ý ő Ú Á Ĺ Ą Ď Ó í úł ő Ł Ä Á Ą Ď Ó ŕ Ď ý ý ő ý ĄÁ Á Ą Ď Ń ŕ Ü ä ý ő ý ý Đ ý ő Ú ď Ä Ą Ą É Ó Ł ő ý ő ý ý ŕ ŕ Á Ą Ń É
x y x y y 2 1-1
Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Ę Ą Ó Ż Ą Ą ĄĄĘ ż ż Ź ż Ż Ą Ś Ż ż Ż Ą ż ż Ś ż Ó ż Ś ż ż ĄĄ Ż ż ż Ź Ó ż ż Ż Ś Ż ż Ż Ż ż Ó ć Ó Ś ż Ś Ś Ż Ź ż ć Ść Ó Ó Ż ż ż Ż Ż ć Ś Ś Ó Ś Ż ź Ż ż Ź Ę Ż Ż Ó Ę Ż Ś ż ż ż ż ż ć ż Ó Ó ż ż ż Ś Ź ż Ś Ą Ó Ść Ż
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H
Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą
ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć
ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź
Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś