Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1"

Transkrypt

1 Elementy rachunku lambda λ 1

2 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = g(2) = λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2

3 Rachunek lambda (λ) Rachunek λ jest nie tylko formą notacji (Wykład 1). Został on zaprezentowany przez Churcha jako jeden z pierwszych systemów formalnych proponujących dokładną definicję obliczalności. Można podać formalną syntaktykę rachunku λ oraz model przyporządkowujący każdej konstrukcji syntaktycznej rachunku λ wartości z odpowiedniej dziedziny. 3

4 Pojęcia pomocnicze Operatorem nazywamy symbol (funkcyjny), który w połączeniu z pewnym wyrażeniem(napisem) zawierającym zmienną (wyróżnioną jako związaną tym operatorem) nabiera konkretnego sensu. Np.: kwantyfikatory, całki, nieskończone sumy i produkty itp. n x= 1 F ( x,y) = F( 1,y) + F( 2,y) F( n,y) 4

5 Pojęcia pomocnicze Operatorem abstrakcji (znakiem abstrakcji) nazywa się symbol operacji, która przekształca funkcję zdaniową w nazwę zbioru przedmiotów spełniających tę funkcję. {x I x jest logikiem} stanowi nazwę zbioru logików zmienna x jest funkcja zdaniowa zmienną związaną operatorem abstrakcji 5

6 Pojęcia pomocnicze Operator lambda (λ-operator) stanowi uogólnienie operatora abstrakcji, gdyż stosuje się go nie tylko do funkcji zdaniowych lecz również do wyrażeń zbudowanych z symboli funkcyjnych (termów). 6

7 Język rachunku lambda Alfabet A rachunku A = zmienne stałe {λ, (, )} zmienne = {u, v, x, y, z} stałe = {a, b, c, d} Wyrażenia rachunku lambda (formuły) F zbudowane nad alfabetem A: F = F A F Z F A wyrażenia atomowe, F A = zmienne stale F Z wyrazenia zlozone 7

8 Wyrażenia złożone Jeśli L i M należą do F, to wyrażenie LM (operator aplikacji) lub postaci (LM) jest wyrażeniem rachunku lambda, przy czym L jest częścią operatorową, zaś M częścią argumentową. Jeśli L należy do F, to wyrażenie postaci λxl lub postaci (λxl) jest wyrażeniem rachunku lambda, λx jest częścią zmiennej związanej, zaś L jest ciałem. Przykłady: xy, x(yz), xyy, abcd (xy) (x(yz)) ((xy)y) (((ab)c)d) 8

9 Podwyrażenie wyrażenia G (1) G jest podwyrażeniem G (2) jeśli G LM, to każde podwyrażenie wyrażeń L i M jest także podwyrażeniem G, (3) jeśli G λxl, to każde podwyrażenie L jest także podwyrażeniem G. Przykłady: λyx i x są podwyrażeniami λyx λz(xyz), xy i y są podwyrażeniami λyλz(xyz) 9

10 Zmienne wolne w wyrażeniach (1) x jest jedyną zmienną wolną występującą w wyrażeniu x (2) jeśli P i S są zbiorami zmiennych wolnych występujących odpowiednio w wyrażeniach P i S, to zbiór zmiennych wolnych występujących w aplikacji PS jest równy P S, (3) jeśli P jest zbiorem zmiennych wolnych występujących w wyrażeniu P, to P -{x} jest zbiorem zmiennych wolnych występujących w wyrażeniu λxp. Przykłady: x jest zmienną wolną w wyrażeniach λyx, λyλz(xyz), abλz(zb)λux; y jest zmienną związaną w: λyx, λyλz(xyz), lecz wolną w podwyrażeniu dr hab. inż. Joanna λz(xyz) Józefowska, prof. PP 10

11 Wyrażenie wolne ze względu na podstawienie niech M i ε[x] będą λ-wyrażeniami; ε[x] oznacza, że zmienna x jest zmienną wolną w ε[x] lub że nie występuje w ε[x]; zapis ε[m/x] oznacza rezultat zastąpienia wszystkich wolnych wystąpień zmiennej x przez wyrażenie M; wyrażenie M jest wolne po zastąpieniu nim zmiennej x, jeśli podczas zastępowania nie nastąpią przypadkowe związania zmiennych wolnych występujących w M. 11

12 Wyrażenie wolne ze względu na podstawienie Przykłady wyrażenie M λxλy(xy) jest wolne po zastąpieniu zmiennej u w wyrażeniu ε[u] = λvu; wyrażenie M xz nie jest wolne po zastąpieniu zmiennej u w wyrażeniu ε[u] = λxu (zmienna wolna x z wyrażenia M zostaje związana) 12

13 Reguły redukcji wyrażeń niech L i M będą wyrażeniami, wtedy przez L M oznaczymy elementarną redukcję L do M; wyrażenie jest redukowalne do M, co zapisujemy L M, jeśli istnieje ciąg L = L 0, L 1,..., L n-1, L n = M taki, że (0 i n-1) L i L i+1 ; 13

14 Elementarne reguły redukcji Reguła przemianowywania zmiennych Niech A λx F[x] oraz niech y będzie nową zmienną, która nie występuje w F[x] jako zmienna wolna i pozostaje zmienna wolna po zastapieniu nia zmiennej x w F[x], wtedy: λx F[x] λy F[y] α Na przykład: λxλz(xz) α λyλz(yz) F[x] 14

15 Elementarne reguły redukcji Podstawowa reguła redukcji Niech A (λx ε[x])m i wyrażenie M jest wolne ze względu na zastąpienie nim zmiennej x w wyrażeniu ε[x], wtedy: (λxε[x])m ε[m/x] Na przykład: λx(xz)a (az) ε[x] M 15

16 Elementarne reguły redukcji Reguła pomocnicza Niech A λx(fx) gdzie F jest wyrażeniem, w którym zmienna x nie występuje jako zmienna wolna, wtedy: λx(fx) η F Na przykład: λx(λyyx) λxx F η λx(λyyx) η λyy α λyy F 16

17 Przykłady function f(x: integer): integer; begin f := x end; P 11 (x) = x; definicja funkcji f w rachunku lambda: λxx; przykładowe obliczenia dla wywołania:... y:=f(5);... M (λ x x 5) 5 ε[x] 17

18 Przykłady function f 1 (x: integer): integer; begin f 1 := x + 1 end; f 1 S 1 ; (funkcja następnika) definicja funkcji f 1 w rachunku lambda: λx((+1)x); przykładowe obliczenia dla wywołania:... y:=f 1 (5);... M (λ x((+1) x) 5) ((+1)5) 6 ε[x] 18

19 Technika Curry ego - currying (Schönfinkel) f n : A 1 x A 2 x... x A n B f n (a 1, a 2,..., a n ), a i A i f c,n : A 1 (A 2... (A n B)...) f c,n (a 1 ) f c,n (a 1 )(a 2 ) f c,n (a 1 )(a 2 )...(a n ) f c,2 : A (B C) lambda nazwa: λaλb treść funkcja może być zarówno daną, jak i funkcją 19

20 Przykłady function f 2 (x, y: integer): integer; begin f 2 := y end; f 2 P 12 ; (projekcja) definicja funkcji f 2 w rachunku lambda: λx 1 λx 2 x 1 ; przykładowe obliczenia dla wywołania: y:=f 3 (3,4);... M M (λ x 1 (λ x 2 x 1 4) 3) λ x ε[x] ε[x] 20

21 Przykłady function f 3 (function f; x: integer): integer; begin f 3 := f(x) end; definicja funkcji f 3 w rachunku lambda: λfλx(fx); przykładowe obliczenia dla wywołania: y:=f 3 (f 1,5);... f λf(λx(fx)5)λx((+1)x) α M λf(λx(fx)5)λy((+1)y) λx(λy((+1)y)x)5 λy((+1)y)5 ((+1)5) ε[x] β 21

22 Przykłady λf(λx((+fx))1)5)λa((*x)a) f α λf(λx((+(fx))1)5)λa((*y)a) λx((+(λa((*y)a)x)1)5) β β ε[x] M λx((+(λa((*y)a)x)1)5) ((+(λa((*y)a)5)1)) ((+(((*y)5))1)) ε[x] M 22

23 Wyrażenie G, w którym nie można zastosować redukcji typu β lub η jest wyrażeniem zredukowanym (lub wyrażeniem w postaci normalnej); Przykład wyrażenia nieredukowalnego λx(xx)λx(xx) λx(xx)λx(xx)... 23

24 Przykład wyrażenia, dla którego istnieją dwa ciągi redukcji: skończony i nieskończony λxλyy(λx(xx)λx(xx)) λyy ε[x] M λxλyy(λx(xx)λx(xx)) λxλyy(λx(xx)λx(xx)) ε[x] M β 24

25 Twierdzenie Jeśli dla danego wyrażenia istnieją dwa ciągi redukcji, z których jeden jest nieskończony, drugi zaś daje określoną wartość, to wyrażenie to zawiera podwyrażenie redukowalne do postaci LM, przy czym M jest nieredukowalne, L ma postać λxp, gdzie P ma postać zredukowana i nie zawiera x. 25

26 Twierdzenie Jeśli wyrażenie oblicza się w drodze kolejnych skrajnie lewostronnych redukcji operatorargument, to uzyskany ciąg redukcji kończy się, jeśli wyrażenie jest redukowalne. 26

27 Twierdzenie (Churcha-Rossera o zbieżności) Jeśli dane wyrażenie ma dwa ciągi redukcji prowadzące do postaci zredukowanych, to postaci te są sobie równe z dokładnością do przemianowania zmiennych (znajdują się w tej samej klasie wartości). 27

28 Model rachunku lambda λu u(u) val[λu u(u)] = selfapplic Czy to jest funkcja? 28

29 Dana Scott (1970) - model rachunku λ D (D D) gdzie (D D) jest przestrzenią funkcji obliczalnych z D w D. Izomorfizm z D w (D D) oznacza, że D jest takim zbiorem wartości, który jest potrzebny do modelu rachunku λ. D jest kratą zupełną, a funkcje obliczalne są definiowane jako funkcje ciągłe w rozumieniu teorii krat. Każda funkcja ciągła z D w D ma punkt stały (Tarski, Knaster). 29

30 Dana Scott (1970) - model rachunku λ Twierdzenie o punkcie stałym Scott i Strachey wykorzystali do zapewnienia istnienia rozwiązań rekurencyjnych oraz do nadania znaczenia takim konstrukcjom, jak instrukcja while. Sposób konstrukcji modelu rachunku λ może być stosowany do wyznaczania dziedzin refleksywnych interesujących z punktu widzenia informatyki. 30

31 Zadanie domowe Zredukować wyrażenie postaci: λf f(y) (λy f(y)) Na powyższym przykładzie przeprowadzić analizę pojęcia zmiennej wolnej i związanej w λ-wyrażeniach. 31

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda

Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 13. Siła wyrazu rachunku lambda 1 Wstęp Wartości logiczne Liczby naturalne

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ

Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 4. Siła wyrazu rachunku λ 1 Wstęp Wartości

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Ćwiczenia z wyliczania wartości funkcji

Ćwiczenia z wyliczania wartości funkcji Ćwiczenia z wyliczania wartości funkcji 4 października 2011 1 Wprowadzenie Wyliczanie wartości wyrażenia nie jest sprawą oczywistą, szczególnie jeżeli chodzi o aplikację funkcji. Poniższy tekst nie jest

Bardziej szczegółowo

Podprogramy. Procedury

Podprogramy. Procedury Podprogramy Turbo Pascal oferuje metody ułatwiające tworzenie struktury programu, szczególnie dotyczy to większych programów. Przy tworzeniu większego programu stosuje się jego podział na kilka mniejszych

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja Plan Zależności funkcyjne 1. Zależności funkcyjne jako klasa ograniczeń semantycznych odwzorowywanego świata rzeczywistego. 2. Schematy relacyjne = typ relacji + zależności funkcyjne. 3. Rozkładalność

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++ Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu

Bardziej szczegółowo

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Ilość cyfr liczby naturalnej

Ilość cyfr liczby naturalnej Ilość cyfr liczby naturalnej Użytkownik wprowadza liczbę naturalną n. Podaj algorytm znajdowania ilości cyfr liczby n. (Np.: po wprowadzeniu liczby 2453, jako wynik powinna zostać podana liczba 4). Specyfikacja

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach

Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Krótkie wprowadzenie, czyli co

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Programowanie w logice Wykład z baz danych dla

Programowanie w logice Wykład z baz danych dla Programowanie w logice Wykład z baz danych dla studentów matematyki 18 maja 2015 Programowanie w logice Programowanie w logice to podejście do programowania, w którym na program patrzymy nie jak na opis

Bardziej szczegółowo

Wykład 2: Rachunek lambda

Wykład 2: Rachunek lambda Wykład 2: Rachunek lambda Systemy typów, II UWr, 2010 20 października 2010 λ-termy zmienne (Var) {x, y, z,...} nieskończony, przeliczalny zbiór zmiennych termy (Term) t ::= x λx.t t t skróty notacyjne

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA)

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Instrukcje Język Basic został stworzony w 1964 roku przez J.G. Kemeny ego i T.F. Kurtza z Uniwersytetu w Darthmouth (USA). Nazwa Basic jest

Bardziej szczegółowo

Elementy Teorii Obliczeń

Elementy Teorii Obliczeń Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych

Bardziej szczegółowo

Podstawy Informatyki Gramatyki formalne

Podstawy Informatyki Gramatyki formalne Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Języki i gramatyki Analiza syntaktyczna Semantyka 2 Podstawowe pojęcia Gramatyki wg Chomsky ego Notacja Backusa-Naura

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MIN-R1A1P-052 EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Czas pracy 90 minut ARKUSZ I MAJ ROK 2005 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 1 Algebra relacyjnych baz danych jako podstawa języka SQL i jego implementacji w systemach baz danych Oracle Bazy danych. Wykład

Bardziej szczegółowo

Projektowanie bazy danych przykład

Projektowanie bazy danych przykład Projektowanie bazy danych przykład Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeń wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Wstęp do Programowania Obiektowego. Wykład 13 Paradygmaty. Składnia i semantyka.

Wstęp do Programowania Obiektowego. Wykład 13 Paradygmaty. Składnia i semantyka. Wstęp do Programowania Obiektowego Wykład 13 Paradygmaty. Składnia i semantyka. 1 PRZEGLĄD PODSTAWOWYCH PARADYGMATÓW 2 Cztery podstawowe paradygmaty 1. Programowanie imperatywne. 2. Programowanie funkcyjne.

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Programowanie imperatywne i język C Zaprezentować paradygmat programowania imperatywnego

Bardziej szczegółowo

Delphi Laboratorium 3

Delphi Laboratorium 3 Delphi Laboratorium 3 1. Procedury i funkcje Funkcja jest to wydzielony blok kodu, który wykonuje określoną czynność i zwraca wynik. Procedura jest to wydzielony blok kodu, który wykonuje określoną czynność,

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Common Lisp - funkcje i zmienne

Common Lisp - funkcje i zmienne Instytut Informatyki Uniwersytetu Wrocławskiego 27 października 2010 Plan prezentacji 1 Funkcje 2 Plan prezentacji Funkcje 1 Funkcje Ogólna postać Sposoby podawania parametrów 2 Krótkie przypomnienie Funkcje

Bardziej szczegółowo

DECLARE VARIABLE zmienna1 typ danych; BEGIN

DECLARE VARIABLE zmienna1 typ danych; BEGIN Procedury zapamiętane w Interbase - samodzielne programy napisane w specjalnym języku (właściwym dla serwera baz danych Interbase), który umożliwia tworzenie zapytań, pętli, instrukcji warunkowych itp.;

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors.

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Wykład 3 ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Waldi Ravens J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 75 / 146 deklaracje zmiennych instrukcja podstawienia

Bardziej szczegółowo

ń ż ń ń ź ć ż ń ż ń ć ć ń ć ń ć ć Ź ń ć Ź ć ń ń ć ż ń ż ćź Ę ż ń ń ć ć ć ż ż ń ń Ę ć ć ń ż Ś Ś Ó Ź ń Ó ź Ś Ź Ę ż ń ż ź Ś ż ż ń ć ń ż ż ń Ż Ń Ź ż ż ć ć ż ć ń ż ż ń ń ń ć ń ż ć ź ć ń Ś Ę Ę ż Ę ń Ź ń Ó ż

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

1. Podstawy matematyki

1. Podstawy matematyki 1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole

Bardziej szczegółowo

Pliki. Operacje na plikach w Pascalu

Pliki. Operacje na plikach w Pascalu Pliki. Operacje na plikach w Pascalu ścieżka zapisu, pliki elementowe, tekstowe, operacja plikowa, etapy, assign, zmienna plikowa, skojarzenie, tryby otwarcia, reset, rewrite, append, read, write, buforowanie

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne

Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Automat skończony (AS), ang. Finite Automaton (FA) Automat skończony (automat czytający, maszyna Rabina-Scotta)

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni

Bardziej szczegółowo

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych m.szlenk@elka.pw.edu.pl Paradygmaty

Bardziej szczegółowo

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna Język JAVA podstawy Wykład 3, część 3 1 Język JAVA podstawy Plan wykładu: 1. Konstrukcja kodu programów w Javie 2. Identyfikatory, zmienne 3. Typy danych 4. Operatory, instrukcje sterujące instrukcja warunkowe,

Bardziej szczegółowo

Arytmetyka pierwszego rz du

Arytmetyka pierwszego rz du Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.

Bardziej szczegółowo