SZKOLNA LIGA ZADANIOWA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "SZKOLNA LIGA ZADANIOWA"

Transkrypt

1 KLASA 4 - ZESTAW ZADANIE Zmieszano dwa rodzaje cukierków czekoladowych: kg po 6zł i kg po 7zł. Jaka powinna być cena mieszanki? Za książkę i zeszyty zapłacono zł, a za taką samą książkę i 5 takich zeszytów zapłacono 7zł. Ile kosztowała książka, a ile zeszyt? ZADANIE Suma pewnej ilości liczb jest równa 64. Jeżeli każdą z nich zwiększymy o to suma będzie wynosiła 79. ile jest tych liczb? Metalowy pręt długości metra trzeba pociąć na równe części. Za jedno cięcie pręta trzeba zapłacić zł 50gr. Ile trzeba zapłacić z pocięcie tego pręta na 0 części? Pewną ilość cukierków zamierzono podzielić między dzieci. Ponieważ troje dzieci było nieobecnych, na każde z pozostałych dzieci przypadło o cukierki więcej. Ile cukierków było do podziału?

2 KLASA 5 - ZESTAW ZADANIE Za pomocą cyfr 0,, 7 zapisz wszystkie możliwe liczby dwucyfrowe. Oblicz, iloraz iloczynu tych liczb przez ich sumę. (UWAGA: Każda cyfra w danej liczbie może występować tylko jeden raz). Alicja, Dorota, Ewa i Kasia mają razem 570 znaczków. Gdyby Alicja dokupiła 0 znaczków, Kasia podarowała Dorocie 0, a Ewie 0 znaczków, to każda z dziewcząt będzie miała tyle samo znaczków. Ile znaczków ma każda z dziewczynek? ZADANIE Znajdź takie pary licz x i y, żeby liczba pięciocyfrowa 7x8y, w której cyfrą setek jest x, a cyfrą jedności y, dzieliła się przez 45. Podaj wszystkie takie liczby. Ile najwięcej jednakowych paczek można sporządzić z 44 czekolad, 80 batonów i 4 pomarańczy, aby wszystkie produkty były wykorzystane. Co będzie zawierała każda paczka? Znajdź wszystkie liczby dwucyfrowe, które przy dzieleniu przez dają resztę, przy dzieleniu przez 5 dają resztę 4, a przy dzieleniu przez resztę. ile jest takich liczb?

3 KLASA 6 - ZESTAW ZADANIE Oblicz x i sprawdź: 4 x Znajdź takie dwie liczby, których suma jest równa 50, a mniejsza z nich stanowi 5% większej z tych liczb. ZADANIE Cenę pewnego materiały obniżona najpierw o 0%, a następnie jeszcze o 0%. Jaka była cena początkowa materiału, jeżeli po dwóch obniżkach jeden metr tego materiału kosztował 8,80zł? a) O ile procent zwiększy się pole prostokąta, gdy każdy jego bok powiększymy o 0%? b) O ile procent zwiększy się pole kwadratu, gdy jego bok powiększymy o 45%? W liczbie trzycyfrowej suma cyfr jest równa 8. cyfra jedności jest największą cyfrą podzielną przez, a cyfra setek stanowi 50% cyfry dziesiątek. Co to za liczba?

4 KLASA I gim. - ZESTAW ZADANIE 7% pewnej liczby jest o większe od % tej liczby. Znajdź tę liczbę. Czy istnieje liczba dwucyfrowa o tej własności, że jeśli pomiędzy jej cyfry wstawimy 5, to otrzymana liczba trzycyfrowa będzie razy większa od liczby wyjściowej? ZADANIE Zapisz 5 za pomocą 8 dwójek, przy użyciu różnych działań. Wypisano po kolei wszystkie liczby całkowite dodatnie. Jaka cyfra znajduje się na 998 miejscu? Z trzech całych zapałek zbuduj: 0,,,, 4, 6, 7, 9,,7.

5 KLASA II gim. - ZESTAW ZADANIE Która z liczb jest większa: czy? Zapis dziesiętny liczby trzycyfrowej zaczyna się cyfrą 7. Cyfrę tę przenosimy na koniec zapisu. Otrzymana nowa liczba (trzycyfrowa) jest o 7 mniejsza od liczby wyjściowej. Od jakiej liczby wystartowaliśmy? ZADANIE Oblicz: a) b) Różnica kwadratów dwóch liczb całkowitych równa się 9. znajdź wszystkie pary liczb całkowitych mających tę własność. n n Uzasadnij, że 5 5 całkowitej dodatniej n. 5 n jest liczbą podzielną przez 55 dla każdej liczby

6 KLASA III gim. - ZESTAW ZADANIE Przedstaw w postaci iloczynu wyrażenie (m + 4n ) 6m n. Udowodnij, że dla dowolnych liczb rzeczywistych a, b prawdziwa jest nierówność: a) (a+b) 4ab b) ab a + b ZADANIE Uporządkuj liczby od najmniejszej do największej: 45, 6, 4 7, 5 8. Rozwiąż równanie: x Wykres funkcji y x przecina osie współrzędnych w punktach A=(c ; 0) oraz B=(0 ; d). Oblicz pole czworokąta o wierzchołkach A=(c ; 0), B=(0 ; d), C =(c ; 0) oraz D=(0 ; d).

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem

WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem. Zapisz liczbę 5 razy większą od ilorazu liczby x przez liczbę y. Oblicz wartość wyrażenia x y xy dla x = 6 oraz y = -.. Uprość wyrażenie: - 5x (x y) =.

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/

Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 12 IX rok 2003/2004 Bukiet 1 O pewnych liczbach A, B i C wiadomo, że: A + B = 32, B + C = 40, C + A = 26. 1. Ile wynosi A

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Klasa 5. Liczby i działania

Klasa 5. Liczby i działania Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 22 GRUDNIA

TERMIN ODDAWANIA PRAC 22 GRUDNIA KLASA IV Pojemnik zawierał 70 litrów płynu. Po pewnym czasie w pojemniku zostało 5 razy mniej płynu niż było na początku. Ile litrów płynu zużyto? Jak zmieni się suma trzech liczb, jeżeli pierwszą zwiększymy

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Małe Olimpiady Przedmiotowe. Test z matematyki

Małe Olimpiady Przedmiotowe. Test z matematyki Małe Olimpiady Przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa nr 17 Szkoła Podstawowa nr 18 Drogi Uczniu, Test składa się z

Bardziej szczegółowo

ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!!

ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!! ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!! LIGA ZADANIOWA KLASA IV Uzupełnij tabelę: Bok kwadratu Pole kwadratu

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.

Bardziej szczegółowo

3 zawartości szklanki obliczył, że w pozostałej

3 zawartości szklanki obliczył, że w pozostałej Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 KWIETNIA 2016 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Każda z dwóch wind towarowych obsługujacych nowo

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego

V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Sprawdziany powtórkowe. III klasa gimnazjum. Opracował : Krzysztof Kozak auczyciel I LO, Gimnazjum nr 1, Gimnazjum nr 2 w Głogowie

Sprawdziany powtórkowe. III klasa gimnazjum. Opracował : Krzysztof Kozak auczyciel I LO, Gimnazjum nr 1, Gimnazjum nr 2 w Głogowie Sprawdziany powtórkowe III klasa gimnazjum Opracował : Krzysztof Kozak auczyciel I LO, Gimnazjum nr, Gimnazjum nr w Głogowie Liczby rzeczywiste Gr.. Do którego zbioru należą dwie liczby niewymierne? a)

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5.

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 1 Dany jest ciąg określony wzorem dla. Oblicz i. Zadanie 2 Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 3 Dany jest ciąg o wzorze ogólnym, gdzie. Piąty

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

c) 3, Liczba zaokrąglona do dziesiątek tysięcy wynosi TAK NIE Liczba 3515,142 zaokrąglona do setek wynosi 3515,14.

c) 3, Liczba zaokrąglona do dziesiątek tysięcy wynosi TAK NIE Liczba 3515,142 zaokrąglona do setek wynosi 3515,14. Klasa. System dziesiątkowy.. Powierzchnia Litwy jest równa 65 200 000 000 m 2. Wielkość ta zapisana w notacji wykładniczej ma postać: A. 6,52 0 0 m 2 B. 6, 52 0 0 m 2 C. 0,652 0 m 2 D. 652 0 8 m 2 2. Zapisz

Bardziej szczegółowo

MaTeMaTYKa arkusz egzaminacyjny nr 2

MaTeMaTYKa arkusz egzaminacyjny nr 2 egzamin próbny 2 Imię i nazwisko Data Klasa Zadanie 1. (0 1) MaTeMaTYKa arkusz egzaminacyjny nr 2 Pierwsza polska kawiarnia powstała w Warszawie w XVIII wieku. Nie zyskała uznania wśród klientów i zbankrutowała,

Bardziej szczegółowo

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad.

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy 0..005 rok Czas rozwiązywania zadań 50 minut Zadanie ( pkt) a b a Wiedząc, że dla b 0. Oblicz b a b Zadanie

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap wojewódzki 23 lutego 2013 r. Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Sprawdź, czy zestaw zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

Ciekawe zadania o... liczbach całkowitych poziom 3

Ciekawe zadania o... liczbach całkowitych poziom 3 1/9 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 3 Zadanie 1 Zapisz pięć liczb całkowitych co najmniej trzycyfrowych oraz liczby do nich przeciwne. Następnie uszereguj

Bardziej szczegółowo

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej matematyka sprawdziany kompetencji dla klasy zreformowanej szkoły podstawowej Łódź 2001 Korekta Grażyna Pysznicka-Kozik Projekt okładki Jacek Wilk Skład Krzysztof Jodłowski Copyright by Piątek Trzynastego,

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata.

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata. Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz 1. Wzajemne położenia prostych, płaszczyzn w przestrzeni. 2. Graniastosłupy- podział, pole powierzchni i objętość. 3. Ostrosłupy- podział,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby naturalne... 7 Ułamki zwykłe, część I... 12 Ułamki zwykłe, część II... 17 Figury na płaszczyźnie... 22 Ułamki dziesiętne... 27 Procenty...

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 17 stron

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

ZADANIA UTRWALAJĄCE. Ulubiony sport. Piłka nożna Siatkówka Koszykówka Piłka ręczna Hokej Nie interesuję się sportem

ZADANIA UTRWALAJĄCE. Ulubiony sport. Piłka nożna Siatkówka Koszykówka Piłka ręczna Hokej Nie interesuję się sportem Zadanie. Zaznacz poprawną odpowiedź. ZADANIA UTRWALAJĄCE Matematyka w pierwszej klasie szkoy ponadgimnazjalnej Które dwie liczby mają taką własność, że ich największy wspólny dzielnik jest równy 8, a najmniejsza

Bardziej szczegółowo

Matematyka podstawowa I. Liczby rzeczywiste, zbiory

Matematyka podstawowa I. Liczby rzeczywiste, zbiory Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Cele

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

MaTeMaTYka arkusz egzaminacyjny nr 2

MaTeMaTYka arkusz egzaminacyjny nr 2 02 arkusz egzaminacyjny Imię i nazwisko Data Klasa MaTeMaTYka arkusz egzaminacyjny nr 2 Drogi Gimnazjalisto, przed Tobą arkusz egzaminacyjny sprawdzający twoją wiedzę z matematyki. Przed przystąpieniem

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 9 KWIETNIA 206 CZAS PRACY: 90 MINUT ZADANIE ( PKT) Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Różnica między

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ. MATEMATYKA Instrukcja

Bardziej szczegółowo

Matematyka. Repetytorium szóstoklasisty

Matematyka. Repetytorium szóstoklasisty Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu

Bardziej szczegółowo

Zadania z 12 stacji zadaniowych w projekcie Matematyczne Śledztwo

Zadania z 12 stacji zadaniowych w projekcie Matematyczne Śledztwo Zadania z stacji zadaniowych w projekcie Matematyczne Śledztwo Zadanie Poniżej jest przedstawiona kartka z kalendarza. Odpowiedzcie na wszystkie pytania. Niedziela Poniedziałek Wtorek Środa Czwartek Piątek

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY CZAS PRACY: 120 MIN. ZADANIE 1. ZADANIE 2 Wyłacz wspólny czynnik przed nawias: x 2 3x.

EGZAMIN GIMNAZJALNY CZAS PRACY: 120 MIN. ZADANIE 1. ZADANIE 2 Wyłacz wspólny czynnik przed nawias: x 2 3x. IMIE I NAZWISKO EGZAMIN GIMNAZJALNY CO NALEŻY POĆWICZYĆ? CZ. 3 CZAS PRACY: 120 MIN. ZADANIE 1 Uprość wyrażenie (2x 3)(x + 7). ZADANIE 2 Wyłacz wspólny czynnik przed nawias: x 2 3x. ZADANIE 3 ( ) Zapisz

Bardziej szczegółowo

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU! Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

Skrypt 16. Ciągi: Opracowanie L6

Skrypt 16. Ciągi: Opracowanie L6 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.

Bardziej szczegółowo

ZAPRASZAMY DO IV ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 21 LUTEGO 2013 R. ŻYCZYMY POWODZENIA!!

ZAPRASZAMY DO IV ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 21 LUTEGO 2013 R. ŻYCZYMY POWODZENIA!! ZAPRASZAMY DO IV ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 2 LUTEGO 20 R. ŻYCZYMY POWODZENIA!! LIGA ZADANIOWA KLASA IV W trójkącie ABC bok AB ma długość 5cm, bok BC

Bardziej szczegółowo

Matematyka test dla uczniów klas drugich

Matematyka test dla uczniów klas drugich Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 2011/20 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko kl... Zadanie 1. Liczba 5 1, 75 jest równa liczbie 6 7 1 A. 2

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste

Bardziej szczegółowo

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80 VI Piotrkowski Maraton Matematyczny 9-.06.0 Test jednokrotnego wyboru Czas na rozwiązanie: godz. 5 min. Do zdobycia: 80 punktów. Przed Tobą 0 zadań testowych. W kaŝdym zadaniu jest dokładnie jedna poprawna

Bardziej szczegółowo

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011 Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011 Zadanie 1. (1pkt)

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Poprawna odpowiedź Zad. 5 Zad.

Bardziej szczegółowo

BAZA ZADAŃ KLASA 1 TECHNIKUM

BAZA ZADAŃ KLASA 1 TECHNIKUM LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

CO DWIE GŁOWY TO NIE JEDNA

CO DWIE GŁOWY TO NIE JEDNA II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 1. Organizatorem konkursu jest Zespół Szkół nr 4 w Kościanie, nauczyciele Jolanta Niklas, Jolanta Jąder,

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.

KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. KONKURS MATEMATYCZNY STOŻEK 007/008 1. Na rozwiązanie 5 zadań masz 90 minut.. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. 3. W rozwiązaniach zadań przedstawiaj swój tok rozumowania. 4. Rozwiązania

Bardziej szczegółowo

Egzamin w klasie III gimnazjum Część matematyczna

Egzamin w klasie III gimnazjum Część matematyczna Egzamin w klasie III gimnazjum Część matematyczna Szkice rozwiązań zadań Zadanie 1. Ponieważ harcerze zaczęli marsz o 13:00, a skończyli o 15:30 więc rzeczywiście maszerowali 2,5 godziny Z autobusu do

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

Maraton Matematyczny Klasa I październik

Maraton Matematyczny Klasa I październik Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Internetowe Kółko Matematyczne

Internetowe Kółko Matematyczne Internetowe Kółko Matematyczne http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I ( X 2002) Zadanie. Niech n będzie dowolną liczbą naturalną. Udowodnij, że suma + 4 + 4 2 + 4 3 +...

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Zadania przygotowawcze do Regionalnego Konkursu Matematycznego dla klas pierwszych szkół ponadgimnazjalnych maj 2015. Zestaw I.

Zadania przygotowawcze do Regionalnego Konkursu Matematycznego dla klas pierwszych szkół ponadgimnazjalnych maj 2015. Zestaw I. dla klas pierwszych szkół ponadgimnazjalnych maj 05 Zestaw I Zad.. Dla jakich całkowitych liczb n, liczba postaci całkowitych? n n n również należy do zbioru liczb Zad.. Wyznacz wszystkie liczby całkowite

Bardziej szczegółowo