Agregacja limitowana dyfuzją.
|
|
- Bartłomiej Górski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Doświadczalne hodowanie agregatów fraktalnych 1 POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI I BIOFIZYKI Agregacja limitowana dyfuzją. Elektrolityczne hodowanie agregatów. Symulacja błądzenia przypadkowego.
2 Doświadczalne hodowanie agregatów fraktalnych 2 1 Wprowadzenie. Termin fraktal został wprowadzony przez francuskiego matematyka Benoit Mandelbrota dla określenia figur geometrycznych przypominających kształty znajdowane w naturze: płatki śniegu, rośliny, chmury, linie brzegowe rzek i oceanów, układ nerwowy człowieka, sieć naczyń krwionośnych (tętnice rozchodzące się w naczynia włosowate), obiekty porowate (z samopodobną strukturą porów), drzewa (układ pnia i gałęzi), itp. (Rys.1). Według Mandelbrota fraktale występują powszechnie, dlatego, że taka właśnie jest geometryczna struktura przyrody. Fraktal w znaczeniu potocznym oznacza obiekt samopodobny (tzn. taki, którego części są podobne do całości) albo "nieskończenie subtelny" (ukazujący subtelne detale nawet w wielokrotnym powiększeniu). Kalafior Paprotka Brokuł Rys.1 Fraktale w naturze Drzewo Precyzyjna definicja zbioru fraktalnego jest dość techniczna i jej wprowadzenie wymaga wprowadzenia pojęcia wymiaru fraktalnego. Za pomocą wymiaru fraktalnego określa się stopień złożoności różnego typu obiektów (matematycznych, geometrycznych, biologicznych, fizycznych) czy procesów. Strukturą fraktalną określa
3 Doświadczalne hodowanie agregatów fraktalnych 3 się taki obiekt, którego wymiar fraktalny jest ułamkiem mieszczącym się w przedziale 1 < d F < 2, a ściślej mówiąc którego wymiar nie jest liczbą całkowitą. W pozostałych przypadkach tj. gdy d F = 2 zbiór nazywa się Euklidesowym lub klasycznym. Jedną z najprostszych metod wyznaczenia wymiaru fraktalnego jest zastosowanie metody pudełkowej (box counting). Pierwszym krokiem w wyznaczaniu wymiaru pudełkowego jest podział zbioru zanurzonego w n-wymiarowej przestrzeni na (hiper)sześciany o boku długości ε. Ilość (hiper)sześcianów pokrywających zbiór, oznaczana jako N(ε), jest związana z długością boku ε następującą formułą fraktalny. Działanie powyższej zależności ilustruje Rys. 2. N~(1/ε)df, gdzie df to wymiar A) B) C) Rys.2. Podział sześcianu o boku długości 1 na mniejsze sześciany o boku ε. A) ε=1, B) ε=1/2, C) ε=1/4. Przechodząc z 2A do 2C można zauważyć, że sześcian zostaje pokryty 4 4 4=64 mniejszymi sześcianami o długości boku 4 razy mniejszej od długości boku dużego sześcianu. Można zauważyć, że wykładnik użyty do obliczenia ilości pokryć wynosi 3 i jest on równy wymiarowi sześcianu. Przechodząc w granicy do nieskończenie małych pokryć, i biorąc logarytm z wykładniczej zależności między N i (1/ε), otrzymuje się definicję pudełkowego wymiaru fraktalnego: d F = lim ε 0 ln(n(ε)) ln( 1 ε ) (1) Inną definicją wymiaru fraktalnego jest definicja Hausdorffa. W tym podejściu pokrywa się badany zbiór podzbiorami, o średnicy określonej przez następującą relację: A = sup x y (2) x, y ε A
4 Doświadczalne hodowanie agregatów fraktalnych 4 gdzie x i y to elementy zbioru A. Jak wynika z definicji, średnica jest równa odległości między najbardziej oddalonymi od siebie elementami zbioru. Konstruując wymiar Hausdorffa, pokrywa się badany zbiór podzbiorami o średnicy mniejszej niż δ, A i δ <. δ i szuka takiego pokrycia, które wymaga użycia jak najmniejszej ilości podzbiorów. Dla takiego pokrycia, definiuje się następującą miarę Hausdorffa: Γ H d (δ) = inf A δ i d δ A i (3) Następnie sprawdza się zachowanie zdefiniowanej miary, w granicy gdy δ dąży do zera. Jeżeli dla danego d miara osiąga skończoną, niezerową wartość, wtedy wykładnik d jest wymiarem Hausdorffa badanego zbioru. Aby zilustrować zachowanie miary dla przypadku kiedy d nie jest równe wymiarowi Hausdorffa badanego zbioru, wyznaczmy wartości miary dla pokrycia z Rys. 2, dla d=2,3,4 ɛ N A d, d=2 N A d, d=3 N A d, d=4 A = 2 ε A = 3 ε A = 4 ε /2 16 ½ 8 2 1/4 = /2 1/8 = 3 3/ /16 = 8 ¼ /8=8 1/32 3 3/2 1/32 = 3 3/ /128 = 4 1/2n (2 n ) 3 2 1/(2 n ) 2 = 2 n+1 (2 n ) 3 3 3/2 1/(2 n ) 3 = 3 3/2 (2 n ) /(2 n ) 4 = 2 -n+4 W granicy δ dąży do zera, n dąży do nieskończoności, dlatego miara dąży do nieskończoności dla d=2 i do zera dla d=4. Tylko dla d=3, tzn. tylko dla rzeczywistego wymiaru badanego obiektu wartość miary jest skończona i niezerowa. Należy ponadto zauważyć, że w powyższych obliczeniach nie używa się długości boku ε, lecz średnicy A która dla d=2,3,4 jest równa odpowiednio długości przekątnej kwadratu, sześcianu i hipersześcianu. Ostatnim omawianym tutaj rodzajem wymiaru jest wymiar samopodobieństwa. Jak można zaobserwować na Rys. 2 każdy podział sześcianu prowadzi do powstania jego mniejszych kopii. Można powiedzieć, że wymiar samopodobieństwa określa relację
5 Doświadczalne hodowanie agregatów fraktalnych 5 między skalowaniem zbioru a ilością mniejszych kopii potrzebnych do całkowitego pokrycia zbioru wyjściowego. Jak wynika z Rys. 2, przy skalowaniu równym ε=1/4, potrzebne są 64 mniejsze kopie by całkowicie pokryć wyjściowy sześcian. Wymiar samopodobieństwa określa się następującym wzorem: d = logn(ε) log( 1 ε ) (4) Dla sześcianu mamy więc odpowiednio d= log32/log4 = 3. Widać więc, że idea wymiaru samopodobieństwa jest dość podobna do idei wymiaru pudełkowego. Bardziej interesującym obiektem, dla którego wymiar samopodobieństwa nie jest liczbą całkowitą jest krzywa Kocha (rys.3). Jak wynika z rysunku 2 potrzebne są cztery krzywe przeskalowane o ε=1/3, aby pokryć krzywą wyjściową, dlatego też wymiar samopodobieństwa wynosi tu d=logn(4)/log(3) = Rys.3 Krzywa Kocha Podsumowując, można stwierdzić, że istnieją obiekty, których własności najlepiej określa wymiar nie będący liczbą całkowitą, zwany ogólnie wymiarem fraktalnym. Istnieją jednakże różne miary wymiaru fraktalnego, (trzy z nich przedstawiono powyżej), podkreślające różne aspekty pojęcia wymiarowości. Jedną z metod otrzymywania fraktali jest agregacja limitowana dyfuzyjnie (DLA - diffusion of limited aggregation). Odpowiada to doświadczeniu, w którym jony cynku poruszają się chaotycznie, zgodnie z ruchami Browna w roztworze elektrolitu i gromadzą, tworząc drzewiaste struktury. W swojej klasycznej definicji, elektroliza rozumiana jest jako reakcja chemiczna zachodząca na granicy elektroda/elektrolit w
6 Doświadczalne hodowanie agregatów fraktalnych 6 skutek przepuszczania prądu elektrycznego przez elektrolit. W czasie elektrolizy jony dodatnie wędrują do katody, a ujemne do anody. Ilościowa analiza elektrolizy jest opisana prawami Faraday a. W naszym ćwiczeniu korzystamy z pierwszego prawa Faraday a, według którego masa produktu utworzonego na elektrodzie jest proporcjonalna do przepływającego przez nią ładunku M = k I t (5) gdzie: I natężenie prądu, t czas elektrolizy, k równoważnik elektrochemiczny substancji Jak łatwo można zauważyć z równania 5 dla stałych wartości k i I otrzymuje się: M~t (6) gdzie: t~r d F (7) dzięki czemu d F może być łatwo odczytane z wykresu (rys. 4) w skali logarytmicznej. log t tg =d F log r Rys. 4 Wykres zależności czasu elektrolizy od promienia otrzymanego agregatu.
7 Doświadczalne hodowanie agregatów fraktalnych 7 2. Część doświadczalna Ćwiczenie obejmuje: a) wykonanie eksperymentu tj. elektrolityczne otrzymanie agregatu DLA b) symulację powstawania agregatu DLA metodą Monte Carlo. 2.1 Przebieg doświadczenia Doświadczenie wykonuje się używając prostego zestawu do elektrolizy (patrz rys. 5). Rys. 5 Elektroliza uwodnionego siarczanu cynku prowadząca do powstania fraktala z cynku osadzającego się wokół katody. Doświadczenie należy wykonać w następujący sposób: 1. Przygotować w zlewce 10 ml wodnego roztworu ZnSO 4 7H 2 O o odpowiednim stężeniu (podanym przez prowadzącego). 2. Wlać roztwór do szalki Petriego, aby utworzył cienką warstwę o grubości ok mm. 3. Wyciąć okrągłą membranę z przeźroczystej folii dopasowaną do wymiarów szalki Petriego. 4. Przykryć roztwór w szalce membraną, tak aby nie było pod nią bąbli powietrza. 5. Umieścić elektrodę z miedzi w środku układu, a elektrodę z cynku dookoła wewnętrznego brzegu szalki Petriego.
8 Doświadczalne hodowanie agregatów fraktalnych 8 6. Ustawić szalkę Petriego tak, aby jej środek pokrywał się ze środkiem okręgów narysowanych na papierze. 7. Podłączyć elektrody do zasilacza (elektrodę z miedzi do bieguna ujemnego, a elektrodę z cynku do dodatniego) i włączyć. 8. Obserwować uważnie proces agregacji i mierzyć czas osiągnięcia przez powstający obiekt kolejnych okręgów Symulacja DLA Komputerowe symulacje błądzenia przypadkowego są popularnymi metodami modelowania wielu zjawisk fizycznych (ruchy Browna, DLA), ekonomicznych (wysokości stóp zwrotu, hipoteza rynku efektywnego) i biologicznych (ruchliwość bakterii, dryf genetyczny). Program wxdla używa błądzenia przypadkowego do symulacji powstawania agregatu, którego szybkość wzrostu limitowana jest szybkością dyfuzji cząstek. Symulacja rozpoczyna się umieszczeniem w centrum siatki pierwszej cząstki agregatu, tzw. ziarna (seed). Kolejne kroki symulacji ilustruje Rys.6. Rys. 6 a) Schemat blokowy działania programu. Zauważ, że błądząca cząstka nie może opuścić siatki. Następna cząstka jest umieszczana na siatce, tylko po agregacji poprzedniej. Warunek Czy zagregować cząstkę jest związany z prawdopodobieństwem przyłączenia do agregatu, opisanym w dalszej części instrukcji. b) przykład siatki używanej w programie. Czerwone cząstki zostały już zagregowane, cząstka niebieska błądzi przypadkowo. Strzałki pokazują poprzednie położenia błądzącej cząstki.
9 Doświadczalne hodowanie agregatów fraktalnych 9 Brzeg siatki na którym umieszczane są nowe cząstki podlega rozszerzaniu w miarę wzrostu agregatu, co znacznie redukuje średni czas po jakim cząstka zostanie zagregowana i sprawia, że symulacja przebiega szybciej. 2.3 Używanie programu wxdla. Parametry symulacji Po wybraniu języka, należy dokonać odpowiednich ustawień w okienku Parametry symulacji posługując się wartościami podanymi w tabeli 1, po uzgodnieniu z osobą prowadzącą zajęcia. 1. Ustawienia rodzaju i siły dryfu W celu wykonania symulacji przyciągania cząstek przez ścianki, powinno się zwiększyć prawdopodobieństwo skoku cząstki w kierunku wybranej ścianki w ramce Prawdopodobieństwa skoku. Uwaga: prawdopodobieństwa skoku muszą sumować się do 1! W celu symulacji przyciągania cząstek do środka agregatu należy wybrać Dryf dośrodkowy, a następnie ustawić prawdopodobieństwo, z jakim losowany będzie skok cząstki w stronę agregatu. Ze względu na cztery dozwolone kierunki skoków, ustawienie prawdopodobieństwa mniejszego niż 0.25 da efekt odpychania błądzących cząstek od środka agregatu. 2. Kinetyka procesu przyłączania cząstek Kinetyka przyłączania cząstek do agregatu jest uwzględniona przez wartość Prawdopodobieństwa przyłączenia cząstki w ramce Aktywna granica. Wartość ta określa z jakim prawdopodobieństwem cząstka napotykająca na agregat zostanie do niego przyłączona. 3. Przebieg symulacji Po wybraniu przycisku Rozpocznij symulację, program dokonuje sprawdzenia poprawności zadanych parametrów i wyświetla komunikat o ewentualnych błędach. Jeżeli parametry zostały zadane poprawnie, program wyświetla główne okienko symulacji. Budowanie agregatu rozpoczyna się po naciśnięciu przycisku Start. Przycisk
10 Doświadczalne hodowanie agregatów fraktalnych 10 Pauza służy do tymczasowego zatrzymania symulacji, w celu umożliwienia zapisu agregatu do pliku w formacie.bmp. Przycisk Stop kończy symulację i wyświetla okienko Zapis statystki wymiaru fraktalnego. pole Zagregowano zlicza cząstki budujące agregat. Pole Wym. f. podaje aktualnie obliczony wymiar fraktalny agregatu pole Odch. std. podaje odchylenie standardowe wyznaczonego wymiaru fraktalnego. Plik tekstowy zapisywany w okienku Zapis statystki wymiaru fraktalnego, które pojawia się po zakończeniu symulacji zawiera wartości wymiaru fraktalnego i jego odchylenia standardowego obliczane po każdym przyłączeniu się cząstki do agregatu. Pozwala to oszacować wpływ dyskretnego charakteru modelu błądzenia przypadkowego na wyznaczane wielkości (widoczny zwłaszcza dla małych agregatów). 2.5 Symulacje wzrostu agregatu w programie wxdla 1. Wpływ dryfu na proces agregacji i na własności otrzymanego agregatu. przeprowadź symulację dla prawdopodobieństw skoków równych Porównaj kształt otrzymanego fraktala, oraz wymiar fraktalny z dwoma wariantami ustawień prawdopodobieństw wybranymi przez osobę prowadzącą ćwiczenia. przeprowadź symulację z silnym dryfem w kierunku agregatu i w kierunku przeciwnym, dla zaznaczonej opcji dryf dośrodkowy, i prawdopodobieństw odpowiednio: 0.9 i 0.1. Przerysuj (lub użyj opcji Zapisz obraz) kształt agregatu, zanotuj jego charakterystyczne cechy i wymiar fraktalny. 2. Wpływ aktywnej granicy na proces agregacji i na własności otrzymanego agregatu. przeprowadź symulację z jednakowymi prawdopodobieństwami skoków równymi 0.25 dla Prawdopodobieństwa przyłączenia do agregatu: Czy można zaobserwować jakościowy związek między wymiarem fraktalnym agregatu a użytym prawdopodobieństwem?
11 Doświadczalne hodowanie agregatów fraktalnych 11 Wariant Kierunki Północ Południe Wschód Zachód 1 0,236 0,264 0,235 0, ,285 0,215 0,254 0, ,229 0,271 0,272 0, ,266 0,234 0,297 0, ,250 0,250 0,278 0, ,216 0,284 0,209 0, ,214 0,286 0,279 0, ,224 0,276 0,232 0, ,285 0,215 0,214 0, ,289 0,211 0,234 0, ,297 0,203 0,273 0, ,209 0,291 0,290 0, ,232 0,268 0,205 0, ,272 0,228 0,295 0, ,243 0,257 0,259 0, ,298 0,202 0,213 0, ,293 0,207 0,284 0, ,282 0,218 0,282 0, ,221 0,279 0,208 0, ,202 0,298 0,211 0,289 Tabela 1. Warianty dryfu dobierane w symulacji. 3. Wyniki, obliczenia i analiza błędów 1. Napisz reakcje zachodzące na poszczególnych elektrodach. 2. Dla części doświadczalnej oblicz wymiar fraktalny agregatu używając regresji liniowej do wyznaczenia optymalnego liniowego dopasowania. 3. W części symulacyjnej, należy załączyć rysunki otrzymanych agregatów, wraz z zanotowanym wymiarem fraktalnym i ustawieniami symulacji. Ponadto należy udzielić krótkiej odpowiedzi na poniższe pytania: a. Jak siła i kierunek dryfu wpływają na kształt budowanego agregatu? b. Dlaczego w początkowej fazie wzrostu agregatu jego wymiar fraktalny rośnie z czasem symulacji? c. Dlaczego dla dryfu działającego w kierunku przeciwnym do środka agregatu, agregat zbudowany jest najczęściej z pojedynczej gałęzi? (Wskazówka: Gdzie błądząca cząstka będzie przebywać najczęściej przy tak ustawionym dryfie?)
12 Doświadczalne hodowanie agregatów fraktalnych 12 d. Jak prawdopodobieństwo przyłączenia cząstek wpływa na wymiar fraktalny agregatu? Czy dla małych wartości prawdopodobieństwa przyłączenia, wzrost agregatu jest nadal limitowany szybkością dyfuzji? 4. Pytania 1. W jaki sposób ruchy Browna związane są ze zjawiskiem dyfuzji. 2. Zdefiniuj pojęcie fraktal. 3. Podaj trzy definicje wymiaru fraktalnego i krótko opisz konstrukcję jednego z nich. 4. Zdefiniuj pojęcie samopodobieństwo. W jakim sensie brokuły są samopodobne? 5. Opisz zależność między pomiarem długości linii brzegowej wyspy a skalą, w której wykonujemy pomiar. 6. Zdefiniuj pojęcia: utlenianie, redukcja, reduktor, utleniacz. 7. Podaj i omów prawa Faradaya. 8. Wytłumacz warunek niskiego stężenia soli cynku w roztworze w celu otrzymania agregatu fraktalnego. Co dzieje się, gdy warunek nie jest spełniony? 9. Opisz podstawowe etapy symulacji błądzenia przypadkowego. 10. Jaki jest zależność między prawdopodobieństwami dryfu w symulacji a kierunkiem pola elektrycznego w doświadczeniu? 5. Literatura 1. H-O.Peitgen, H.Jürgens, D.Saupe "Granice chaosu FRAKTALE", PWN Warszawa J.Kudrewicz, "Fraktale i chaos", WNT, Warszawa, Dryński T., Ćwiczenia laboratoryjne z fizyki, PWN, Warszawa, Ryll, Delta, Miesięcznik matematyczno fizyczno-astronomiczny, 1985, nr 2 5. Ciesielski, Pogoda Z., Wiedza i Życie, 1989, nr Schroeder H., Fractals, Chaos, Power Laws, W.H. Freeman and Company, New York, E. Ott, Chaos w układach dynamicznych, WNT, Warszawa, 1997
Agregacja limitowana dyfuzją.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Agregacja limitowana dyfuzją. Elektrolityczne hodowanie agregatów. Symulacja błądzenia przypadkowego.
Ć W I C Z E N I E N R E-16
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-16 WYZNACZANIE WYMIARU FRAKTALNEGO W PROCESIE
ĆWICZENIE 3. Agregacja kontrolowana przez dyfuzję: przykład fraktala. Andrzej Molski, Teresa Łuczak. Wstęp. Teoria L, (1)
Andrzej Molski, Teresa Łuczak ĆWICZENIE 3 Agregacja kontrolowana przez dyfuzję: przykład fraktala Podstawowe pojęcia: fraktal, wymiar fraktalny, trójkąt Sierpińskiego, agregacja kontrolowana przez dyfuzję,
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +
Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich
Fraktale. i Rachunek Prawdopodobieństwa
Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej
Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej
Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria
Akademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.
LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych
Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii
Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
samopodobnym nieskończenie subtelny
Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne
PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Krzysztof PODLEJSKI *, Sławomir KUPRAS wymiar fraktalny, jakość energii
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego
Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji
Zestaw do doświadczeń z elektrochemii [ BAP_ doc ]
Zestaw do doświadczeń z elektrochemii [ BAP_1008057.doc ] [strona 1] Opis doświadczeń / instrukcja obsługi Zestaw Elektrochemia Strona 1 z 8 [strona 2] Zestaw Elektrochemia Nr artykułu: 51901 Spis treści
Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej
Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Graficzne opracowanie wyników pomiarów 1
GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza Cel ćwiczenia: Wyznaczenie stałej Faradaya oraz równoważnika elektrochemicznego miedzi metodą elektrolizy. Literatura [1] Kąkol Z., Fizyka dla
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą
Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
DOKŁADNOŚĆ POMIARU DŁUGOŚCI
1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;
Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5
Laboratorium odnawialnych źródeł energii Ćwiczenie nr 5 Temat: Badanie ogniw paliwowych. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Fizyka i technika konwersji energii VI semestr
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
Badanie kinetyki inwersji sacharozy
Badanie kinetyki inwersji sacharozy Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie stałej szybkości, energii aktywacji oraz czynnika przedwykładniczego reakcji inwersji sacharozy. Opis metody: Roztwory
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY
Analiza korelacyjna i regresyjna
Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Zbiór Cantora. Diabelskie schody.
Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka
START. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC
GRUPA I Co to jest algorytm, a czym jest program komputerowy? Algorytm: uporządkowany i uściślony sposób rozwiązywania problemu, zawierający szczegółowy opis wykonywanych czynności. Program komputerowy:
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami
ĆWICZENIE 1 WYZNACZANIE DŁUGOŚCI FALI ZA POMOCĄ SPEKTROSKOPU
ĆWICZENIE WYZNACZANIE DŁUGOŚCI FALI ZA POMOCĄ SPEKTROSKOPU Jeżeli gazy zaczynają świecić, na przykład w wyniku podgrzania, to możemy zaobserwować charakterystyczne kolorowe prążki podczas obserwacji tzw.
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
Równania miłości. autor: Tomasz Grębski
Równania miłości autor: Tomasz Grębski Tytuł pewnie trochę dziwnie brzmi, bo czy miłość da się opisać równaniem? Symbolem miłości jest niewątpliwie Serce, a zatem spróbujmy opisać kształt serca równaniem
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Schemat ogniwa:... Równanie reakcji:...
Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat
Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM
Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,
Drgania wymuszone - wahadło Pohla
Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Instrukcja obsługi programu Do-Exp
Instrukcja obsługi programu Do-Exp Autor: Wojciech Stark. Program został utworzony w ramach pracy dyplomowej na Wydziale Chemicznym Politechniki Warszawskiej. Instrukcja dotyczy programu Do-Exp w wersji
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności
Efekt motyla i dziwne atraktory
O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Okręgi i proste na płaszczyźnie
Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Energia promieniowania termicznego sprawdzenie zależności temperaturowej
6COACH 25 Energia promieniowania termicznego sprawdzenie zależności temperaturowej Program: Coach 6 Projekt: komputer H C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Termodynamika\Promieniowanie
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
ZALEŻNOŚĆ STAŁEJ SZYBKOŚCI REAKCJI OD TEMPERATURY WSTĘP Szybkość reakcji drugiego rzędu: A + B C (1) zależy od stężenia substratów A oraz B v = k [A][B] (2) Gdy jednym z reagentów jest rozpuszczalnik (np.
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
( L ) I. Zagadnienia. II. Zadania
( L ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni
IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Podstawy elektrochemii
Podstawy elektrochemii Elektrochemia bada procesy zachodzące na granicy elektrolit - elektroda Elektrony można wyciągnąć z elektrody bądź budując celkę elektrochemiczną, bądź dodając akceptor (np. kwas).
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 8 Temat: Obserwacja i analiza linii sił pola magnetycznego.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 8 Temat: Obserwacja i analiza linii sił pola magnetycznego. Zestaw ćwiczeniowy zawiera cztery magnesy (dwa małe i dwa duże)
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji
Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.
WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM
1.Wstęp. Prąd elektryczny
1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
( F ) I. Zagadnienia. II. Zadania
( F ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
LABORATORIUM Z PODSTAW BIOFIZYKI ĆWICZENIE NR 4 1. CEL ĆWICZENIA
1. CEL ĆWICZENIA Pomiar potencjału dyfuzyjnego roztworów o różnych stężeniach jonów oddzielonych membranami: półprzepuszczalną i jonoselektywną w funkcji ich stężenia. Wykorzystanie równania Nernsta do
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia