1. Wprowadzenie, sieć naśladująca psa Pawłowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Wprowadzenie, sieć naśladująca psa Pawłowa"

Transkrypt

1 . Wroadzee, seć aśladuąca sa ałoa Cz oża zbudoać seć eurooą aśladuącą SA AWŁOWA? Trudo udzelć a to tae atchastoe odoedz zakładaąc, że korzstalbś tlko łącze z sec edokerukoch. okuś sę ęc a róbę zaroektoaa czegoś a łasą rękę oarcu o oższą tabelę o ee dośadczee zązae ze sosobe dzałaa euroó tabela osue eą sekecę odruchó aszego sa. WEJŚCIE J,D WYJŚCIE. edzee,0 ślee. dzoek 0, brak reakc 0 3. edzee,0 ślee 4. edzee, dzoek, ślee 5. edzee,0 ślee 6. dzoek 0, ślee Seć rzedstaoa oże, choć e edokerukoa, e dosć, że dzała zgode z rzedstaoą uż tabelą, to a dodatko atut: est edą z arostszch kostrukc realzuącch rzedstao roble. Scheat te sec róż sę od dotchczas oóoch sec edokerukoch. Nasua sę ęc tae, cz est akś ożtek z zastosoaa srzężeń zrotch secach eurooch? oaąc oczśce oda a stęe rzkład, szak sa o rostu oża kuć... Odoedź a to tae est terdząca, Wczeruąc os różch sec rekurecch stao uż klaskę śród teor sec eurooch. Sec Hofelda oublkoae 98 roku skrzesł zateresoae seca euroo. edzee 0 ślee sę sa dzoek

2 . Dskreta seć Hofelda Dskrete sec Hofelda są rzkłade arostszch sec eurooch, którch zastosoao srzężea zrote. Wśca euroó ołączoe są z eśca te sae arst. Iforaca ścoa traktoaa est ęc ako sgał ośred, aż do oetu sełea eego krteru stou. Wóczas artośc ść euroó staoą odoedź sec a erot sgał eśco. Ze zględu a charakter zastosoań seć Hofelda często azaa est aęcą autoasocacą. Sec tego tu otrafą zaaętać eą lczbę zorcó odtorzć e, rzadku gd erot sgał eśco dale obraz eśco est ekolet. Z tego też oodu aczęstsz zastosoae sec tego tu est odszuae sgału eścoego.

3 3. Budoa dskrete sec Hofelda OGÓLNA CHARAKTERYSTYKA budoa rozar arst rzetarzaące edoarstoa, ze srzężee zrot; euro z dskretą fukcą aktac o zeroe artośc rogoe: t+ t rozar arst odoada rozaro obrazó, które aą bć aętae rzez seć. > 0 < 0 0 erot obraz eśco,, K, obraz śco chl t t,, K, t t e/ sgał dskret -,. uczee odczt zaaętae zorcoch obrazó każd z obrazó do zaaętaa korgue ag sec ede raz. Seć ozala a uczee kreetace. elokrote rzetarzae rzez arstę euroó, rz cz ako 0 traktue erot sgał eśco obraz, dla którego chce zaleźć abardze odob z tch które został rzez seć zaaętae. 0. Odczt uzae za zakończo, gd żade z euroó e zea artośc śca t+ t. 4. roces uczea sec Hofelda W rzeceńste do oóoch archtektur sec eurooch roces uczea sec Hofelda obeue edorazoą korektę ag dla każdego zorca, któr a bć radłoo rzez seć rozozaa. Ozacz zorce do zaaętaa ako,,..., ; a każd ze zorcó składa sę sgałó dskretch. rzez ozacz -tą agę -t euroe oblcza astęuąc sosób: W 0 t [ ] I

4 oże ako rzkład odao ee czterobto zorzec odoadaącą u acerz ag sec, które został zaaęta. Ne rzadke rzedstaoa acerz ag, est acerzą setrczą. Każda acerz ag oblczaa a odstae zoru est acerzą setrczą ze zględu a rzeeość ożea W roces odcztu sec Hofelda I t rzadku, odrote ż secach edokerukoch, obraze śco, e est zbór sgałó otrzach ku edokrotego rzetorzea sgałó eścoch 0 rzez arstę euroó. Ze zględu a srzężea zrote sgał uzskae a ścu arst rzetarzaące są tlko sgałe ośred,,..., k-, k Uzae zostaą ako obraz śco doero gd kolee uruchoee arts euroó e oodue żadch za a ścu arst rzetarzaące krteru stou defoae est ęc ako k- k. 5.. Stoeń odobeństa obrazó Obraz śco est obraze do którego abardze odob est erot zorzec eśco. Stoeń odobeństa określa est arą Haga: ρ, H Odległość Haga dóch obrazó ozacza lczbę btó a którch te da obraz sę różą. O erot obraze eśco sec odoadaąc u obraze śco oże oedzeć, że ze szstkch obrazó zaaętach rzez seć obraz śco est abardze odob do obrazu eścoego, co ozacza, ze odległość Haga obrazó eścoego ścoego est aesza. 3 ρ, H k ρ H, 4

5 5.. Uruchaae sec schrocze Zacz od uruchoea sec, które ag olczlś ukce. dla zorca, któr róż sę od zaaętaego a ede ozc. a Urucho seć zgode z asz dotchczaso dośadczee, tak ak sec edokerukoe. W ersz kroku z czterech euroó tlko drug ze artość sgału ścoego. Kolee uruchoea całe arst e ooduą za a ścu sec. Zbór sgałó ścoch traktue ęc ako obraz śco. Jest o detcz z obraze, któr ał bć zaaęta rocese uczea sec. Uruchoee sec te sosób aza sę schrocz, szstke euro arst każd kroku uaktualaą artość soego śca. Uruchoee schrocze dla obrazu eścoego różącego sę od zaaętaego sec zorca a ęce ż ede ozc estet e est zgode z asz oczekaa. b Ne dosć, że krteru stou gd e est sełoe, każde kolee uruchoea sec oodue akeś za sgałach ścoch euroó. Dodatkoo obraz ośrede torzą ckl eego obrazu ego egatu obrazó koleetarch. Obraz te, co gorsza e a żadego zązku z zaaęta rzez as obraze. ukt te ał a celu okazae ak e ależ uruchaać sec Hofelda. Charakter rac sec Hofelda, roces dochodzea od zorca eścoego orzez obraz ośrede do obrazu ścoego staoącego ede z obrazó zaaętach sec aga uruchaaa aschroczego.

6 5.3. Uruchaae sec aschrocze Uruchaae aschrocze sec ozacza, że ed kroku, aktualzue artość sego śca tlko ede, z reguł losoo bra euro.,3 c rzrz sę ęc klku rzkłado uruchoeo dla tego saego obrazu eścoego. Na rsukach, krok z uera oszczególch eleetach składoch obrazó ozaczaą, któr kroku odoed euro uaktualał artość sego śca.,3, 4 d ,3, 4 e Z otrzach kó, oże dostrzec, że oo faktu, że sec zaaętalś tlko ede zorzec..., obraze śco est albo ó zorzec, albo obraz staoąc ego egat, co sugeroałob, że sec zaaętalś są da zorce. Kosekecą charakteru zasu ag sec Hofelda est fakt, że seć zaaęta e tlko zorzec, któr chce zaaętać, ale także ego koleetar obraz egat zorca, oba obraz ooduą taką saą korektę ag. Wł a to, któr z zorcó otrza ako

7 obraz śco a sekeca boró, któr z euroó a uaktualć sta sego śca. 6. Zaaętae zorce a aętae zorce sec Hofelda tae ake oaa sę, gd sec aęta ęce ż ede zorzec est astęuące. Cz szstke zorce, które zaaętalś sec orzez odoedą korektę ag są aętae? Wzorzec est aęta raktcz sosób gd odoedz a obraz eśco detcz z o zorce, obraz śco est tak sa ak obraz śco. Ne a boe, żadego ego zorca z zaaętach, któr ogłb bć bardze odob, róż sę boe od obrazu eścoego u ed sgałe składo. Wzorce aętae rzez seć aza atraktora, sta któr zadue sę seć, gd a ścu est zorzec aęta, stae stabl. Zastosu te raktcz sosób do rzkładó rzedstaoch oże. Naer eź od uagę seć która a za zadae zaaętać zorce a,b,c. W odoedz a każd z trzech zorcó, ako obraz śco otrzue odoed zorzec. Każd z trzech zorcó est aęta. 0 a 0 3 Wa, b, c b c Wa, b, c, d d Weź teraz od uagę seć, która a zaaętać obraz a,b,c,d. Okazue sę, że zorce a,b są aętae. Ne został zaaętae zorce c,d. Wzorzec c, bez zględu a sekecę boró euroó uaktualaącch śce,rozozaa est ako egat zorca a. odobe atraktore zorca d est także obraz koleetar do zorca a. odsuouąc zorce a,b są stable, atoast c,d estable. Należ ęc zdaać sobe sraę z faktu, że zaaętae zorcó e ozacza edocześe, że zorce te będą aętae. Zalezee rzkładó, gd seć e aęta częśc zaaetach zorcó e stao robleu, starcz chocb ząć ch odoedą lość. W rzadku, gd rozar obrazó eścoch est ększ >, zaleźć oża take rzkład, że seć aęta zorce, które cale e został zaaętae.

8 otrzebue ęc ateatcze odórk, która ozol a teretoać sta ośrede, które oaaą sę ędz erot obraze eśco a ego atraktore. 7. Fukca eerg stau sec Hofelda Z każd ożl stae śca obraz eśco,obraz ośrede, obraz śco oże skoarzć fukcę, azaą ze zględu a se łasośc fukcą eergetczą. oeaż trakce odcztu uruchaaa aschroczego sec za artośc fukc są edodate ksążkach oża sotkać azę fukca Lauoa, zązku z traktoae sec ako układu daczego. E E W t 5 Stabl obraz aęta obraz, to tak obraz, któr so sąsedzte a alą artość eerg. rzez sąsedzto rozue te obraz, którch odległość Haga od stablego obrazu os ede. oże rzedstaoo graf z szstk ożl staa artośc eerg oblczoch edług zoru 5, obraz ołączoe są obraza, które różą sę artoścą a ede ozc. a zaaęta obraz b -3 0 W Aschrocz algort aktualzac ść euroó rocese odcztu zasze roadz do stau o ale eerg. W rzkładach rzedstaoch ukce.3 oża bło odeść rażee, że gd sekeca boró kolech euroó uaktualaącch artość śca, będze eszcze a ż te rzedstaoe otrza a ścu obraz. Obraz ośred ulege zae tlko ted, gd zae artośc śca toarzsz zaa artośc fukc eerg, a ższą. Na oższ rsuku rzedstaoo szstke

9 ożle rześca. Ne est ożle, ab obraze ośred bł obraz a cz b, z tego zględu, że e a żadego obrazu odległego o ede, którego artość eerg błab esza ż ede. Z grafu łato odcztać ake obraz są rzez seć aętae, zorzec, któr ał bć zaaęta ego obraz koleetar. 7. Wł asośc fukc eerg W ukce t okaże, że zae doole składoe obrazu ośredego zasze toarzsz zeszae sę artośc fukc eerg obrazu, co ozala oedzeć, że stabl obraza są te, które zaduą sę ach lokalch fukc eerg. oeaż oedńcz kroku zaa obrazu ośredego obeue co aże edą składoą obrazu, fukcę eerg 5 oże zasać rozdzelaąc suę a czk zależ ezależ od składoe, które odoadaąc euro kole kroku ze artość śca ze artość: E l Rozatrz teraz ł za artośc składoe obrazu ośredego u ozacza obudzee łącze -tego eurou: E E k + k + E k k u k + u Możle są trz rzadk dotczące za artośc śca -tego eurou: a E<0, stąd u >0, z czego ka u 0. Jeśl założ, że sgał k+, k -, k óczas ι >0, a co za t dze u >0 a odstae zoru 7. Dodate obudzee łącze oodue, że artość chl k+ zea sta z a. Jeśl założ, że sgał k+ -, k, óczas ι <0, a co za t dze u <0 a odstae zoru 7. Uee obudzee łącze oodue, że artość chl k+ zea sta z a -. b E>0, stąd u <0, z czego ka u 0. Jeśl założ, że sgał k+, k -, óczas ι <0, a co za t dze u <0 a odstae zoru 7. Uee obudzee łącze oodue, że artość chl k+ e zea stau. Aalogcze, e astą zaa artośc, gd k+ -, k. c E0, stąd u 0, gd u 0 e astą zaa stau ze zględu a defcę fukc aktac atrz.3. Gd u 0, óczas, k+ k, co ozacza zachoae orzedego stau. l l 7 6

10 Uzględaąc stee zeroe rzekate acerz ag, oża oedzeć, że fukca eerg, est fukcą loo zależą od składoe obrazu ośredego. Fukca ta e a ęc u. Jedak rz założeu, że sgał rzue ograczoe artośc ±, to fukca ta a soe u gd artość sgału os rz edoczese dodate artośc ochode stała ochoda oraz gd artość sgału os - rz edocześe uee artośc ochode rsuek oże. - E - E E E Moża ęc zdefoać krteru określaące, cz da sta est stabl: 8,,...,, 0 E 8 oeość aęc autoasocace tae, które ogło asuąć sę uż rzkładze z czterea zorca, gdze tlko ołoa została radłoo zaaętaa brz, le obrazó oża efekte zaaętać? oże rzedstaoo aalzę oeośc sec. Załóż, że sec zaaętao zorcó. Wóczas sodzea sę, że łącze obudzee -tego eurou stae stabl, gd obraze eśco est ede z zaaętach zorcó -t zorzec est róe zero, lub takego saego zaku, co -ta składoa zorca u Oczekue, ab zak u bł tak sa ak -ta składoa obrazu,,...,. Stąd a odstae 9 dać, że -ta składoa zachoue soą artość, gd zak su est zgod ze zake -te składoe, lub gd est zaku rzecego, ale artość su est esza od. Wroadzć oże araetr aza rzesłuche. 0 c

11 Gd artość rzesłuchu est esza od edk, -ta składoa obrazu est stabla. rz oszacoau te artośc, zakłada sę, że zorce są ezależ dskret ze loso, rzuąc artośc ± z radoodobeńste 0.5. Welu autoró rzeroadzło złożoe aalz oeośc sec. Krtczą zależość rzedstal 985 roku At, Gutfrud Soolsk, odaąc że <0,38. Dla ększch artośc, eelka lczba establch składoch roadz do za ozostałch składoch, daąc ku błęde odczt. Na uagę zasługuą zależośc oeośc sec od rozaru zorca, rz dodatko założeu, że szstke zorce aą bć aętae z radoodobeńste blsk edośc. McElece, oser, Rodech, Vekatesh 987 odal oszacoaa dla dla dużch artośc. odal róeż rozszerzo zór określaąc oeość aęc. Wzór określa lczbę ektoró zorcoch, do którch zbeże będą ektor eścoe zaduące sę odległośc e ększe ż ρ od ektoró zorcoch z radoodobeńste blsk edośc. < 4 l ρ < 4 l

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD: //4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol.

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol. Salae / 1 Salae Salae jet zybko rzebegającym roceem utleaa ołączoym z ydzelaem ę ceła. Salau z reguły toarzyzy emja śatła. Podtaoym eratkam alym alach ą ęgel odór. W ale moża yróżć część alą ealy balat.

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć

Bardziej szczegółowo

Budowa ścieżki spacerowo-dydaktycznej wokół jezior w Januszkowicach

Budowa ścieżki spacerowo-dydaktycznej wokół jezior w Januszkowicach Biuro Projektowe ECO-UNIT mgr inż. Marek Klyk ul. Cygana 4/213, 45-131 Opole tel. 77 442-81-18 fax. 77 442-81-19 kom. 606 101 958 NIP 754-242-14-40 REGON 532303190 http: www.eco-unit.pl e-mail: m.klyk@eco-unit.pl

Bardziej szczegółowo

Wyróżnić należy następujące sieci rekurencyjne: sieć Hopfielda, jej uogólnienie sieć BAM, sieć Hamminga oraz sieci rezonansowe.

Wyróżnić należy następujące sieci rekurencyjne: sieć Hopfielda, jej uogólnienie sieć BAM, sieć Hamminga oraz sieci rezonansowe. 1. Seć Hopfelda 1.1 Sec ze sprzężene zrotn Sec ze sprzężene zrotn torzą odrębną grupę sec neuronoch, stępuącą róneż pod nazą sec rekurencnch bądź asocacnch. Zaknęce pętl sprzężena zrotnego poodue, ż seć

Bardziej szczegółowo

Ę ę ę Łó-ź ----

Ę ę ę Łó-ź ---- -Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -

Bardziej szczegółowo

ź -- ć ł ź ł -ł ł --

ź -- ć ł ź ł -ł ł -- ------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą

Bardziej szczegółowo

Uwaga z alkoholem. Picie na świeżym powietrzu jest zabronione, poza licencjonowanymi ogródkami, a mandat można dostać nawet za niewinne piwko.

Uwaga z alkoholem. Picie na świeżym powietrzu jest zabronione, poza licencjonowanymi ogródkami, a mandat można dostać nawet za niewinne piwko. B : U U F F U 01 Ę ś ę 3 ż łć ę ę ź ł, Ż 64 ó ł ł óżó, j, j U 02 Ą ś U ł 1925, 1973 łś ą ż ęą fć j j ą j ł 9 ( ) ó 15 F 03 j ąó j j, ę j ż 15 ł, ó f Bść ł łj ł, 1223 j 15 B Ą ć ę j- j ść, j ż ą, ż, ją

Bardziej szczegółowo

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Ł Ł Ą Ą Ą Ą Ą Ą Ś Ą Ń

Ł Ł Ą Ą Ą Ą Ą Ą Ś Ą Ń Ó Ą Ę ń Ł Ł Ą Ą Ą Ą Ą Ą Ś Ą Ń Ł Ł Ó ż Ę ć ż ń Ł ż Ó ć ń ń ń ń Ł Ą Ł Ą ż ż ń ń Ł Ą Ę Ł ż ż ĄĄ ń Ł Ź ń Ę ń ż ń Ń ć ć ż ć ż Ó ż ż Ą ż Ę ż Ó ń ż ż Ś Ę Ę ń ń ń Ł ź ż Ó ż ŚÓ ż ź ć ń Ą Ą Ą ż Ę Ł Ń ń Ą Ę Ę ź ż

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż

ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó

Bardziej szczegółowo

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć

Bardziej szczegółowo

ŁĄ ę ł

ŁĄ ę ł ŁĄ ę ł ł ń ł ł ł ł ł ó ą Ń ł ń ł ł ł ż Ł ń ąó ż ąó ó ą ę ó ąę ą ł ą ę ń ł ś ół ż ł ł ł ą ń ś ół ń ł ł ę ł ó ł Ćć ć Ą ż ł ć ć ć ł ł ż ó ąę ó ó ą ś ó ół ż ą ń ł ó ą ę ą ó ę ś ś ó ą ę ą ą ęś ć ś ę ą ę ł ę

Bardziej szczegółowo

Ż Ę ć Ć ć ć Ą

Ż Ę ć Ć ć ć Ą Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż

Bardziej szczegółowo

Dokument pochodzi z cyfrowego archiwum PTN, Odział we Wrocławiu. Wszelkie prawa zastrzeżone - wykorzystanie bez zgody Właściciela zabronione.

Dokument pochodzi z cyfrowego archiwum PTN, Odział we Wrocławiu. Wszelkie prawa zastrzeżone - wykorzystanie bez zgody Właściciela zabronione. ń ń Dokument pochodzi z cyfrowego archiwum PTN, Odzia we Wrocawiu. Wszelkie prawa zastrzeone - wykorzystanie bez zgody Waściciela zabronione. ń Ą Ł Ś ń ń ó ń ńę Dokument pochodzi z cyfrowego archiwum PTN,

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Ł Ę Ę ź Ń Ą Ę Ó Ł Ą Ą Ś ć ć ć ć ź Ą Ę Ę Ę Ę ź Ę Ę Ą Ę ć ć ź Ą Ę ć Ł ź ć Ę ć ć Ę Ą ć Ń ć Ę Ś Ś ć Ę Ę Ę Ę Ń ź Ę Ę Ą ź ź ć Ż Ś ź Ń ź ź ź ź ć ź ć ź Ł Ś ć Ł Ę Ę ź Ń Ą Ę ź Ę Ł Ł Ł Ł Ł Ę ć Ń Ę Ń Ę Ł Ł Ł Ł Ł

Bardziej szczegółowo

- ---Ą

- ---Ą Ą ż ą ą ą Ą ó ą ł ą ł Ąą ż ś Ę ÓŁ Ę Ó ŁĄ ŁŚĆ ł ż ł ż ó ł Ó Ć Ą Ł ŁÓ ŁŚ Ą ż Ó ŁÓ Ę ś ś ł ż ł Ą ęś Ą ń ź ć ą ą ę ń ż ąń ę ę ć óź ŁĄ ą ł ę ę ł ę ń Ą Ęł ą Ł ł ł ż ó ą ł ęę ĘĘ ęć ó ą ń ł ą Ą ęś ł ś ÓŁ Ą ę ę

Bardziej szczegółowo

ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę

ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę ą Ś ą ą ą ż ź Ź ó ż ą ń Ś ź ć ą ą ć ź ć ó ó ą ó ż ą ń ą Ę ą ę ż ń ą ó ą ą ą ą ą ą ą ó ź ń ęż ć ą ę ą ą Ń ó ż Ęć ę ą ż ż ń ż Ó ą ż ń ń ą ą ó ą Ę ęż ęż ęź Ś ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń

Bardziej szczegółowo

Tablice wzorów Przygotował: Mateusz Szczygieł

Tablice wzorów Przygotował: Mateusz Szczygieł Tablce zoó Pzygotoał: Mateusz Szczygeł DKATORFIASOWY.COM.PL . Oczekaa stoa zotu - adoodobeństo zaśca daego zdazea ożla do zealzoaa stoa zotu. Waaca aaca stoy zotu oczekaa stoa zotu [ ] 3. Odchylee stadadoe

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

ĄĄ

ĄĄ Ń Ę Ą Ą ĄĄ Ś ĘĘ Ę Ę Ę Ś Ń Ń Ę Ę Ę Ń Ę Ą ź Ę Ś Ą ź ź Ę Ę Ń Ę Ę ź ź ź Ę Ń Ę Ą Ę ź ź Ń Ó Ó Ś Ę Ń Ń ź Ę Ą Ł ź Ą ź Ą Ę ź Ń Ą ź ź ź Ń ź ź ź ź Ą ź Ą Ę Ą ź Ą Ą Ś ź Ą Ę Ę Ę Ę Ę Ę ź Ń Ń ź Ę ź Ę Ń Ł Ł Ń Ś ź Ń Ń Ę

Bardziej szczegółowo

Ł ć ć ż ć Ś Ś Ł Ś Ł Ł Ź

Ł ć ć ż ć Ś Ś Ł Ś Ł Ł Ź Ł Ś ĘĄ Ś Ł ż Ą ż ń ć ż ć Ś Ł Ł Ź Ł ć ć ż ć Ś Ś Ł Ś Ł Ł Ź Ł ż ć ż ć ń Ł ć Ó ć ć ć ż ć ć ć ć ć ż ć ż Ó ć ź ć Ś Ł Ł Ź Ś ć ć Ą ć Ó ż ć ż ż ć ć ż ć ń ż Ł ć ń ć ć ć ż ć ć Ś Ł Ł ż Ł ć Ę ż ć Ł ż Ń Ó ż ż ć ż ć

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

UOGÓLNIONA KRAŃCOWA STOPA SUBSTYTUCJI - ZASTOSOWANIE W ANALIZIE PORTFELOWEJ

UOGÓLNIONA KRAŃCOWA STOPA SUBSTYTUCJI - ZASTOSOWANIE W ANALIZIE PORTFELOWEJ Małgorzata Just Krzsztof Paseck UOGÓLNIONA KRAŃCOWA SOPA SUBSYUCJI - ZASOSOWANIE W ANALIZIE PORFELOWEJ. Wstęp Zakładam, że a k peego procesu gospodarczego ma pł skończoa lczba różch czkó kształtuącch te

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Ę Ę ŁĘ Ł Ł Ó Ż

Ę Ę ŁĘ Ł Ł Ó Ż ĄŁ Ł Ę Ę ŁĘ Ł Ł Ó Ż Ą Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó ć Ę Ą Ę Ą Ę Ó Ó Ó Ż Ó Ę Ż Ż Ż Ó Ó Ó Ó Ó Ż Ż Ż Ó Ź Ó Ó ć Ż ć Ż ć Ą ć Ó Ó Ż Ź Ź ź ź ź ź Ą ź Ż Ź Ó Ź ź ć ź ć ź Ź Ż Ó ć ć Ó Ó Ż Ź Ó Ó Ż Ć Ź Ó Ż Ż Ż Ż Ż Ę Ł Ż Ą Ć Ó

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo

Ę ć ń ć ć ń ć Ź Ś ń ń ń ń ń ń Ł Ż Ł Ę Ó ń Ż

Ę ć ń ć ć ń ć Ź Ś ń ń ń ń ń ń Ł Ż Ł Ę Ó ń Ż Ę Ż Ł Ó Ż Ż Ż Ó ń ć Ó ń ć Ó Ę Ń ć ń ć Ż Ż ĘŻ Ł Ó ć ń Ż ć Ł Ó Ż ć ń Ę ć ń ć ć ń ć Ź Ś ń ń ń ń ń ń Ł Ż Ł Ę Ó ń Ż ń ń ń ć Ż ć ń ń Ż Ż ć Ę ć ć Ż Ż Ż ć ń ń ń ź ź Ł Ś ć Ł Ó Ę Ż ć ń ń Ż Ż Ż ń ć Ź Ź ć ń Ż ń Ę

Bardziej szczegółowo

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść

Bardziej szczegółowo

ź Ś ć ć

ź Ś ć ć Ł Ą Ś Ź ź ź Ź Ś ź Ś Ś ź Ą ź Ś ć ć ć Ść Ą Ą ć Ą ń ń ć ć Ś ć ć Ą ń ń ć Ą ń Ą ń Ć ć Ś ć Ź Ś Ą ź ź ć ź Ł ń Ł ź ź Ź ń Ą Ć Ó ć Ź ć ń ń Ń ń ź ń ć ń ń ć Ń Ń Ą Ł Ą Ś ć Ł ć Ś Ś Ą Ą Ą Ś ź Ś Ś ź ź Ś ń Ą Ą ć ń ń ń

Bardziej szczegółowo

Zawód: stolarz meblowy I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z ak res wi ad omoś c i i u mi ej ę tn oś c i wł aś c i wyc h d

Zawód: stolarz meblowy I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z ak res wi ad omoś c i i u mi ej ę tn oś c i wł aś c i wyc h d 4 6 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu S T O L A R Z M E B L O W Y Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji

Bardziej szczegółowo

Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó

Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó Ą Ł ć Ę Ę Ł Ź Ł ż ż ż ż Ó Ł Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó ż Ż Ó Ż Ś ć ć ż Ś Ż Ó Ż Ó ż ż Ż ż ż Ż Ż Ą ć Ż Ó ż Ż Ż ż ż Ż Ó ż Ż Ś Ć ż Ł Ę Ę Ź ć Ó ć Ś Ż ż ż Ę ż ż Ę Ż Ś ż Ś Ż ż Ś Ż Ż ż ż Ż Ż Ż Ż ż Ś Ż Ż ż Ż ż ż Ź Ż

Bardziej szczegółowo

Ó Ś

Ó Ś Ł ć ć Ż Ó Ś Ł Ż Ż ć Ż ć Ż Ż Ą Ż ć Ż ć ć Ż ć ć Ł Ź Ź ć Ż Ż Ż Ż Ż Ż Ż Ż Ź Ł Ł Ż ć Ą ć ć Ź Ż Ź Ż Ś Ł Ą Ą Ą Ł Ą Ś ć Ł Ż Ż ć Ż ć Ń Ś Ż ć ź ć Ą Ł ź Ż ć ź Ł ć Ż ć ć ć Ą Ś Ł Ń Ć Ł ŚĆ Ś Ó Ż Ą ź Ą Ą Ą ź Ś Ś Ł Ź

Bardziej szczegółowo

ń ń ń

ń ń ń Ą ź ć ń ń Ą ń ń ń Ą Ó ń Ą ć Ą Ń Ą ć ć ć ń ń Ą ć Ą ć ć ń ń ń ń ź ć ź Ą ć ć ć Ę ń Ó ń ń Ę Ą ć ń ń Ń ń ń Ń ć ć ń ź Ę ń ź ń ź ć ć ź ć ń ń ć ć ć ń ć ć ć ć ć Ę ć ć ź ć ź ń ć ć ń Ą ń ć ź ć Ą ź ć ń ć ź Ó Ś ć ń

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Ł Ł ŹŁ Ó Ź Ł Ł Ó Ł Ł Ń Ż

Ł Ł ŹŁ Ó Ź Ł Ł Ó Ł Ł Ń Ż Ł ć Ł Ó Ó Ó ć Ó Ś Ó Ł Ł ŹŁ Ó Ź Ł Ł Ó Ł Ł Ń Ż Ż ŹŁ Ł Ź Ł Ń Ż ŹŁ ŻŁ Ź Ń Ł Ł Ł Ż Ł ć ć ć Ź ć ć ć Ł Ź Ł ć Ź Ź ć ź ć Ź ć ć ć Ż ć ć ć ć ć ć Ź ć Ó Ł Ó Ń ź ć Ź ć Ż ć ćż ć Ó Ł Ł ć ć ć ć ć ć ź Ź ć ć Ś Ć Ł Ó Ł ć

Bardziej szczegółowo

teorii optymalizacji

teorii optymalizacji Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka

Bardziej szczegółowo

ó ó ć Ż Ł Ą Ż ó ż ć Ż ó Ą ó ó Ą ć ó ó Ł Ł ó ć ó ż ć ż Śó ó ó ó ć ó ż ć Ą ż ĘĄ ó Ś Ż óź Ż ć ó Ż Ż Ż ć ń Ą ó Ą ż ó Ż ó Ł ó ó Ż ó ó ó ź Ś ó Ą ć Ś ó ó ż ó ż Ł ńę ó ń ó ń ż ć ó Ż Ż ż ć Ż ć ć ć ż ó ń óź ó ć

Bardziej szczegółowo

Ź Ź Ó Ł Ś Ź Ń Ż Ę Ę ź Ę Ź ĘĄ ż ź Ę Ź Ż ź Ź Ł ź Ę Ż ż Ż Ą ź ż Ż Ż ż Ź ż ć ć ć Ż ż ż Ź ż ż Ź Ź Ż ć ć Ą Ż ć Ż Ń Ó ż ć ż Ż ż Ż Ź Ż ż ż Ę ż Ź Ź Ź Ź Ź ĄĄ ź Ż Ź Ź Ź Ż Ź Ź ź Ż Ź ź ź ź Ś Ź Ę ĘĄ ż Ż Ę ż ć Ś ĄĄ Ę

Bardziej szczegółowo

m) (2.2) p) (2.3) r) (2.4)

m) (2.2) p) (2.3) r) (2.4) Ekooetra dr ż. Zbgew Tarapata Wkład r : Postace zadań prograowaa lowego grafcza etoda rozwązwaa zadań PL POSTACIE ZADAŃ PROGRAMOWANIA LINIOWEGO Zadae decze w któr wszstke relace są lowe oraz wszstke zee

Bardziej szczegółowo

(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe

(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe . Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R

Bardziej szczegółowo

ń ń ż ń ń ę ó ó ń Ćż ń ń ę ę ę ę Ż Ć ę

ń ń ż ń ń ę ó ó ń Ćż ń ń ę ę ę ę Ż Ć ę ó ż ż ó ż ć Ę ó ż ó ó ó ó ń ę ę ż ń ó Ę ó ż ęż ę ń ę Ę ż Ę ę Ż ń ę ęż ę ę ę ń Ć ń ń ń ń ń ń ż ń ń ę ó ó ń Ćż ń ń ę ę ę ę Ż Ć ę ę ó ę ó ó Ć ę ę Ż ę ó ż ę ę ó ę ń ń ę ó Ż Ć ę Ł Ć ę Ć ż ę ó ę ż ę ę Ę ęć Ź

Bardziej szczegółowo

Modele rozmyte 1. Model Mamdaniego

Modele rozmyte 1. Model Mamdaniego Modele rozmte Cel torzena noch model: dążene do uzskana coraz ększej dokładnośc, maroośc lub uproszczena struktur. Model Mamdanego Np.: -^ + R: JEŻELI jest to jest B R: JEŻELI jest to jest B R: JEŻELI

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.

Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa. Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger

Bardziej szczegółowo

Dynamika układu punktów materialnych

Dynamika układu punktów materialnych Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł

Bardziej szczegółowo

Ż ś ś ś ń Ż ś

Ż ś ś ś ń Ż ś Ł ÓŁ ń ś Ś ń ń ń ś ń Ż ś ś ś ń Ż ś ś Ś ń Ż ść ń ś Ę ń ś ś ś ś ś ś Ż ń ś Ź ś ść ś ś ś ś ń ś ść Ż ś ś ś ś Ą Ś ń ś ś ń ś ś Ż Ż ś ć ś ś ś ś Ż Ż Ż ść ń ś ś ć ś ś ś ś Ż ść Ł Ż ś Ź ś ś Ę ś Ż ć Ż Ż ć ć ń Ż ć ć

Bardziej szczegółowo

Ż ą Ę

Ż ą Ę ----- -- ---- ------ ------- Ż---- -------- --- ---- -- -------- -------- ------------ --ą------ - ---------- --- ----------- -----Ę-- - ------- ------------ --- ------- -- ------ -------- ---------- --------

Bardziej szczegółowo

Ę Ę Ę Ś Ł Ł Ł Ś

Ę Ę Ę Ś Ł Ł Ł Ś Ł Ł Ś Ś Ś Ę ĘĄ Ę Ę Ę Ś Ł Ł Ł Ś Ł Ł Ł Ś Ś Ł Ś Ę ź Ź Ż Ę Ś ć Ł Ę Ł Ś Ł Ł ź Ś Ś Ń Ł Ś Ą Ś Ł Ł Ż ć ć Ż Ś Ś Ł Ś Ś Ż Ż Ż Ż Ł Ż Ś ć ć Ż Ż Ż Ż ć Ś Ż ć Ż Ż Ł Ą Ł Ń ź Ń Ń Ę Ń Ą Ń Ż Ż Ó Ż Ż ź ź Ź Ż Ż Ż Ś Ś Ż Ż ź

Bardziej szczegółowo

i i i = (ii) TAK sprawdzamy (i) (i) NIE

i i i = (ii) TAK sprawdzamy (i) (i) NIE Egzam uaruszy z aźdzera 009 r. Maemaya Fasowa Zadae ( ) a a& a ( Da) a&& ( Ia) a a&& D I a a&& a a ( ) && ( ) 0 a a a 0 ( ) a 4 0 ( ) a () K srawdzamy () ( ) a& a ( ) a ( ) a&& a&& ( ) a&& ( ) a&& () NIE

Bardziej szczegółowo

Ź Ę ą ć Ź Ź Ń ą ą Ź ą ę ę Ę Ń Ć ą Ę Ę ą Ć Ń ę Ń ę ę ą Ś ę ę ę Ę ę ą Ś Ę ę ą Ś ą Ź ą ę ą ę ą Ź Ś ę ą ą ę ę ęź ęź Ś Ę Ś Ć ą Ź Ś Ś ę ę Ź ę ą ą Ź ę Ź ą ą ą ą ę ę ę Ź ę Ź Ę ę Ś ź Ś Ę Ć ę Ź Ź ą Ń Ś ąą Ś Ź Ę

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować

Bardziej szczegółowo

Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Ę Ł ź ź ć ź ć Ń ć ź ź Ł

Ę Ł ź ź ć ź ć Ń ć ź ź Ł Ł Ą Ą Ą ź Ł Ę Ń ź ć ć ź ź Ę Ę Ł ź ź ć ź ć Ń ć ź ź Ł ź ć Ń ź Ą Ó Ę Ę ź ć ź ć Ę ć Ż ć Ę Ę ć Ą ć Ą Ł ć Ą ć ć Ń Ń Ń ź ć Ń Ł Ń Ń ź ć ć ć Ę ć Ń ć Ł ć Ń ć ź ź Ę ć Ś ź ć Ą Ę ć Ą ć Ź Ń ź ć ź Ż ć Ł ć Ń ć ź Ą ź Ł

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł

Bardziej szczegółowo

Zabezpieczenie ziemnozwarciowe admitancyjne Yo>, Go>, Bo>.

Zabezpieczenie ziemnozwarciowe admitancyjne Yo>, Go>, Bo>. ZSN 5/Lv2 Zabzpz zmzar admta Y>, G>, B> 08-06-02 Zabzpz zmzar admta Y>, G>, B>. 1. ZASADA DZIAŁANIA...2 2. SCHEMAT FUNKCJONALNY... 5 3. PARAMETRY... 6 Zabzpz : ZSN 5/L d: v. 1.0 ZSN 5/L+ d: v. 1.0 ZSN

Bardziej szczegółowo

6 0 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu K R A W I E C Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

Bardziej szczegółowo

CONNECT, STARTUP, PROMOTE YOUR IDEA

CONNECT, STARTUP, PROMOTE YOUR IDEA Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w

Bardziej szczegółowo

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, tr. 3 STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI Dorota Kozoł-Kaczorek Katedra Ekoomk Rolcta Mędzyarodoych Stoukó Gopodarczych Szkoła

Bardziej szczegółowo

Ą Ł Ł Ł ĄĄ Ą Ł Ą Ń Ń Ń

Ą Ł Ł Ł ĄĄ Ą Ł Ą Ń Ń Ń ź Ł ź ź Ł ź Ą ź Ą Ą Ą Ł Ł Ł ĄĄ Ą Ł Ą Ń Ń Ń Ś Ż ź Ą Ą ź ź Ą Ł Ł Ą Ą Ą Ń ź Ź ź Ł Ł ź Ś ź Ł Ł Ł Ś Ł Ś Ń Ś Ą ź Ń Ą ź Ś Ś Ś ŁĄ ź ź ź Ó Ś ź ź ź Ż ź Ł Ą Ń Ń Ą ź Ś Ą ź Ł Ł ź Ź Ń Ś Ó Ą Ł Ł ź Ż Ż Ó Ó Ś Ó Ś Ó Ó Ń

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

Ś Ą Ą

Ś Ą Ą Ś Ą Ł Ś Ś Ą Ą Ś Ś Ć Ś Ś Ł Ó Ź ź ź ź Ł Ą Ł Ą Ą Ą Ź Ó Ł Ó Ą Ó Ł Ś ŚÓ Ł Ł Ó Ó Ź Ł ź Ó Ó Ó Ó Ń Ó Ś Ó Ś Ą Ó Ś Ó Ą Ą Ś Ą Ą Ś Ś Ó Ó Ą Ą Ś Ó Ó Ą Ś Ą Ą Ć Ó Ó Ą Ą Ó ź Ś ŚÓ Ś Ó Ł Ó Ł Ó Ź Ź Ą Ź Ą Ź Ą Ź Ą ź Ś Ś Ś

Bardziej szczegółowo

Ż Ł Ę Ę Ś Ł

Ż Ł Ę Ę Ś Ł Ż Ł Ę Ę Ś Ł Ż ć Ż Ż Ż Ź Ż ź ć Ż ć ć Ź Ź ć Ż Ż ć Ż Ż Ę Ś Ź Ż Ź ź ź Ż Ś Ś ć Ż Ś Ż ź ć ć Ś Ś Ż Ż Ź Ż Ś ź Ś ć Ż ć ź Ź ć ć ć Ż ć ć Ż ź ź ź Ż ć ź Ź ć ć ć Ż ć ć Ż ź ź ź Ś Ś Ż Ł Ż Ż Ż Ż Ż ź Ż Ż ć Ż ć Ż Ż Ż Ź ć

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

Ł Ł ź ź ź Ł ź ź ź Ą

Ł Ł ź ź ź Ł ź ź ź Ą Ń Ą Ł Ń Ń Ł Ł ź ź ź Ł ź ź ź Ą Ó Ó Ź Ź Ś ź ź Ł Ł ź Ś Ł Ą ź ź Ń Ż Ą Ł Ó Ą Ś ź Ą ź Ą Ś ź Ś Ś Ł Ó Ł ź ź Ł Ł ź Ś Ś Ł ź Ł Ń Ł Ł Ł Ł Ą Ł ź Ś Ż Ł Ą Ą ź ź ź Ż ź Ń Ą Ż ź Ą Ą Ą Ą Ą Ł Ź Ż Ż ź Ą Ż Ą Ą Ń Ż Ż Ź Ą Ń

Bardziej szczegółowo