Dysnomia Eris

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dysnomia Eris"

Transkrypt

1 Dysnomia Eris

2 Słońce

3 Speaking of size... RRRozmiaryplanets

4 Wnętrze Słońca

5 Wewnętrzne obszary słoneczne Główne obszary Jądro reakcje nuklearne Strefa radiacji ok. 70% obszaru Słońca, jest to obszar gdzie energia przenoszona jest w postaci promieniowania Strefa konwekcyjna prądy konwekcyjne wynoszą energię na powierzchnię Fale p fale akustyczne, wywołane zmiennym ciśnieniem w kolejnych warstwach Słońca Fale g grawitacyjne, ograniczone do strefy radiacyjnej

6 Atmosfera Słońca

7 Regiony atmosfery Fotosfera Chromosfera Korona Wiatr słoneczny

8 Cechy fotosfery

9 Plamy 5700 K -> < K

10 Rozmiary plam od 1500 do km -> km <-- Prędkość przepływu w granulach ~ kilka km/s < km->

11 Płytkość plam Strzałkami oznaczono kierunek przepływu gazów: kolor niebieski niskie temperatury, prędkość przepływu rzędu 5000 km/h kolor czerwony obszary ciepłe Wypływ materii ponad powierzchnię, wzdłuż linii pola magnetycznego następuje w wąskim pasie naokoło plamy

12 Cykle słoneczne Schwabe (1843) cykl około 10 lat Minimum Maundera , (potop szwedzki ), Współczesne cykle datuje się od minimum Maundera (1 cykl , obecnie schyłek 24-go).

13 Rekonstrukcja minimów w okresie lat Przypuszczenie o istnieniu minimów aktywności słonecznej przed minimum Maundera wynika z wyników pomiarów obfitości izotopu 14 C w słojach drzew. Okresy te nazwano minimum Spörera ( ) oraz minimum Daltona ( ). Z wyników badań radiowęglowych wynikałoby, iż w ciągu ostatnich 8 tys. lat było 18 takich minimów.

14 Diagram motylkowy Cykle 22 24

15 Granule i supergranule ruch granuli <-- ~1000 km, czas życia ~20 min, przepływ materii 7 km/s ~ km, widoczne dobrze w pomiarach przesunięcia Dopplerowskiego, Niebieskie zbliżające się, czerwone oddalające się.

16 Pochodnie (faculae) Silne pola magnetyczne redukują znacznie gęstość gazów. Niska gęstość gazu czyni go niemal przeźroczystym dzięki czemu widoczne są niższe partie granuli w których gaz jest cieplejszy i promieniuje silniej, stąd te pojaśnienia.

17 Cechy chromosfery

18 Cechy chromosfery Protuberancje Włókna (filaments) Pola pochodni (plages) Bryzgi chromosferyczne (spiculae) Cieplejsza ( C) od fotosfery ( C)

19 Protuberancje Protuberancje to gęsta plazma wyrzucana wzdłuż pętli linii sił pola magnetycznego. Czas życia dni a nawet tygodnie. Szczególnie wielkie wyrzuty materii są w stanie oderwać się od Słońca i rozproszyć w przestrzeni kosmicznej.

20 Włókna (filaments) i pola pochodni (plages) Plage-> <- filament Włókna to protuberancje oglądane na tle tarczy słonecznej. Są to chłodniejsze i gęstsze chmury gazu, zawieszone ponad powierzchnią, wzdłuż linii pola magnetycznego. Plaże to pola pochodni, występują przy plamach słonecznych i są najlepiej obserwowane w linii wodoru.

21 Bryzgi chromosferyczne (spiculae) Bryzgi to małe wyrzuty materii w chromosferze. W linii H-alfa wyglądają jak krókie ciemne pasma. Czas życia kilka minut. Materia w tych wyrzutach dostaje się aż do korony z prędkością km/s

22 Cechy korony

23 Korona Pętle koronalne Pióropusze biegunowe Strumienie hełmowe Dziury koronalne Koronalne wyrzuty materii (CME) Wiatr słoneczny

24 Pętle koronalne i pióropusze (plumes) biegunowe Pętle koronalne zazwyczaj występują w pobliżu plam i obszarów aktywnych. Czas życia zazwyczaj szybko się zmieniają (te które towarzyszą rozbłyskom słonecznym) lecz niektóre mogą utrzymywać się przez kilka dni a nawet tygodni. Pióropusze długie i wąskie strumienie materii wypływającej ze Słońca w okolicach biegunów po otwartych liniach sił pola magnetycznego.

25 Helmet streamers Strumienie hełmowe wyglądają jak pióropusze wystające prosto ponad okrągłym hełmem. Zazwyczaj u podstawy takiego hełmowego pióropusza dostrzec można protuberancję. Hełmowe struktury związane są z występowaniem pola magnetycznego łączącego aktywne, zasobne w plamy obszary słoneczne. Strumienie w postaci prostych pióropuszy nad hełmami wywołuje wiatr słoneczny rozdmuchując materię uwięzioną w pętlach pola magnetycznego.

26 Dziury koronalne Dziury koronalne to miejsca w których korona jest ciemna. Widać je wyraźnie w promieniach Roentgena. Dziury koronalne towarzyszą otwartym liniom pola magnetycznego i z tego względu zazwyczaj grupują się w pobliżu biegunów. Z dziur koronalnych wypływa najszybszy wiatr słoneczny.

27 Koronalne wyrzuty materii (CME) CME kilkugodzinne burze słoneczne wynoszące w przestrzeń miliardy ton cząsteczek z prędkością ponad 2mln km/h. W okresie minimum słonecznego występują z częstotliwością 1/tydzień W maximum 2 do 3 razy na dobę.

28 Wiatr słoneczny Schemat linii sił pola magnetycznego Słońca w minimum jego działalności na tle sfotografowanej przez sondę SOHO korony słonecznej Zieloną linią zaznaczono ruch cząsteczek wiatru słonecznego. Gęstość cząsteczek w zewnętrznych, biegunowych rejonach korony jest tak niska, że bardzo rzadko zderzają się one z innymi cząsteczkami i niemal bez przeszkód przemieszczają się ruchem spiralnym wzdłuż linii sił pola magnetycznego. Ciekawostką jest, że ruch spiralny jonów tlenu jest szybszy niż jonów wodoru. Prawdopodobnie absorbują one energię z wysokoczęstotliwościowych fal wiatru słonecznego.

29 Rotacja Słońca

30 Rotacja Prędkość rotacji stała-> <- obszar konekcyjny v spada ze wzrostem <- średnia prędkość szerokości odpowiadająca szer ~45 deg

31 Pole magnetyczne Słońca

32 Evolution of Solar Magnetic Field During the Solar Cycle Solar Minimum Dipole Magnetic Field No Sunspot Solar Maximum Toroidal Magnetic Field Many Sunspots 22 years later ~5 years later S N 11 years later But, this is only half of the story! The magnetic field configuration of the Sun evolves with a 22 year cycle.

33

34 Plamy Gs, inne obszary ~100Gs, pow. Ziemi ~0.5 Gs Różowy -dodatnie (na zewnątrz), niebieski - ujemne

35 Linie pola magnetycznego

36 Prawo Hala

37 Pole magnetyczne Słońca

38 Burze słoneczne

39 Helioseismologia Celem helioseisomolgii jest zbadanie właściwości wewnętrznej struktury Słońca i zrozumienie fizycznych mechanizmów nim rządzących Słońce, jako gorąca kula gazów bardzo dobrze przewodzi fale akustyczne w odróżnieniu od promieniowania widzialnego Tworzy zarazem specyficzny kulisty rezonator akustyczny, z milionami modów oscylacyjnych. Czas życia niektórych modów jest rzędu dni, innych miesięcy. Fala podróżuje z wnętrza Słońca w czasie około kilku godzin.

40 Heliosejsmologia obserwacje drgań powierzchni Słońce Obserwowane są stojące fale akustyczne (fale p) fale ciśnieniowe przechodzące przez środek Słońca oraz stojące fale grawitacyjne (fale g) rozchodzące się powierzchniowo ( w fotosferze). Każda z fal charakteryzuje się inną częstotliwością i przechodzi przez określony obszar słoneczny w ten sposób badana może być struktura Słońca nawet na dużych głębokościach. a Centauri x Hydrae - olbrzym GD karzeł

41 Helioseismologia rzeki plazmy Obserwacje helioseismiczne przyczyniły się do odkrycia rzek gorącej, naładowanej elektrycznie plazmy, płynącej pod powierzchnią Słońca. W pobliżu biegunów okrążają one Słońce na około 75 stopniu szerokości. Składają się ze spłaszczonych owalnych rejonów około 10000km szerokości, w których materia płynie około 50km/h szybciej niż w ich otoczeniu.

42 Fale sejsmiczne towarzyszące rozbłyskowi słonecznemu

43 Definicja planety - IAU 2006

44 RESOLUTION 5A The IAU therefore resolves that "planets" and other bodies in our Solar System, except satellites, be defined into three distinct categories in the following way: (1) A "planet" 1 is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit. (2) A "dwarf planet" is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape 2, (c) has not cleared the neighbourhood around its orbit, and (d) is not a satellite. (3) All other objects 3 except satellites orbiting the Sun shall be referred to collectively as "Small Solar-System Bodies".

45 RESOLUTION 6A The IAU further resolves: Pluto is a "dwarf planet" by the above definition and is recognized as the prototype of a new category of trans-neptunian objects. Charon Pluton Hydra Nix

46 Planety karłowate Ceres, 1801 Pluton, 1930 Eris, 2003 Makemake, 2005 Haumea 2004, księżyce Hi iaka, Namaka

47 Cechy karłowatych planet Orbital attributes of dwarf planets ] Name Region of Solar System Orbital radius (AU) Orbital period(y) Inclination Eccentricity Ceres Asteroid belt Pluto Kuiper belt Haumea Kuiper belt Makemake Kuiper belt Eris Scattered disc Makemake niebieska Haumea zielona Pluton czerwona Neptun - szara

48 Cechy fizyczne Name Diameter(km) Mass( kg) Density( 10 3 g/m³) Rotation period (d) Moons temp.(k) Atmosphere Ceres 974.6± none Pluto 2306± transient Haumea 1150 ± ± 3? Makemake 1500 ~4? ~2? 0 ~30 transient? Eris 2400± ~ transient?

49 Kandydaci na planety karłowate Name Category Diameter Mass Orcus Plutino km kg Sedna Scattered-Extended object km kg Quaoar Cubewano ? km kg Charon (satellite of Pluto) Plutino 1207 km ± 3 km (1.52±0.06) kg 2002 TC 302 Scattered disc object 1200 km unknown Varuna Cubewano ~936 km ~ kg 2002 UX 25 Cubewano ~910 km ~ kg 2002 TX 300 Cubewano <900 km unknown Ixion Plutino <822 km unknown

50

51 Kolekcja i rozmiary planet karłowatych

52 Układ planetarny

53 Planety wewnętrzne

54 Odległość od Słońca (AU)

55 Mimośrody orbit

56 Średnia gęstość i masa

57 Okresy obiegu i obrotu Merkury 88 dni dni Wenus 225 dni R Ziemia 1 rok Mars lat Jowisz Saturn Uran R Neptun

58 Miscellaneous Data Gravity Esc vel Axial Peri- Surface Press Atmosph. Name (g) (km/s) incl Oblate helion (K) (atm) Composit Mercury Venus CO2, N2 Earth N2, O2, Ar Mars CO2, N2,Ar Jupiter (x) H2, He Saturn H2, He Uranus H2, He,CH4 Neptune H2, He,CH4 Pluto e-5 N2, CH4,CO

59

60

61

62

63

64 Luki Kirkwooda i rezonanse

65 Rodziny planetoid

66 Planetoidy rodziny Hildy Brązowe kropki planetoidy grupy Hildy Rezonans n_h/n_j = 3/2, a ~ 4 AU, i < 20^o, e < 0.3 Wszystkie poruszają się po eliptycznych orbitach których linie apsyd rotują wstecznie. Ruch węzłów jest dużo powolniejszy.

67 Rodzina Hildy widok z boku ekliptyki i ponad nią Planetoidy rodziny Hildy tworzą niemal równoboczny trójkąt, którego konfiguracja jest stabilna w bardzo długich okresach czasu (całkowanie numeryczne 6 tys lat). Grubość boków trójkąta ~ 1 AU, w punktach wierzchołkowych o 20-40% więcej. Punkty wierzchołkowe w miejscach, gdzie dochodzi do zbliżenia planetoidy z Jowiszem. Rozkład nachyleń orbit Trojańczyków dużo większy niż planetoid z grupy Hildy

68 NEO

69

70 NEO - Near Earth Objects 101 typu Aten -> a< 1 AU, Q > typu Apollo -> a>1 AU, q <1.017 AU 589 typu Amor (przecinające orbitę Marsa) 1.017<q<1.3

71

72 Object Close Distance (AU ) Estimated Diameter H(mag) Relative Name Approach Velocity (km/s) 5604 (1992 FE) 2017-Feb m (2017 CP1) 2017-Feb m - 71 m (2017 BN3) 2017-Feb m - 70 m (1998 QK56) 2017-Feb m km (2017 CQ32) 2017-Feb m - 96 m (2016 EO56) 2017-Feb m m (2005 QB5) 2017-Feb m m (2016 TB57) 2017-Feb m - 36 m

73 1MT=4.3!0^{15} J Do 50 m -> atmosfera stanowi ochronę 1 km -> klęska na skalę lokalną 2 km -> globalna katastrofa E~mln MT 1000 NEO >1km, 1 mln 50m<d<1 km

74

75 Krater w Arizonie, śred. 1.6 km, lat temu, żelazny meteor o śred. ok.. 25 m

76 Krater w Kanadzie, śred. ok km, 214 mln lat temu, 5 km meteor

77 Planetoidy podwójne Antiope, podwójna planetoida z pasa głównego średnica około 90 km, odległość około 200 km Inne podwójne: Ida - Daktyl odkryte przez Galileo w 1993 roku, Daktyl - 1km Eugenia - Petit Prince Lundia (max 7 km) - wrzesień 2005, dr Kryszczyńska

78 Aktywne planetoidy (MBC) głównego pasa Object a (AU) e i T(y) q (AU) Q (AU) d (km) 133P/Elst-Pizarro P/2005 U1 (Read) (1999 RE70)

79 Aktywne planetoidy głównego pasa Full Name 133P/Elst Pizarro [(7968) Elst Pizarro, P/1996 N2] 176P/LINEAR [(118401) LINEAR] 238P/Read [P/2005 U1] 259P/Garradd [P/2008 R1] P/2010 A2 Semimajor axis Perihe lion Perihe lion date

80

81 Przyczyny aktywności

82 Zewnętrzny układ słoneczny

83

84

85 Niebieski komety Pomarańczowy Centaury Biały Plutonki Czerwony - klasyczne

86 Centaury

87 Chiron, pierwsza planetoida z grupy Centaurów (65/209) Orbita pomiędzy Saturnem a Uranem q= 8.46 AU Q=19.18 AU a= e=0.383 i=6.9 wymiary 140x200 km T obiegu= 50.7 lat T rot =5.9 godzin

88

89

90 nazwa odkrycie q Q i e a 2060 Chiron Chariklo

91 Damakloidy

92 5335 Damokles

93 5335 Damokles Odkryty przez Roberta H. McNaughta 18 lutego 1991 Kategoria: Damakloidy Elementy orbity: a = AU e = 0.87 i = T = d Rozmiary ~ 10 km, okres rotacji 10.2 h, typ widmowy S, absolutna wielkość gwiazdowa 13.3 mag

94 Damokloidy (41 na epokę ) Nazwa M a e i q P (5335) Damocles PW MD QJ WU (20461) Dioretsa LE RG XS AB DG HE KP

95 Damokloidy Fizyczne i dynamiczne parametry sugerują, że Damakloidy to nieaktywne jądra kometarne rodziny komet Halleya i długookresowych komet. Rozmiary tych obiektów są rzędu 1-10 km (Centaury km) Albeda są małe (0.02 do 0.04), podobnie jak albeda komet rodziny Jowisza, co sugeruje ciemną, węglową powierzchnię. po lewej jądro komety Borrelly 2.2 km i albedo 0.03 po prawej komety Halley a oraz komety Wild2 (2.1 km, 0.03)

96 Damokloidy Możliwa wewnętrzna struktura jądra kometarnego Powstawanie ciemnej powierzchni (~100M lat)

97 Pas Kuipera

98

99 KBO źródło komet krótkookresowych Od 30 do 100 AU TN klasyczne - orbity kołowe, stabilne, unikają zbliżeń do Neptuna TN rozproszone - orbity mimośrodowe, nachylone - źródło komet krótkookresowych Plutonki - rezonans 2:3 z Neptunem (jak Pluton) 35% populacji

100 Czerwony - Plutonki, niebieski - zwykłe KBO, czarny - rozproszone KBO, 368 TN, 74 nie zaklasyfikowanych

101

102

103 90377 Sedna a =525 AU e=0.85 perihelium (76AU) 22 września 2075 aphelium ~975AU

104

105 Obłok Oorta Sferyczny, od AU, nawet do 3 lat świetlnych, setki mld komet, których łączna masa dorównuje być może masie Jowisza.

106

107 Literatura 1. Paweł Artymowicz Astrofizyka układów planetarnych, PWN Warszawa, Encyclopedia of Astronomy and Astrophysics - eaa.crcpress.com 3. The Extrasolar Planets Encyclopaedia - vo.obspm.fr/exoplanetes/encyclo/encycl.html 4. Bruno Berotti, Paolo Farinella, David Vokrouhlicky Physics of the Solar System. Dynamics and Evolution, Space Physics and Spacetime Structure, Kluwer Academic Publishers, The Earth s Magnetosphere - helios.gsfc.nasa.gov 6. Misje planetarne - solarsystem.nasa.gov, 7. Misja Cassini-Hughens - saturn.jpl.nasa.gov

Dysnomia Eris

Dysnomia Eris 134340 Dysnomia 136199 Eris Słońce Speaking of size... RRRozmiaryplanets Wnętrze Słońca Wewnętrzne obszary słoneczne Główne obszary Jądro reakcje nuklearne Strefa radiacji ok. 70% obszaru Słońca, jest

Bardziej szczegółowo

Ciała drobne w Układzie Słonecznym

Ciała drobne w Układzie Słonecznym Ciała drobne w Układzie Słonecznym Planety karłowate Pojęcie wprowadzone w 2006 r. podczas sympozjum Międzynarodowej Unii Astronomicznej Planetą karłowatą jest obiekt, który: znajduje się na orbicie wokół

Bardziej szczegółowo

Układ Słoneczny Układ Słoneczny

Układ Słoneczny Układ Słoneczny Fizyka i Chemia Ziemi Układ Słoneczny we Wszechświecie Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta

Bardziej szczegółowo

Planety karłowate. Pluton, 1930 Eris, Ceres, Makemake, Haumea 2004, księżyce Hi iaka, Namaka

Planety karłowate. Pluton, 1930 Eris, Ceres, Makemake, Haumea 2004, księżyce Hi iaka, Namaka Planety karłowate Ceres, 1801 Pluton, 1930 Eris, 2003 Makemake, 2005 Haumea 2004, księżyce Hi iaka, Namaka Pas Kuipera Zawiera setki tysięcy małych ciał, z których największe mają średnicę ok.2500 km

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

O aktywności słonecznej i zorzach polarnych część I

O aktywności słonecznej i zorzach polarnych część I O aktywności słonecznej i zorzach polarnych część I dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Słooce Protuberancja Fotosfera Plama Chromosfera Włókno Dziura koronalna Proporzec koronalny

Bardziej szczegółowo

Słońce i jego miejsce we Wszechświecie. Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego

Słońce i jego miejsce we Wszechświecie. Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego Słońce i jego miejsce we Wszechświecie Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego Dlaczego badamy Słońce? Wpływ Słońca na klimat Pogoda kosmiczna Słońce jako

Bardziej szczegółowo

Plan wykładu. Mechanika Układu Słonecznego

Plan wykładu. Mechanika Układu Słonecznego Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki godzina 13:15 ćwiczenia poniedziałki godzina 15:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

Aktywność Słońca. dr Szymon Gburek Centrum Badań Kosmicznych PAN : 17:00

Aktywność Słońca. dr Szymon Gburek Centrum Badań Kosmicznych PAN : 17:00 Aktywność Słońca dr Szymon Gburek Centrum Badań Kosmicznych PAN 2017-09-22: 17:00 Słońce Skład hemiczny 75% wodór, 23% hel. 2% cięższe pierwiastki, tlen, węgiel, neon, żelazo Symbol Promień Odległość od

Bardziej szczegółowo

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego) Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 12:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

Układ słoneczny, jego planety, księżyce i planetoidy

Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny składa się z ośmiu planet, ich księżyców, komet, planetoid i planet karłowatych. Ma on około 4,6 x10 9 lat. W Układzie słonecznym wszystkie

Bardziej szczegółowo

Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te, to osiem planet, 166 znanych

Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te, to osiem planet, 166 znanych Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te, to osiem planet, 166 znanych księżyców, pięć planet karłowatych i miliardy małych

Bardziej szczegółowo

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego) Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 13:15 (w sytuacjach awaryjnych 17:15) ćwiczenia wtorki - godzina 10:15 (jutro 01.03

Bardziej szczegółowo

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Planowanie obserwacji ciał Układu Słonecznego Plan zajęć: planety wewnętrzne planety zewnętrzne systemy

Bardziej szczegółowo

Słońce a sprawa ziemskiego klimatu

Słońce a sprawa ziemskiego klimatu Słońce a sprawa ziemskiego klimatu Słońce - gwiazda Promień 696 000 km (109 promieni ziemskich) Okres obrotu 27 dni (równik) do 31 dni (okolice biegunów) Temperatura powierzchni 5 800 K (średnia) Masa

Bardziej szczegółowo

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski Aktywne Słońce Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Heliofizyka XXI w Źródło energii słonecznej 600 mln ton wodoru zamienia się w hel w każdej sekundzie 4 mln ton jest przekształcane

Bardziej szczegółowo

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5. Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd

Bardziej szczegółowo

Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN. Astro Izery

Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN. Astro Izery Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN Astro Izery Po co nam Wszechświat? Podstawowe założenie OTW: sformułować prawa fizyczne i opis ruchu

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 3: Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce,

Bardziej szczegółowo

Granice Układu Słonecznego. Marek Stęślicki IA UWr

Granice Układu Słonecznego. Marek Stęślicki IA UWr Granice Układu Słonecznego Marek Stęślicki IA UWr Podstawowe pojęcia jednostka astronomiczna [AU] (odl. Ziemia - Słońce) 1 AU = 150 mln km płaszczyzna orbity ekliptyka Skala jasności orbita 1m 2m 3m 4m

Bardziej szczegółowo

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków

Bardziej szczegółowo

Od centrum Słońca do zmian klimatycznych na Ziemi

Od centrum Słońca do zmian klimatycznych na Ziemi Od centrum Słońca do zmian klimatycznych na Ziemi Źródło energii słonecznej 600 mln ton wodoru zamienia się w hel w każdej sekundzie 4 mln ton jest przekształcane w energię: 3.6*10 26 W Ciągłe rozpraszanie,

Bardziej szczegółowo

Układ Słoneczny. Pokaz

Układ Słoneczny. Pokaz Układ Słoneczny Pokaz Rozmiary planet i Słońca Orbity planet Planety typu ziemskiego Merkury Najmniejsza planeta U.S. Brak atmosfery Powierzchnia podobna do powierzchni Księżyca zryta kraterami część oświetlona

Bardziej szczegółowo

Krzysztof Gęsicki. Astrofizyka1. fizyka układu słonecznego. Wykładkursowydla2r.studiówAS1. wykład 1: współczesne obserwacje Słońca

Krzysztof Gęsicki. Astrofizyka1. fizyka układu słonecznego. Wykładkursowydla2r.studiówAS1. wykład 1: współczesne obserwacje Słońca Krzysztof Gęsicki Astrofizyka1 fizyka układu słonecznego Wykładkursowydla2r.studiówAS1 wykład 1: współczesne obserwacje Słońca nasza najbliższa gwiazda sporo możemy wypatrzyć własnym okiem przy pomocy

Bardziej szczegółowo

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk Wszechświat w mojej kieszeni Układ Słoneczny 4 No. 4 Gloria Delgado Inglada Instytut Astronomii UNAM, Meksyk 2 Układ Słoneczny składa się ze Słońca i wszystkich ciał niebieskich podróżujących wokół niego:

Bardziej szczegółowo

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk Wszechświat w mojej kieszeni Układ Słoneczny 4 No. 4 Gloria Delgado Inglada Instytut Astronomii UNAM, Meksyk Powstawanie Układu Słonecznego Układ Słoneczny składa się ze Słońca i wszystkich ciał niebieskich

Bardziej szczegółowo

Plan wykładu i ćwiczeń.

Plan wykładu i ćwiczeń. Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 10:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058 Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące

Bardziej szczegółowo

Astronomiczny elementarz

Astronomiczny elementarz Astronomiczny elementarz Pokaz dla uczniów klasy 5B Szkoły nr 175 Agnieszka Janiuk 25.06.2013 r. Astronomia najstarsza nauka przyrodnicza Stonehenge w Anglii budowla z okresu 3000 lat p.n.e. Starożytni

Bardziej szczegółowo

Pola Magnetyczne w Układzie Słonecznym

Pola Magnetyczne w Układzie Słonecznym Pola Magnetyczne w Układzie Słonecznym MAGNETOSFERA SŁOŃCA 2 Magnetosfera słońca Szybki wiatr (do 900 km/s) wypływa z niemal nieaktywnych rejonów biegunowych Powolny wiatr (od 200 km/s) z obszarów aktywniejszych,

Bardziej szczegółowo

2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta

2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta 2.Układ Słoneczny Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta Schemat odbicia światła przez sferyczną kroplę z jednokrotnym wewnętrznym odbiciem. Wykres pokazuje

Bardziej szczegółowo

Aktywność magnetosfery i zaburzenia w wietrze słonecznym.

Aktywność magnetosfery i zaburzenia w wietrze słonecznym. Aktywność magnetosfery i zaburzenia w wietrze słonecznym. Piotr Koperski Obserwatorium Astronomiczne (Zakład Fizyki Wsokich Energii) Uniwersytet Jagielloński, Kraków 1 Zagadnienia Zródła i charakterystyka

Bardziej szczegółowo

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego Piotr Brych Wzajemne zakrycia planet Układu Słonecznego 27 sierpnia 2006 roku nastąpiło zbliżenie Wenus do Saturna na odległość 0,07 czyli 4'. Odległość ta była kilkanaście razy większa niż średnica tarcz

Bardziej szczegółowo

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Rok 2019 1. Wstęp teoretyczny Wszyscy ludzie zamieszkują wspólną planetę Ziemię. Nasza planeta, tak jak siedem pozostałych, obiega Słońce dookoła.

Bardziej szczegółowo

Paweł Rudawy Zakład Heliofizyki i Fizyki Kosmicznej IA UWr

Paweł Rudawy Zakład Heliofizyki i Fizyki Kosmicznej IA UWr WPŁYW AKTYWNOŚCI SŁOŃCA NA KLIMAT ZIEMI Paweł Rudawy Zakład Heliofizyki i Fizyki Kosmicznej IA UWr ok. 200 000 000 000 gwiazd ok. 80% GCG ok. 5% GCG ma układy planetarne GALAKTYKA SPIRALNA M 31 MGŁAWICA

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 60 minut. 1. 11 kwietnia 2017 roku była pełnia Księżyca. Pełnia w dniu 11 kwietnia będzie

Bardziej szczegółowo

Mechanika nieba. Marcin Kiraga 18.02.2013 05.06.2013

Mechanika nieba. Marcin Kiraga 18.02.2013 05.06.2013 Mechanika nieba Marcin Kiraga 18.02.2013 05.06.2013 Mechanika nieba Marcin Kiraga kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady: środy, godzina 14:15 (2 godz) ćwiczenia: poniedziałki,

Bardziej szczegółowo

Układ Słoneczny Pytania:

Układ Słoneczny Pytania: Układ Słoneczny Pytania: Co to jest Układ Słoneczny? Czy znasz nazwy planet? Co jeszcze znajduje się w Układzie Słonecznym poza planetami? Co to jest Układ Słoneczny Układ Słoneczny to układ ciał niebieskich,

Bardziej szczegółowo

Prezentacja. Układ Słoneczny

Prezentacja. Układ Słoneczny Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców

Bardziej szczegółowo

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 3: Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 Układ Słoneczny we Wszechświecie 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety,

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Wykład monograficzny: małe ciała Układu Słonecznego 2 Kod modułu 04-MCUS60-WM 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

a TB - średnia odległość planety od Słońca Giuseppe Piazzi OCR ( )

a TB - średnia odległość planety od Słońca Giuseppe Piazzi OCR ( ) Fizyka i Chemia Ziemi Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta (komety) Pas Kuipera (planety karłowate

Bardziej szczegółowo

Układ Słoneczny. Fizyka i Chemia Ziemi. Odkrycie małych planet. Odległości planet od Słońca. Układ Słoneczny stanowią:

Układ Słoneczny. Fizyka i Chemia Ziemi. Odkrycie małych planet. Odległości planet od Słońca. Układ Słoneczny stanowią: Fizyka i Chemia Ziemi Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta (komety) Pas Kuipera (planety karłowate

Bardziej szczegółowo

Księżyc to ciało niebieskie pochodzenia naturalnego.

Księżyc to ciało niebieskie pochodzenia naturalnego. 2b. Nasz Księżyc Księżyc to ciało niebieskie pochodzenia naturalnego. Obiega on największe ciała układów planetarnych, tj. planeta, planeta karłowata czy planetoida. W niektórych przypadkach kiedy jest

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

Zderzenie galaktyki Andromedy z Drogą Mleczną

Zderzenie galaktyki Andromedy z Drogą Mleczną Zderzenie galaktyki Andromedy z Drogą Mleczną Katarzyna Mikulska Zimowe Warsztaty Naukowe Naukowe w Żninie, luty 2014 Wszyscy doskonale znamy teorię Wielkiego Wybuchu. Wiemy, że Wszechświat się rozszerza,

Bardziej szczegółowo

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta

2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta 2.Układ Słoneczny Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta Planety wg starożytnych Z greckiego: dosłownie,,wędrowiec'', w znaczeniu astronomicznym ciało

Bardziej szczegółowo

Odkrywania i poza Układ Słoneczny w polskim

Odkrywania i poza Układ Słoneczny w polskim Odkrywania i poza Układ Słoneczny w polskim Exploring the Solar System and Beyond in Polish Opracowany przez Nam Nguyen Głębokie Pole Hubble'a Ultra strzał 2014 Exploring the Solar System, a celem Beyond

Bardziej szczegółowo

Grawitacja. Wykład 7. Wrocław University of Technology

Grawitacja. Wykład 7. Wrocław University of Technology Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

ver grawitacja

ver grawitacja ver-7.11.11 grawitacja początki Galileusz 1564-164 układ słoneczny http://www.arachnoid.com/gravitation/small.html prawa Keplera 1. orbity planet krążących wokół słońca są elipsami ze słońcem w ognisku

Bardziej szczegółowo

Małe ciała Układu Słonecznego

Małe ciała Układu Słonecznego Fizyka układów planetarnych II Małe ciała Układu Słonecznego Wykład 2 Fizyka układów planetarnych II 2. Małe ciała Układu Słonecznego Planeta 1. ciało niebieskie okrążające gwiazdę (w różnych etapach ewolucji),

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

Zadania do testu Wszechświat i Ziemia

Zadania do testu Wszechświat i Ziemia INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania

Bardziej szczegółowo

Dane o kinematyce gwiazd

Dane o kinematyce gwiazd Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk. Ciemna materia. 25.05.2015 Dane o kinematyce gwiazd Ruchy

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety

Bardziej szczegółowo

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

Rys. 1 Przekrój Saturna

Rys. 1 Przekrój Saturna O UKŁADZIE SŁONECZNYM. Siedem planet krążących wokół Słońca obraca się w jedną stronę, a dwie w drugą stronę. Każda z nich nachylona jest pod innym kątem. Uran wręcz turla się po płaszczyźnie orbity. Pluton

Bardziej szczegółowo

Księżyce Neptuna. [km] km]

Księżyce Neptuna. [km] km] Księżyce Neptuna Księżyce Neptuna Numer Nazwa [mag] Średnica Masa [kg] [km] a [tys. km] T [dni] e I [deg] II Nereida 19.2 340 3.1 *1019 5513.8 360.1 0.751 7.09 III Najada 24.1 58 1.9*1017 48.2 0.294 0.000

Bardziej szczegółowo

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego Wenus na tle Słońca Sylwester Kołomański Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Instytut Astronomiczny UWr Czym się zajmujemy? uczymy studentów, prowadzimy badania naukowe (astrofizyka

Bardziej szczegółowo

Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk

Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk 28.04.2014 Dane o kinematyce gwiazd Ruchy własne gwiazd (Halley

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2013

Tomasz Ściężor. Almanach Astronomiczny na rok 2013 Tomasz Ściężor Almanach Astronomiczny na rok 2013 Klub Astronomiczny Regulus Kraków 2012 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej

Bardziej szczegółowo

Z wizytą u Plutona. W poszukiwaniu nowych horyzontów. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Z wizytą u Plutona. W poszukiwaniu nowych horyzontów. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Z wizytą u Plutona. W poszukiwaniu nowych horyzontów. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN A co jest za tą górą, zakrętem, morzem? Jak wygląda Świat? Mapa świata z roku

Bardziej szczegółowo

Odkryj planety naszego Układu Słonecznego W ciągu 90 minut przez wszechświat Na wycieczkę między Ehrenfriedersdorf i Drebach

Odkryj planety naszego Układu Słonecznego W ciągu 90 minut przez wszechświat Na wycieczkę między Ehrenfriedersdorf i Drebach Odkryj planety naszego Układu Słonecznego W ciągu 90 minut przez wszechświat Na wycieczkę między Ehrenfriedersdorf i Drebach układ planetarny - Sonnensystem Układ Słoneczny układ planetarny składający

Bardziej szczegółowo

Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp.

Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp. Dariusz Ślązek Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp.) Metody porównawcze pomiędzy poszczególnymi ciałami w naszym

Bardziej szczegółowo

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org ENCELADUS KSIĘŻYC SATURNA Źródło: en.wikipedia.org Wojciech Wróblewski 2017 PODSTAWOWE DANE DOTYCZĄCE ENCELADUSA Odkryty w 1789 r. Przez Williama Herschela Odległość od Saturna (perycentrum): 237378 km

Bardziej szczegółowo

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski Aktywne Słońce Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Międzynarodowy rok Astronomii Soczewki (occhiali) szlifowano we Włoszech już pod koniec XIII w. Zacharias Janssen (wytwórca okularów)

Bardziej szczegółowo

CD-ROM pt.: Ziemia we Wszechœwiecie spis treœci

CD-ROM pt.: Ziemia we Wszechœwiecie spis treœci I. WSZECHŒWIAT Struktura Wszechœwiata Co to jest Wszechœwiat? Jak zbudowany jest Wszechœwiat? Rozk³ad materii we Wszechœwiecie Pary galaktyk Lokalna Grupa Galaktyk Gromady Galaktyk Supergromady galaktyk

Bardziej szczegółowo

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2012

Tomasz Ściężor. Almanach Astronomiczny na rok 2012 Tomasz Ściężor Almanach Astronomiczny na rok 2012 Klub Astronomiczny Regulus Kraków 2011 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Nasze obserwacje chromosfery słonecznej

Nasze obserwacje chromosfery słonecznej Autorki: Alicja Kuchta; Aleksandra Szczurowska Szkoła: I Liceum Ogólnokształcące im. Adama Mickiewicza w Stargardzie Szczecińskim Klasa : I Opiekun : Jolanta Olejniczak Nasze obserwacje chromosfery słonecznej

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium II Edycja 26 marca 2014 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium II Edycja 26 marca 2014 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut.. Do obserwacji Słońca wykorzystuje się filtr Hα, który przepuszcza z widma słonecznego

Bardziej szczegółowo

Wirtualny Hogwart im. Syriusza Croucha

Wirtualny Hogwart im. Syriusza Croucha Wirtualny Hogwart im. Syriusza Croucha Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. EGZAMIN STANDARDOWYCH UMIEJĘTNOŚCI MAGICZNYCH ASTRONOMIA LISTOPAD 2013 Instrukcja dla

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2014

Tomasz Ściężor. Almanach Astronomiczny na rok 2014 Tomasz Ściężor Almanach Astronomiczny na rok 2014 Klub Astronomiczny Regulus Kraków 2013 1 Recenzent prof. dr hab. Jerzy M. Kreiner Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie

Bardziej szczegółowo

Fizyka układów planetarnych. Merkury. Wykład 5

Fizyka układów planetarnych. Merkury. Wykład 5 Fizyka układów planetarnych Merkury Wykład 5 101 10 6 km -1,4 mag, 14 55,8 10 6 km -2,9 mag, 25 parametr Merkury Ziemia półoś wielka 0,387 j.a. 1,0 j.a. okres orbitalny 0,24 roku 1 rok okres synodyczny

Bardziej szczegółowo

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy IV VI Szkoły Podstawowej Odpowiedzi

Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy IV VI Szkoły Podstawowej Odpowiedzi Instrukcja Zaznacz prawidłową odpowiedź. W każdym pytaniu tylko jedna odpowiedź jest poprawna. Liczba punktów przyznawanych za właściwą odpowiedź na pytanie jest różna i uzależniona od stopnia trudności

Bardziej szczegółowo

Obłok Oorta. Piotr A. Dybczyński. Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego

Obłok Oorta. Piotr A. Dybczyński. Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego Obłok Oorta Piotr A. Dybczyński Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego Skale czasu, odległości i prędkości a [AU] P [mln lat] 10000 20000 40000 60000 80000 100000 1.0 2.8 8.0 15 23 31

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia ogólna 2 Kod modułu 04-A-AOG-90-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Astronomia ogólna 2 Kod modułu kształcenia 04-ASTR1-ASTROG90-1Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów

Bardziej szczegółowo

PRACTISE YOUR. office@ranga4u.com www.ranga4u.com tel: (+48) 601 455 529. Copyright 2015 Ryszard Waluś All rights reserved

PRACTISE YOUR. office@ranga4u.com www.ranga4u.com tel: (+48) 601 455 529. Copyright 2015 Ryszard Waluś All rights reserved PRACTISE YOUR ENGLISH POLISH The synchronisation of cosmic cycles (hypothesis) Synchronizacja cykli kosmicznych (hipoteza) office@ranga4u.com www.ranga4u.com tel: (+48) 601 455 529 Copyright 2015 Ryszard

Bardziej szczegółowo

GEOGRAPHY. Section 1 : Basics of geography and cartography. Topic 1: What is geography? Topic 2: Coordinates

GEOGRAPHY. Section 1 : Basics of geography and cartography. Topic 1: What is geography? Topic 2: Coordinates GEOGRAPHY Section 1 : Basics of geography and cartography Topic 1: What is geography? geografia fizyczna physical geography geografia społeczno - ekonomiczna socioeconomic geography geografia społeczna

Bardziej szczegółowo

Tytuł: Podróż w kosmos Autor: Aleksandra Fudali

Tytuł: Podróż w kosmos Autor: Aleksandra Fudali Tytuł: Podróż w kosmos Autor: Aleksandra Fudali Wydawca i dystrybucja: Naukowe Wydawnictwo IVG Ul. Cyfrowa 6, Szczecin 71-441 POLAND www.wydawnictwoivg.pl email: biuro@wydawnictwoivg.pl Księgarnia wydawnictwa

Bardziej szczegółowo

Opozycja... astronomiczna...

Opozycja... astronomiczna... Opozycja... astronomiczna... Pojęcie opozycja bez dodatków ją bliżej określających jest intuicyjnie zrozumiałe. Wyraz ma swoją etymologię łacińską - oppositio i oznacza przeciwstawienie. Przenosząc to

Bardziej szczegółowo

Kosmos jest wszechświatem, czyli wszystkim, co możemy dotknąd, poczud, wyczud, zmierzyd lub wykryd. Obejmuje żywe istoty, planety, gwiazdy,

Kosmos jest wszechświatem, czyli wszystkim, co możemy dotknąd, poczud, wyczud, zmierzyd lub wykryd. Obejmuje żywe istoty, planety, gwiazdy, Kosmos jest wszechświatem, czyli wszystkim, co możemy dotknąd, poczud, wyczud, zmierzyd lub wykryd. Obejmuje żywe istoty, planety, gwiazdy, galaktyki, chmury pyłu, światło, a nawet czas. Wiek wszechświata

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Informacje Neptun ósma i ostatnia planeta Układu Słonecznego. Jej jasność nie przekracza 7,6m. Posiada 13 odkrytych księżyców, spośród których największy jest Tryton. Nazwa tej planety pochodzi od rzymskiego

Bardziej szczegółowo

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Załóżmy, że sonda kosmiczna mając prędkość v1 leci w kierunku planety pod kątem do toru tej planety poruszającej się z prędkością

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. Przyszłość. Ludzie mieszkają w stacjach kosmicznych w kształcie okręgu o promieniu

Bardziej szczegółowo