Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy."

Transkrypt

1 Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym pomniejszeniu jest globus. Aby ułatwić orientację na Ziemi a tym samym na globusie i jednoznacznie zlokalizować dany punkt wyznaczono sieć linii zwanych siatką geograficzną. Składają się na nią południki, czyli linie łączące bieguny oraz równoleżniki linie przebiegające równolegle do równika. Południki i równoleżniki zawsze przecinają się pod kątem prostym. - filmy edukacyjne on-line Strona 1/5

2 Południki- najważniejsze cechy: mają jednakową długość, równą połowie obwodu Ziemi są półokręgami przebiegającymi od jednego bieguna do drugiego wyznaczają kierunek północ-południe jest ich nieskończenie wiele Równoleżniki- najważniejsze cechy mają różną długość - filmy edukacyjne on-line Strona 2/5

3 są okręgami zmniejszającymi się wraz z odległością od równika wyznaczają kierunek wschód-zachód ich płaszczyzny są do siebie równoległe jest ich nieskończenie wiele Na podstawie międzynarodowego porozumienia wyznaczono tzw. południk początkowy i przyporządkowano mu wartość 0. Południk ten przechodzi przez Greenwitch pod Londynem i to od niego mierzy się długość geograficzną w kierunku wschodnim i zachodnim. Maksymalna wartość długości geograficznej wynosi 180. Najdłuższym równoleżnikiem jest równik. Przyjmuje on również wartość 0, natomiast bieguny 90. Spośród nieskończonej liczby równoleżników szczególnie wyróżnia się dwa zwrotniki raka i koziorożca wyznaczające granice strefy międzyzwrotnikowej oraz dwa koła podbiegunowe. Ponieważ Ziemia ma kształt zbliżony do kuli, to współrzędne geograficzne są miarą kątową. Jednostkami długości i szerokości geograficznej są więc stopnie. Każdy stopień dzieli się na 60 minut a każda minuta na 60 sekund Przy określaniu położenia geograficznego na Ziemi posługujemy się pojęciami długość i szerokość geograficzna. Długość geograficzna to miara kąta zawartego między półpłaszczyzną południka początkowego 0 a półpłaszczyzną południka przechodzącego przez określony punkt na powierzchni Ziemi. Południk zerowy i południk 180 dzielą ziemię na dwie półkule wschodnią i zachodnią, zatem wszystkie punkty leżące na półkuli wschodniej maja długość geograficzną wschodnią, a punkty leżące na półkuli zachodniej maja długość geograficzną zachodnią. przykład w filmie Szerokość geograficzna to miara kąta zawartego między płaszczyzną równika a promieniem ziemskim przechodzącym przez określony punkt na powierzchni Ziemi. Równik dzieli Ziemię na dwie półkule, północną i południową, tak więc wszystkie punkty leżące na półkuli północnej mają szerokość geograficzna północną, a punkty leżące na półkuli południowej mają szerokość geograficzną południową. przykład w filmie - filmy edukacyjne on-line Strona 3/5

4 Dla określenia położenia większych obiektów takich jak np. kontynenty, wyspy czy jeziora posłuży nam obliczenie rozciągłości równoleżnikowej i południkowej. Rozciągłością równoleżnikową określimy różnice długości geograficznej skrajnych punktów, natomiast po obliczeniu różnicy szerokości geograficznej skrajnych punktów otrzymamy rozciągłość południkową. przykład w filmie Współcześnie określenie współrzędnych geograficznych danego miejsca jest niezwykle proste. Służy do tego odbiornik GPS, skrót ten w tłumaczeniu na język polski oznacza Globalny System Pozycyjny. Urządzenie odbiera sygnały radiowe wysyłane przez - filmy edukacyjne on-line Strona 4/5

5 Powered by TCPDF ( Ściąga eksperta satelity nawigacyjne krążące po orbitach okołoziemskich. Na ich podstawie określa współrzędne geograficzne oraz wysokość nad poziom morza. - filmy edukacyjne on-line Strona 5/5

Współrzędne geograficzne

Współrzędne geograficzne Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna

Bardziej szczegółowo

Geografia jako nauka. Współrzędne geograficzne.

Geografia jako nauka. Współrzędne geograficzne. Geografia (semestr 3 / gimnazjum) Lekcja numer 1 Temat: Geografia jako nauka. Współrzędne geograficzne. Geografia jest nauką opisującą świat, w którym żyjemy. Wyraz geographia (z języka greckiego) oznacza

Bardziej szczegółowo

I OKREŚLANIE KIERUNKÓW NA ŚWIECIE

I OKREŚLANIE KIERUNKÓW NA ŚWIECIE GEOGRAFIA I OKREŚLANIE KIERUNKÓW NA ŚWIECIE a) róża kierunków b) według przedmiotów terenowych Na samotnie rosnących drzewach gałęzie od strony południowej są dłuższe i grubsze. Słoje w pieńkach od strony

Bardziej szczegółowo

RUCH OBROTOWY I OBIEGOWY ZIEMI

RUCH OBROTOWY I OBIEGOWY ZIEMI 1. Wpisz w odpowiednich miejscach następujące nazwy: Równik, Zwrotnika Raka, Zwrotnik Koziorożca iegun Południowy, iegun Północny Koło Podbiegunowe Południowe Koło Podbiegunowe Południowe RUCH OROTOWY

Bardziej szczegółowo

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. 14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej

Bardziej szczegółowo

Kartkówka powtórzeniowa nr 1

Kartkówka powtórzeniowa nr 1 Terminarz: 3g 3 stycznia 3b 4stycznia 3e 11 stycznia 3a, 3c, 3f 12 stycznia Kartkówka powtórzeniowa nr 1 Zagadnienia: 1. Współrzędne geograficzne 2. Skala 3. Prezentacja zjawisk na mapach Ad. 1. WSPÓŁRZĘDNE

Bardziej szczegółowo

NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego.

NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. RUCH OBIEGOWY ZIEMI NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. OBIEG ZIEMI WOKÓŁ SŁOŃCA W czasie równonocy

Bardziej szczegółowo

Kartkówka powtórzeniowa nr 2

Kartkówka powtórzeniowa nr 2 Terminarz: 3g 7 lutego 3b, 3e 8 lutego 3a, 3c, 3f 9 lutego Kartkówka powtórzeniowa nr 2 Zagadnienia: 1. czas słoneczny 2. ruch obrotowy i obiegowy Słońca 3. dni charakterystyczne, oświetlenie Ziemi Ad.

Bardziej szczegółowo

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy

Bardziej szczegółowo

Test sprawdzający wiadomości z rozdziału I i II

Test sprawdzający wiadomości z rozdziału I i II Test sprawdzający wiadomości z rozdziału I i II Zadanie 1 Do poniższych poleceń dobierz najlepsze źródło informacji. Uwaga: do każdego polecenia dobierz tylko jedno źródło informacji. Polecenie Źródło

Bardziej szczegółowo

BADANIE WYNIKÓW KLASA 1

BADANIE WYNIKÓW KLASA 1 BADANIE WYNIKÓW KLASA 1 Zad. 1 (0-1p) Wielki Mur Chiński ma obecnie długość około 2500km. Jego długość na mapie w skali 1:200 000 000 wynosi A. 125 cm B. 12,5 cm C. 1,25 cm D. 0,125 cm Zad. 2 (0-1p) Rzeka

Bardziej szczegółowo

Zadania do testu Wszechświat i Ziemia

Zadania do testu Wszechświat i Ziemia INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania

Bardziej szczegółowo

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości a. b. Ziemia w Układzie Słonecznym sprawdzian wiadomości 1. Cele lekcji Cel ogólny: podsumowanie wiadomości o Układzie Słonecznym i miejscu w nim Ziemi. Uczeń: i. a) Wiadomości zna planety Układu Słonecznego,

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo

24 godziny 23 godziny 56 minut 4 sekundy

24 godziny 23 godziny 56 minut 4 sekundy Ruch obrotowy Ziemi Podstawowe pojęcia Ruch obrotowy, inaczej wirowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun Północny i Biegun Południowy.

Bardziej szczegółowo

WZORY NA WYSOKOŚĆ SŁOŃCA. Wzory na wysokość Słońca

WZORY NA WYSOKOŚĆ SŁOŃCA. Wzory na wysokość Słońca TEMAT: Obliczanie wysokości Słońca. Daty WZORY NA WYSOKOŚĆ SŁOŃCA Wzory dla półkuli północnej 21 III i 23 IX h= 90 -φ h= 90 -φ Wzory dla półkuli południowej 22 VI h= 90 -φ+ 23 27 h= 90 -φ- 23 27 22 XII

Bardziej szczegółowo

Obliczanie czasów miejscowych słonecznych i czasów strefowych. 1h = 15 0

Obliczanie czasów miejscowych słonecznych i czasów strefowych. 1h = 15 0 Obliczanie czasów miejscowych słonecznych i czasów strefowych. Kilka słów wstępnych Ziemia obraca się z zachodu na wschód. W ciągu 24 godzin obróci się o 360 0. Jeżeli podzielimy 360 0 na 24 godziny otrzymamy

Bardziej szczegółowo

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn

Bardziej szczegółowo

Kryteria ocen z geografii w gimnazjum specjalnym dla uczniów z upośledzeniem umysłowym w stopniu lekkim

Kryteria ocen z geografii w gimnazjum specjalnym dla uczniów z upośledzeniem umysłowym w stopniu lekkim Kryteria ocen z geografii w gimnazjum specjalnym dla uczniów z upośledzeniem umysłowym w stopniu lekkim Celem przedmiotowego systemu oceniania jest: notowanie postępów i osiągnięć ucznia, wspomaganie procesu

Bardziej szczegółowo

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań:

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań: Elementy mapy mapa jest płaskim obrazem powierzchni Ziemi lub jej części przedstawionym na płaszczyźnie w odpowiednim zmniejszeniu; siatka kartograficzna będzie się zawsze różniła od siatki geograficznej;

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Zadanie 2. (0-2) Podaj dzień tygodnia i godzinę, która jest w Nowym Orleanie. dzień tygodnia... godzina...

Zadanie 2. (0-2) Podaj dzień tygodnia i godzinę, która jest w Nowym Orleanie. dzień tygodnia... godzina... Zadanie 1.(0-1) Na południe od pewnego równoleżnika Słońce codziennie wschodzi i zachodzi, zaś na północ od tego równoleżnika występuje zjawisko dni i nocy polarnych. Powyższy opis dotyczy równoleżnika:

Bardziej szczegółowo

NaCoBeZU geografia klasa pierwsza

NaCoBeZU geografia klasa pierwsza NaCoBeZU geografia klasa pierwsza Zagadnienie Geografia jako nauka Wyjaśnisz znaczenie terminu: geografia, środowisko przyrodnicze i geograficzne. Wymienisz źródła wiedzy geograficznej. Wymienisz elementy

Bardziej szczegółowo

Niepubliczne Liceum Ogólnokształcące nr 81 SGH TEST EGZAMINACYJNY 2012 r. Zadania egzaminacyjne GEOGRAFIA wersja B

Niepubliczne Liceum Ogólnokształcące nr 81 SGH TEST EGZAMINACYJNY 2012 r. Zadania egzaminacyjne GEOGRAFIA wersja B Niepubliczne Liceum Ogólnokształcące nr 81 SGH TEST EGZAMINACYJNY 2012 r. Zadania egzaminacyjne GEOGRAFIA wersja B kod ucznia... Zadanie 1. (1,5 pkt) Uzupełnij tabelę. Wpisz w odpowiednie miejsca nazwy

Bardziej szczegółowo

Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.

Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy. ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia

Bardziej szczegółowo

Gdzie się znajdujemy na Ziemi i w Kosmosie

Gdzie się znajdujemy na Ziemi i w Kosmosie Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych

Bardziej szczegółowo

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym

Bardziej szczegółowo

MIĘDZYSZKOLNY KONKURS GEOGRAFICZNY DLA GIMNAZJALISTÓW WĘDRUJEMY PO MAPIE ŚWIATA

MIĘDZYSZKOLNY KONKURS GEOGRAFICZNY DLA GIMNAZJALISTÓW WĘDRUJEMY PO MAPIE ŚWIATA Nazwisko Imię Szkoła Liczba punktów (wypełnia sprawdzający) XXI LICEUM OGÓLNOKSZTAŁCĄCE im. św. St. Kostki w Lublinie MIĘDZYSZKOLNY KONKURS GEOGRAFICZNY DLA GIMNAZJALISTÓW Część I Czas pracy: 30 minut

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Ziemia we Wszechświecie lekcja powtórzeniowa

Ziemia we Wszechświecie lekcja powtórzeniowa Scenariusz lekcji Scenariusz lekcji powtórzeniowej do podręczników PULS ZIEMI 1 i PLANETA NOWA 1 45 min Ziemia we Wszechświecie lekcja powtórzeniowa t Hasło programowe: Ziemia we Wszechświecie/Ruchy Ziemi.

Bardziej szczegółowo

www.prototo.pl MATERIAŁY Z KURSU KWALIFIKACYJNEGO

www.prototo.pl MATERIAŁY Z KURSU KWALIFIKACYJNEGO Wszystkie materiały tworzone i przekazywane przez Wykładowców NPDN PROTOTO są chronione prawem autorskim i przeznaczone wyłącznie do użytku prywatnego. MATERIAŁY Z KURSU KWALIFIKACYJNEGO J. Gadowicz Orientacja

Bardziej szczegółowo

Podręcznik Żeglarstwa. Szkoła Żeglarstwa SZEKLA

Podręcznik Żeglarstwa. Szkoła Żeglarstwa SZEKLA Podręcznik Żeglarstwa Szkoła Żeglarstwa SZEKLA Autor rozdziału: Wojciech Damsz Podstawy nawigacji dla Żeglarzy Jachtowych Nawigacja morska jest dziedziną wiedzy żeglarskiej, która umożliwia bezpieczne

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Astronomia poziom rozszerzony

Astronomia poziom rozszerzony Astronomia poziom rozszerzony Zadanie 1. (2 pkt) ś ż ś ę ł ść ę ż ł ł ść ę ż ł ł ść Ł Źródło: CKE 2005 (PR), zad. 39. Zadanie 2. (1 pkt) Źródło: CKE 2006 (PR), zad. 28. Do podanych niżej miejscowości dobierz

Bardziej szczegółowo

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)

Bardziej szczegółowo

Ściąga eksperta. Ruch obiegowy i obrotowy Ziemi. - filmy edukacyjne on-line. Ruch obrotowy i obiegowy Ziemi.

Ściąga eksperta. Ruch obiegowy i obrotowy Ziemi.  - filmy edukacyjne on-line. Ruch obrotowy i obiegowy Ziemi. Ruch obiegowy i obrotowy Ziemi Ruch obrotowy i obiegowy Ziemi Ruch obiegowy W starożytności uważano, że wszystkie ciała niebieskie wraz ze Słońcem poruszają się wokół Ziemi. Jest to tzw. teoria geocentryczna.

Bardziej szczegółowo

Tellurium szkolne [ BAP_1134000.doc ]

Tellurium szkolne [ BAP_1134000.doc ] Tellurium szkolne [ ] Prezentacja produktu Przeznaczenie dydaktyczne. Kosmograf CONATEX ma stanowić pomoc dydaktyczną w wyjaśnianiu i demonstracji układu «ZIEMIA - KSIĘŻYC - SŁOŃCE», zjawiska nocy i dni,

Bardziej szczegółowo

http://bip.umtychy.pl/index.php?action=pobierzplik&id=36195

http://bip.umtychy.pl/index.php?action=pobierzplik&id=36195 Ą ć ż Ę Ę Ś Ą ż Ę Ś Ą Ą ż Ą Ą Ą Ń Ó Ś ć ż Ó Ś Ś Ę http://bip.umtychy.pl/index.php?action=pobierzplik&id=36195 ż Ą Ó ż Ą Ś Ą Ę Ó Ś Ą Ą Ń ż Ę Ą Ą ż ż Ą Ś ć Ó Ó Ó Ó Ó Ę Ę Ą ć Ó Ó Ó Ź Ń ć ć Ą ć Ń Ń ż Ę ż

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

2. Ziemia we Wszechświecie

2. Ziemia we Wszechświecie 2. Ziemia we Wszechświecie 5 4 6 3 Horyzont N O 2 1 Rysunek 2.1 Punkty orientacyjne na sferze niebieskiej z horyzontem dla obserwatora O stojącego w Krakowie 21 III w punkcie o współrzędnych geograficznych

Bardziej szczegółowo

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych Załącznik nr 1 Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów Tabela 1. Parametry techniczne geodezyjnego układu odniesienia PL-ETRF2000 Parametry techniczne geodezyjnego

Bardziej szczegółowo

Wymagania edukacyjne z przyrody KL. VI

Wymagania edukacyjne z przyrody KL. VI Wymagania edukacyjne z przyrody KL. VI Wymagania na ocenę celującą: Uczeń : realizuje w sposób pełny wymagania zawarte w podstawie programowej osiąga sukcesy w konkursach przyrodniczych o randze powiatu

Bardziej szczegółowo

XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2

XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2 -2/1- Zadanie 8. W każdym z poniższych zdań wpisz lub podkreśl poprawną odpowiedź. XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2 A. Słońce nie znajduje się dokładnie w centrum orbity

Bardziej szczegółowo

Mapy papierowe a odbiornik GPS

Mapy papierowe a odbiornik GPS Mapy papierowe a odbiornik GPS Na polskim rynku spotykamy mapy wykonane w kilku różnych układach odniesienia, z różnymi siatkami współrzędnych prostokątnych płaskich (siatkami kilometrowymi). Istnieje

Bardziej szczegółowo

- proponuje odpowiedni wykres, diagram, kartogram i kartodiagram do przedstawienia

- proponuje odpowiedni wykres, diagram, kartogram i kartodiagram do przedstawienia Wykresy i diagramy - wyjaśnia, do czego służą kresy i diagramy - odczytuje informacje z wykresów i diagramów - rysuje proste wykresy i diagramy Dobry: -interpretuje informacje zawarte na wykresach i diagramach

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

3. Odległość między punktami A i B wynosi 500 km. Oblicz skalę liczbową mapy, na której odległość ta wynosi 2,5 cm.

3. Odległość między punktami A i B wynosi 500 km. Oblicz skalę liczbową mapy, na której odległość ta wynosi 2,5 cm. SKALA MAPY 1. Przekształć skale mianowane na skale liczbowe. Następnie ułóż uzyskane skale liczbowe w kolejności od największej do najmniejszej. Traktuj skalę jak ułamek, czyli im większa liczba w mianowniku,

Bardziej szczegółowo

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1 Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.

Bardziej szczegółowo

Podstawy Nawigacji. Kierunki. Jednostki

Podstawy Nawigacji. Kierunki. Jednostki Podstawy Nawigacji Kierunki Jednostki Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje,

Bardziej szczegółowo

Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych. Strefa danych matematycznych. Strefa opisu fizycznego.

Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych. Strefa danych matematycznych. Strefa opisu fizycznego. Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych Strefa danych matematycznych. Strefa opisu fizycznego. SKRÓT Irena Grzybowska i.grz@twarda.pan.pl STREFA DANYCH MATEMATYCZNYCH Dane

Bardziej szczegółowo

odwzorowanie równokątne elipsoidy Krasowskiego

odwzorowanie równokątne elipsoidy Krasowskiego odwzorowanie równokątne elipsoidy Krasowskiego wprowadzony w 1952 roku jako matematyczną powierzchnię odniesienia zastosowano elipsoidę lokalną Krasowskiego z punktem przyłożenia do geoidy w Pułkowie odwzorowanie

Bardziej szczegółowo

ZAŁĄCZNIK 17 Lotnicza Pogoda w pytaniach i odpowiedziach

ZAŁĄCZNIK 17 Lotnicza Pogoda w pytaniach i odpowiedziach GLOBALNA CYRKULACJA POWIETRZA I STREFY KLIMATYCZNE Terminu klimat używamy do opisu charakterystycznych cech/parametrów pogody dla danego obszaru geograficznego. W skład tych parametrów wchodzą: temperatura,

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

MIĘDZYSZKOLNY KONKURS GEOGRAFICZNY DLA GIMNAZJALISTÓW WĘDRUJEMY PO MAPIE ŚWIATA

MIĘDZYSZKOLNY KONKURS GEOGRAFICZNY DLA GIMNAZJALISTÓW WĘDRUJEMY PO MAPIE ŚWIATA Nazwisko Imię Szkoła Liczba punktów (wypełnia sprawdzający) XXI LICEUM OGÓLNOKSZTAŁCĄCE im. św. St. Kostki w Lublinie MIĘDZYSZKOLNY KONKURS GEOGRAFICZNY DLA GIMNAZJALISTÓW Część I Czas pracy: 30 minut

Bardziej szczegółowo

SCENARIUSZ LEKCJI GEOGRAFII W KLASIE PIERWSZEJ GIMNAZJUM TEMAT: POWTÓRZENIE WIADOMOŚCI PODZIAŁ, ROZMIESZCZENIE, UKSZTAŁTOWANIE PIONOWE LĄDÓW I OCEANÓW

SCENARIUSZ LEKCJI GEOGRAFII W KLASIE PIERWSZEJ GIMNAZJUM TEMAT: POWTÓRZENIE WIADOMOŚCI PODZIAŁ, ROZMIESZCZENIE, UKSZTAŁTOWANIE PIONOWE LĄDÓW I OCEANÓW SCENARIUSZ LEKCJI GEOGRAFII W KLASIE PIERWSZEJ GIMNAZJUM TEMAT: POWTÓRZENIE WIADOMOŚCI PODZIAŁ, ROZMIESZCZENIE, UKSZTAŁTOWANIE PIONOWE LĄDÓW I OCEANÓW CELE OGÓLNE: - POWTÓRZENIE I UTRWALENIE WIADOMOŚCI

Bardziej szczegółowo

1. * Wyjaśnij, dlaczego w kalendarzu gregoriańskim wprowadzono lata przestępne na zasadach opisanych powyŝej...

1. * Wyjaśnij, dlaczego w kalendarzu gregoriańskim wprowadzono lata przestępne na zasadach opisanych powyŝej... Zadania oznaczone * - zakres rozszerzony Zadania 1i 2 wykonaj po przeczytaniu poniŝszego tekstu. Od 1582 r. powszechnie w świecie jest uŝywany kalendarz gregoriański. Przyjęto w nim załoŝenie, tak jak

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

I. POŁOŻENIE GEOGRAFICZNE. USTRÓJ POLITYCZNO-ADMINISTRACYJNY

I. POŁOŻENIE GEOGRAFICZNE. USTRÓJ POLITYCZNO-ADMINISTRACYJNY I. POŁOŻENIE GEOGRAFICZNE. USTRÓJ POLITYCZNO-ADMINISTRACYJNY Znajomość faktów 1. Zakreśl prawidłowy zestaw skrajnych punktów Polski. 1 p. a) szczyt Opołonek w Bieszczadach, przylądek Rozewie, zakole Odry

Bardziej szczegółowo

Określanie współrzędnych geograficznych pomoc dla uczniów klas pierwszych gimnazjum.

Określanie współrzędnych geograficznych pomoc dla uczniów klas pierwszych gimnazjum. Określanie współrzędnych geograficznych pomoc dla uczniów klas pierwszych gimnazjum. Szerokość geograficzna jest to kąt pomiędzy płaszczyzną równika, a półprostą wychodzącą ze środka Ziemi i przechodzącą

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W celu ujednolicenia wyników pomiarów geodezyjnych, a co za tym idzie umożliwienia tworzenia

Bardziej szczegółowo

SCENARIUSZ LEKCJI GEOGRAFII W KLASIE I GIMNAZJUM TEMAT LEKCJI-OŚWIETLENIE ZIEMI W PIERWSZYCH DNIACH ASTRONOMICZNYCH PÓR ROKU

SCENARIUSZ LEKCJI GEOGRAFII W KLASIE I GIMNAZJUM TEMAT LEKCJI-OŚWIETLENIE ZIEMI W PIERWSZYCH DNIACH ASTRONOMICZNYCH PÓR ROKU SCENARIUSZ LEKCJI GEOGRAFII W KLASIE I GIMNAZJUM TEMAT LEKCJI-OŚWIETLENIE ZIEMI W PIERWSZYCH DNIACH ASTRONOMICZNYCH PÓR ROKU CEL OGÓLNY- UŚWIADOMIENIE UCZNIOM, ŻE MIMO IŻ SŁOŃCE WYSYŁA ZAWSZE TAKĄ SAMĄ

Bardziej szczegółowo

ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów.

ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. Jak to zostało przedstawione w części 5.2.1, jeżeli zrobimy Słońcu zdjęcie z jakiegoś miejsca na powierzchni ziemi w danym momencie t i dokładnie

Bardziej szczegółowo

Róża wiatrów czyli kierunki świata

Róża wiatrów czyli kierunki świata Utworzenie i prowadzenie Centrum Aktywności Sportowej i Społecznej na osiedlu Nowy Dwór we Wrocławiu wraz ze wsparciem technicznym. ( NR D/WCRS/1497/1/2014-2016) Podstawy topografii Autor: Katarzyna Kaiser

Bardziej szczegółowo

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach.

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach. Prąd strumieniowy (jet stream) jest wąskim pasem bardzo silnego wiatru na dużej wysokości (prędkość wiatru jest > 60 kts, czyli 30 m/s). Możemy go sobie wyobrazić jako rurę, która jest spłaszczona w pionie

Bardziej szczegółowo

Kategoria SZKOŁY PODSTAWOWE

Kategoria SZKOŁY PODSTAWOWE Kategoria SZKOŁY PODSTAWOWE Znajdź na swojej mapie dwa punkty kontrolne o największych takich numerach, że ich różnica wynosi 1. Odcinek łączący te punkty jest podstawą trójkąta równoramiennego o trzecim

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) w sprawie ustalenia granicy portu morskiego w Trzebieży od strony lądu

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) w sprawie ustalenia granicy portu morskiego w Trzebieży od strony lądu Projekt T z dnia 18.11.08 r. ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia...2008 r. w sprawie ustalenia granicy portu morskiego w Trzebieży od strony lądu Na podstawie art. 45 ust. 1 pkt 2 ustawy z

Bardziej szczegółowo

Matematyka z kluczem

Matematyka z kluczem Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych

Bardziej szczegółowo

A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km.

A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km. ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko ucznia... Szkoła...

Bardziej szczegółowo

ZIEMIA W UKŁADZIE SŁONECZNYM TEST SKŁADA SIĘ Z 16 ZADAŃ, NA JEGO ROZWIĄZANIE MASZ 90 MINUT. 1. Poniżej przedstawiono informacje dotyczące jednej doby

ZIEMIA W UKŁADZIE SŁONECZNYM TEST SKŁADA SIĘ Z 16 ZADAŃ, NA JEGO ROZWIĄZANIE MASZ 90 MINUT. 1. Poniżej przedstawiono informacje dotyczące jednej doby ZIEMIA W UKŁADZIE SŁONECZNYM TEST SKŁADA SIĘ Z 16 ZADAŃ, NA JEGO ROZWIĄZANIE MASZ 90 MINUT. Powodzenia 1. Poniżej przedstawiono informacje dotyczące jednej doby roku. (0-6p.) wsch. 7.21 zach. 15.28 LISTOPAD

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z GEOGRAFII DLA UCZNIÓW Z UPOŚLEDZENIEM UMYSŁOWYM W STOPNIU LEKKIM

WYMAGANIA EDUKACYJNE Z GEOGRAFII DLA UCZNIÓW Z UPOŚLEDZENIEM UMYSŁOWYM W STOPNIU LEKKIM WYMAGANIA EDUKACYJNE Z GEOGRAFII DLA UCZNIÓW Z UPOŚLEDZENIEM UMYSŁOWYM W STOPNIU LEKKIM OPRACOWANO NA PODSTAWIE PROGRAMU NAUCZANIA DKW 4014 305/99 WYMAGANIA OGÓLNE OCENA CELUJĄCA - wiedza na poziomie znacznie

Bardziej szczegółowo

z dnia 2015 r. w sprawie ustalenia granic morskich portów wojennych

z dnia 2015 r. w sprawie ustalenia granic morskich portów wojennych Projekt R O Z P O R Z Ą D Z E N I E M I N I S T R A O B R O N Y N A R O D O W E J z dnia 2015 r. w sprawie ustalenia granic morskich portów wojennych Na podstawie art. 45 ust. 2b ustawy z dnia 21 marca

Bardziej szczegółowo

Kartografia - wykład

Kartografia - wykład prof. dr hab. inż. Jacek Matyszkiewicz KATEDRA ANALIZ ŚRODOWISKOWYCH, KARTOGRAFII I GEOLOGII GOSPODARCZEJ Kartografia - wykład Mapy topograficzne i geologiczne Część 1 MAPA Graficzny, określony matematycznie

Bardziej szczegółowo

Przykładowe zagadnienia.

Przykładowe zagadnienia. Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z t δ N S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

D FAŁSZ D PRAWDA ",==,./. ',<:"'''4''0''7'''' '-' '-_._-._._._._.-.-_.-...,

D FAŁSZ D PRAWDA ,==,./. ',<:'''4''0''7'''' '-' '-_._-._._._._.-.-_.-..., Obraz Ziemi. Ziemia we Wszechświecie 12. Informacje geograficzne przedstawia się na mapach za pomocą różnych metod. Zaznacz poprawne przyporządkowanie m~tody do danej mapy. A. Metoda Izolinii - mapa izobar.

Bardziej szczegółowo

Stopień I. 26 październik 2016 r. KONKURS Z GEOGRAFII. Temat: Wędrówki po Europie

Stopień I. 26 październik 2016 r. KONKURS Z GEOGRAFII. Temat: Wędrówki po Europie 1...... Kod ucznia Suma punktów Stopień I 26 październik 2016 r. KONKURS Z GEOGRAFII Temat: Wędrówki po Europie Instrukcja: 1. Sprawdź, czy arkusz konkursowy zawiera 15 zadań. 2. Czytaj bardzo uważnie

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński Taki układ wydaje się prosty. Sytuacja komplikuje się gdy musimy narysować i używać dwóch lub trzech

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4 SP

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4 SP I. Liczby naturalne część 1 konieczne i umiejętności dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie 100 bez przekraczania progu dziesiątkowego, mnoży liczby jednocyfrowe,

Bardziej szczegółowo

Regulamin IX Międzypowiatowego Konkursu Geograficznego dla uczniów gimnazjów w roku szkolnym 2014/2015

Regulamin IX Międzypowiatowego Konkursu Geograficznego dla uczniów gimnazjów w roku szkolnym 2014/2015 Nasz znak: SCE.58/2-6/15 Tarnów, dnia 19 stycznia 2015 r.. Regulamin IX Międzypowiatowego Konkursu Geograficznego dla uczniów gimnazjów w roku szkolnym 2014/2015 Organizator: Samorządowe Centrum Edukacji

Bardziej szczegółowo

Bydgoszcz, dnia 12 listopada 2015 r. Poz ROZPORZĄDZENIE Nr 10/2015 DYREKTORA REGIONALNEGO ZARZĄDU GOSPODARKI WODNEJ W GDAŃSKU

Bydgoszcz, dnia 12 listopada 2015 r. Poz ROZPORZĄDZENIE Nr 10/2015 DYREKTORA REGIONALNEGO ZARZĄDU GOSPODARKI WODNEJ W GDAŃSKU DZIENNIK URZĘDOWY WOJEWÓDZTWA KUJAWSKO-POMORSKIEGO Bydgoszcz, dnia 12 listopada 2015 r. Poz. 3479 ROZPORZĄDZENIE Nr 10/2015 DYREKTORA REGIONALNEGO ZARZĄDU GOSPODARKI WODNEJ W GDAŃSKU w sprawie ustanowienia

Bardziej szczegółowo

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski Globalny Nawigacyjny System Satelitarny GLONASS dr inż. Paweł Zalewski Wprowadzenie System GLONASS (Global Navigation Satellite System lub Globalnaja Nawigacjonnaja Sputnikowaja Sistiema) został zaprojektowany

Bardziej szczegółowo

ĆWICZENIE 4. Temat. Transformacja współrzędnych pomiędzy różnymi układami

ĆWICZENIE 4. Temat. Transformacja współrzędnych pomiędzy różnymi układami ĆWICZENIE 4 Temat Transformacja współrzędnych pomiędzy różnymi układami Skład operatu: 1. Sprawozdanie techniczne. 2. Tabelaryczny wykaz współrzędnych wyjściowych B, L na elipsoidzie WGS-84. 3. Tabelaryczny

Bardziej szczegółowo

Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji

Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji Linia pozycyjna dr inż. Paweł Zalewski w radionawigacji Wprowadzenie Jednym z zadań nawigacji jest określenie pozycji jednostki ruchomej - człowieka, pojazdu, statku czy samolotu. Pozycję ustala się przez

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Mapa niewyczerpane źródło informacji

Mapa niewyczerpane źródło informacji Mapa niewyczerpane źródło informacji Opis: Program powstał, ponieważ uczniowie mają problem w posługiwaniu się mapą i skalą. Mają kłopoty z orientacją na mapie oraz odczytywaniem informacji z różnych typów

Bardziej szczegółowo

Rozwiązania przykładowych zadań

Rozwiązania przykładowych zadań Rozwiązania przykładowych zadań Oblicz czas średni i czas prawdziwy słoneczny na południku λ=45 E o godzinie 15 00 UT dnia 1 VII. Rozwiązanie: RóŜnica czasu średniego słonecznego T s w danym miejscu i

Bardziej szczegółowo

Geometrie Wszechświata. 2. Problem z Euklidesem materiały do ćwiczeń

Geometrie Wszechświata. 2. Problem z Euklidesem materiały do ćwiczeń Geometrie Wszechświata. 2. Problem z Euklidesem materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 9 marzec 2017 Różne geometrie i modele w pigułce 1. Geometria euklidesowa:

Bardziej szczegółowo

dobry (wymagania rozszerzające) dodaje i odejmuje w pamięci liczby naturalne z przekraczaniem progu dziesiątkowego

dobry (wymagania rozszerzające) dodaje i odejmuje w pamięci liczby naturalne z przekraczaniem progu dziesiątkowego dopuszczający (wymagania konieczne) odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane cyframi (w zakresie 1 000 000) zapisuje cyframi

Bardziej szczegółowo

Obliczenia geograficzne - przykłady

Obliczenia geograficzne - przykłady bliczenia geograficzne - przykłady Zmiany temperatury wraz z wysokością Wilgotne powietrze na każde 100 metrów wysokości zmienia swoją temperaturę o 0,5, powietrze suche o 1, natomiast powietrze częściowo

Bardziej szczegółowo

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

ZAĆMIENIA. Zaćmienia Słońca

ZAĆMIENIA. Zaćmienia Słońca ZAĆMIENIA Zaćmienia Słońca 1. Całkowite zaćmienie Słońca 20 marca 2015. Pas fazy całkowitej zaćmienia rozpocznie się 20 marca 2015 o godzinie 9 h 10 m na północnym Atlantyku, prawie 500 km na południe

Bardziej szczegółowo

Spis treści JAK PRZEDSTAWIĆ OBRAZ POWIERZCHNI ZIEMI?... 5 CO MOŻNA ODNALEŹĆ NA MAPIE ŚWIATA?... 56 JAK WYZNACZYĆ POŁOŻENIE MIEJSCA NA ŚWIECIE?...

Spis treści JAK PRZEDSTAWIĆ OBRAZ POWIERZCHNI ZIEMI?... 5 CO MOŻNA ODNALEŹĆ NA MAPIE ŚWIATA?... 56 JAK WYZNACZYĆ POŁOŻENIE MIEJSCA NA ŚWIECIE?... Spis treści 1. 2. 3. JAK PRZEDSTAWIĆ OBRAZ POWIERZCHNI ZIEMI?................ 5 Skala na mapie i jej odczytywanie................................ 5 Obliczamy odległości w terenie na podstawie skali mapy..................

Bardziej szczegółowo

SCENARIUSZ LEKCJI PRZYRODY W KLASIE VI SP

SCENARIUSZ LEKCJI PRZYRODY W KLASIE VI SP Autor: Anna Romańska SCENARIUSZ LEKCJI PRZYRODY W KLASIE VI SP Cele lekcji: Temat: Cechy pogody w Polsce. Cel poznawczy: poznaje cechy pogody charakterystyczne dla Polski Cel kształcący: wyjaśnia zaleŝności

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Ocena dopuszczająca (wymagania konieczne) Ocena dostateczna

Bardziej szczegółowo