PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
|
|
- Kajetan Urban
- 7 lat temu
- Przeglądów:
Transkrypt
1 Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Arkusz I Czas pracy 10 minut ARKUSZ I GRUDZIEŃ ROK 004 Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 11 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu. 3. Proszę pisać tylko w kolorze czarnym; nie pisać ołówkiem. 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku. 5. Nie wolno używać korektora. 6. Błędne zapisy trzeba wyraźnie przekreślić. 7. Brudnopis nie będzie oceniany. 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie. 9. Podczas egzaminu można korzystać z załączonego zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego. Życzymy powodzenia! Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów. (Wpisuje zdający przed rozpoczęciem pracy) PESEL ZDAJĄCEGO
2 Zadanie 1. (6 pkt) Poniżej rozpoczęto szkicowanie wykresu funkcji f określonej wzorem x + 4x dla x 0 f ( x) = dla x > 0 x a. Dokończ szkicowanie wykresu tej funkcji. b. Korzystając z wykresu odczytaj i zapisz zbiór wartości funkcji f. c. Oblicz wartość tej funkcji dla argumentu x =. d. Zapisz zbiór argumentów, dla których funkcja f przyjmuje wartości nieujemne. Strona z 11
3 Zadanie. (4 pkt) Rozwiąż nierówność 5 ( + 1) x + 3 Próbny egzamin maturalny z matematyki x. Zbiór rozwiązań tej nierówności zapisz w postaci x a 5 + b, gdzie a i b są liczbami całkowitymi. Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność. Zadanie 3. (3 pkt) W pierwszym miesiącu sprzedaży nowego modelu telefonu komórkowego klienci kupili n sztuk takich telefonów w cenie c złotych za każdą sztukę. Uzyskano w ten sposób przychód ze sprzedaży równy ( n c) złotych. Oblicz, o ile procent zwiększyłby się przychód w pierwszym miesiącu sprzedaży tego telefonu, gdyby jego cena c była niższa o 5%, zaś liczba n klientów większa o 5. Strona 3 z 11
4 Zadanie 4. (4 pkt) Próbny egzamin maturalny z matematyki 3 Sprawdź, że wielomian W ( x) = x 7x 4x + 45 dzieli się bez reszty przez dwumian ( x + 3), a następnie zapisz dany wielomian w postaci iloczynu trzech czynników liniowych ze współczynnikami całkowitymi. Zadanie 5. (3 pkt) Napisz wzór dowolnej liczby całkowitej c, która przy dzieleniu przez 4 daje resztę 1. Uzasadnij, że dzieląc przez 4 kwadrat liczby c, również otrzymamy resztę równą 1. Strona 4 z 11
5 Zadanie 6. (7 pkt) Próbny egzamin maturalny z matematyki Trzeci wyraz ciągu arytmetycznego ( a n ) równa się 15, a piętnasty wyraz tego ciągu jest równy ( 9). a. Wyznacz pierwszy wyraz tego ciągu, jego różnicę oraz wzór ogólny opisujący n - ty wyrazu ciągu ( a n ). b. Zapisz wzór sumy n początkowych, kolejnych wyrazów ciągu ( a n ) w postaci iloczynowej. Oblicz największą wartość tej sumy. Strona 5 z 11
6 Zadanie 7. (3 pkt) Aby wyznaczyć równanie symetralnej odcinka AB, gdzie A(1, ) i B( 5, 6) można skorzystać z następującej własności symetralnej: punkt S leży na symetralnej odcinka AB wtedy i tylko wtedy, gdy SA = SB. Postępujemy zatem następująco: zakładamy, że dowolny punkt S symetralnej odcinka AB ma współrzędne S ( x, y) i wyznaczamy odległości: SA = ( x 1) + ( y ) rozwiązujemy równanie SA = SB : x ( x 1) + ( y ) oraz = y ( x + 5) + ( czyli ( x 1) + ( y ) = ( x + 5) + ( y 6 ) x + 1+ y 4y + 4 = x + 10x y 1x + 8y 56 = 0 : ( 4) SB = ( x + 5) + ( y 6), 6) 1y x y + 14 = 0 otrzymana równość określa liniową zależność między współrzędnymi punktu leżącego na symetralnej odcinka AB, jest zatem szukanym równaniem symetralnej danego odcinka. Przeanalizuj ten przykład, a następnie, stosując przedstawioną metodę wyznacz równanie symetralnej odcinka, którego końcami są punkty: A( 3, 6) oraz B(9, ). Strona 6 z 11
7 Zadanie 8. (4 pkt) Próbny egzamin maturalny z matematyki Dane są dwie różne proste równoległe k, l. Zbiór A składa się z 7 punktów, spośród których 4 leżą na prostej k i 3 leżą na prostej l. Oblicz, ile jest: a. odcinków niezerowych, których oba końce należą do zbioru A, b. trójkątów, których wszystkie wierzchołki należą do zbioru A. Zadanie 9. (6 pkt) o Szczyt S pewnej wieży jest widoczny z powierzchni Ziemi pod kątem 15 (rysunek poniżej). Po przejściu 60 metrów w kierunku tej wieży (na rysunku odpowiada to drodze od punktu o B do punktu A) szczyt S jest widoczny z powierzchni Ziemi pod kątem 45. Ułóż odpowiednie równanie i oblicz wysokość tej wieży. W obliczeniach przyjmij, że tg 15 o =0,679. Wynik końcowy podaj z dokładnością do 0,01 m. S 45 º 15 º C A 60 m B Strona 7 z 11
8 Zadanie 10. (4 pkt) W dowolnym trójkącie jest prawdziwe następujące twierdzenie (czasem nazywane twierdzeniem o podziale boku trójkąta dwusieczną kąta wewnętrznego): Jeżeli w trójkącie wykreślimy dwusieczną jednego z kątów wewnętrznych, to podzieli ona bok przeciwległy temu kątowi na odcinki proporcjonalne do boków przyległych. α α C A D B Przyjmując oznaczenia jak na rysunku, zapiszemy to twierdzenie symbolicznie: AD AC jeśli ACD = BCD, to =. DB CB Stosując podane twierdzenie, oblicz długości przyprostokątnych w trójkącie prostokątnym, w którym przeciwprostokątna ma długość 15 cm, zaś dwusieczna jednego z kątów ostrych tego trójkąta podzieliła przyprostokątną w stosunku 1 : 3. Sporządź odpowiedni rysunek. Strona 8 z 11
9 Zadanie 11. (6 pkt) Dany jest ostrosłup prawidłowy czworokątny, którego wszystkie krawędzie mają długość a. a. Sporządź rysunek tego ostrosłupa i zaznacz na nim kąt nachylenia ściany bocznej do płaszczyzny podstawy. Oznacz ten kąt jako α. Oblicz kosinus kąta α, a następnie, o α < 60. korzystając z odpowiednich własności funkcji kosinus, uzasadnij, że b. Wyznacz długość wysokości tego ostrosłupa oraz jego objętość. Strona 9 z 11
10 BRUDNOPIS Strona 10 z 11
11 BRUDNOPIS Strona 11 z 11
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Arkusz II (dla poziomu rozszerzonego) ARKUSZ II GRUDZIEŃ ROK 2004 Instrukcja dla
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Wpisuje zdający przed rozpoczęciem pracy Miejsce na nalepkę z kodem szkoły PESEL ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz II Czas pracy 150 minut 1. Proszę sprawdzić,
MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-P1D1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 10 minut ARKUSZ I STYCZEŃ ROK 003 Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I Czas pracy 10 minut 1. Proszę sprawdzić,
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 180
Plik pobrany ze strony www.zadania.pl
Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY STYCZEŃ ROK 2009 Czas pracy 180 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
(wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Arkusz I Poziom podstawowy Instrukcja dla zdającego: Czas pracy 0 minut. Proszę sprawdzić, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-PGP-0 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut ARKUSZ I MAJ ROK 00 Instrukcja dla zdającego.
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-RD1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 150 minut ARKUSZ II STYCZEŃ ROK 003 Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-R2G1P-021 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 200 Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY MARZEC 2019 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Arkusz II 5 LISTOPADA 007 Instrukcja dla zdającego Czas pracy
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron (zadania
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 17 stron
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2011 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron (zadania
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 150 minut ARKUSZ II STYCZEŃ ROK 2005 Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja Instrukcja dla zdającego EGZAMIN MATURALNY
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 20 sierpnia
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
ODBIERZ KOD DO GIEŁDY MATURALNEJ Zobacz klucz odpowiedzi Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 016 Instrukcja dla zdającego Czas pracy:
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2014 Czas pracy: 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2009 Czas pracy 180 minut Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 180
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2013 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
LUBELSKA PRÓBA PRZED MATUR 2016
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY
5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2017 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I
1 MATEMATYKA - poziom rozszerzony klasa I CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 1 sierpnia 018
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 018 r.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2014 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Klasa Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut MARZEC ROK 2019 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 1 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ 07 poziom podstawowy Kod ucznia Nazwisko i imię M A T E M A T Y K A 8 LUTEGO 07 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron (zadania -34).
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny
LUBELSKA PRÓBA PRZED MATURĄ 2013
LUBELSKA PRÓBA PRZED MATURĄ 03 MATEMATYKA - poziom podstawowy STYCZEŃ 03 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw