Przedmiotowe Zasady Oceniania

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przedmiotowe Zasady Oceniania"

Transkrypt

1 Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Prosto do matury 2 2. M. Antek, K. Belka, P. Grabowski 3. Nowa era

2 Forma 1. Formy sprawdzania wiedzy Minimalna liczba w semestrze Waga danej formy oceniania (1;2;3) Kryteria oceniania S 0 2 Sprawdziany dłuższe minutowe ocena jednostkowa. Sprawdziany krótsze, kilkuminutowe ocena z co najmniej dwóch prac OU 0 1 lub 2 Ocena wg kryteriów oceny semestralnej (powyżej). Przy ocenie odpowiedzi z ostatniej / ostatnich trzech lekcji nauczyciel może wziąć pod uwagę pracę domową wykonaną pisemnie. Odpowiedź z większej partii materiału powinna być zapowiedziana ucznowi. PK 2 3 Ocena wg kryterium procentowego przyjętego w szkole z uwzględnieniem przejrzystości zapisu ZD 1 1 R 0 1 lub 2 PR 0 2 lub 3 A 0 1 Z PM 1 (kl.iii) 3 kartkówki/sprawdziany (S), odpowiedź ustna ucznia (OU), prace klasowe (PK), zadania domowe (ZD), aktywność na lekcji (A), zeszyt (Z), Przy wystawianiu oceny semestralnej i oceny rocznej brane są pod uwagę wszystkie formy sprawdzania wiedzy przewidziane w danym okresie nauki.

3 2. Ilość możliwych zgłoszeń nieprzygotowania do lekcji Uczniowi przysługują w ciągu całego roku szkolnego cztery nieprzygotowania (po dwa w każdym semestrze). Nieprzygotowanie należy zgłosić nauczycielowi na początku lekcji podczas sprawdzania listy obecności. 3. Warunki uzyskiwania wyższych ocen (uszczegółowienie WZO) W ostatnim miesiącu semestru / roku szkolnego można poprawić jeden sprawdzian godzinny z danego semestru. Praca będzie miała formę pisemną i dotyczyć będzie określonego działu. Ocena z poprawy jest wpisywana do dziennika, jako dodatkowa ocena (ocena uzyskana w pierwszym terminie jest brana pod uwagę przy wystawianiu oceny na koniec semestru/ roku szkolnego).

4 4. Wymagania edukacyjne Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W wykraczający ocena celująca (6) JEDNOSTKA TEMATYCZNA Przesuwanie paraboli Funkcja kwadratowa CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ KATEGORIA A Uczeń zna: pojęcia: parabola, wierzchołek paraboli, ramiona paraboli położenie wykresu funkcji y= ax 2 w zależności od wartości współczynnika a położenia parabol: y= ax + q, y= a(x + p) 2, y= a(x + p) 2 + q pojęcie funkcji kwadratowej wzory określające współrzędne wierzchołka paraboli postać ogólną i postać kanoniczną funkcji kwadratowej podstawowe KATEGORIA B KATEGORIA C Uczeń rozumie: Uczeń potrafi: sporządzać wykresy funkcji związek między wzorami określającymi współrzędne wierzchołka paraboli i postacią kanoniczną wzoru funkcji kwadratowej (R) y= ax 2 wykorzystywać zasady przesuwania wykresów funkcji do rysowania parabol postaci: y=ax 2 +q, y= a(x + p) 2, y= a(x + p) 2 + q podawać wzór paraboli o danym wierzchołku i przechodzącej przez dany punkt podawać wzór funkcji, której wykresem jest dana parabola określać współrzędne wierzchołka parabol postaci: y=ax 2 +q, y= a(x + p) 2, y= a(x + p) 2 + q (K-R) zapisywać wzór funkcji kwadratowej w postaci kanonicznej znajdować współrzędne wierzchołka paraboli badać monotoniczność funkcji kwadratowej (K-P) obliczać największą (najmniejszą) wartość funkcji kwadratowej ponadpodstawowe KATEGORIA D Uczeń potrafi: sporządzać wykresy funkcji y= a(x + p) 2 + q i określać ich własności (R-D) podawać wzór funkcji, której wykres został przesunięty w prawo(lewo) i w górę (dół) o podaną liczbę jednostek (R-D) 4

5 Funkcja kwadratowa (cd.) Nierówności kwadratowe Zastosowania funkcji kwadratowej postać iloczynową funkcji kwadratowej pojęcie nierówności kwadratowej obliczać największą i najmniejszą wartość funkcji kwadratowej w przedziale domkniętym (P-R) zapisywać wzór funkcji kwadratowej spełniającej dane warunki (P R) obliczać współrzędne punktów przecięcia wykresów funkcji (R) obliczać, dla jakich argumentów funkcja spełnia określone warunki (P R) rysować wykres funkcji kwadratowej i określać jej własności obliczać współrzędne punktów przecięcia paraboli z osiami układu oraz współrzędne jej wierzchołka obliczać miejsca zerowe funkcji kwadratowej określać liczbę miejsc zerowych funkcji kwadratowej w zależności od wartości wyróżnika zapisywać wzór funkcji kwadratowej, znając jej miejsca zerowe oraz punkt należący do jej wykresu zapisywać wzór funkcji kwadratowej spełniającej dane warunki (P R) rozwiązywać nierówności kwadratowe określać argumenty, dla których wartości jednej funkcji są większe od wartości drugiej funkcji (P R) opisywać zależności między wielkościami za pomocą funkcji kwadratowej rozwiązywać zadania tekstowe stosując własności funkcji kwadratowej obliczać pola figur spełniających określone warunki (R D) opisywać zależności między wielkościami za pomocą funkcji kwadratowej (R D) rozwiązywać zadania tekstowe, stosując własności funkcji kwadratowej (R W) 5

6 Potęgi. definicję potęgi o wykładniku naturalnym i całkowitym ujemnym pojęcie notacji wykładniczej prawa działań na potęgach potrzebę stosowania notacji wykładniczej w praktyce obliczać potęgi o wykładnikach naturalnych i całkowitych ujemnych (K P) zapisywać liczby w postaci potęg zapisywać liczby w postaci iloczynu potęg zapisywać liczby w notacji wykładniczej rozwiązywać nietypowe zadania z zastosowaniem działań na potęgach (D W) porównywać ilorazowo i różnicowo liczby podane w notacji wykładniczej (R) mnożyć i dzielić potęgi o jednakowych podstawach mnożyć i dzielić potęgi o jednakowych wykładnikach przedstawiać potęgi w postaci iloczynu i ilorazu potęg o jednakowych podstawach przedstawiać potęgi w postaci iloczynu i ilorazu potęg o jednakowych wykładnikach potęgować potęgi przedstawiać potęgi jako potęgi potęg porównywać potęgi (P-R) potęgować iloczyny i ilorazy doprowadzać wyrażenia do najprostszych postaci, stosując 6

7 działania na potęgach (P R) obliczać wartości wyrażeń arytmetycznych, w których występują potęgi (P R) przekształcać wyrażenia algebraiczne, w których występują potęgi (P R) rozwiązywać zadania tekstowe z zastosowaniem potęg (R) stosować notację wykładniczą do zamiany jednostek (R) Pierwiastki. definicję pierwiastka arytmetycznego n tego stopnia (n N i n > 1) prawa działań na pierwiastkach; w tym wzór na obliczanie pierwiastka n tego stopnia z n tej potęgi oraz wzór na obliczanie n tej potęgi pierwiastka n tego stopnia definicję pierwiastka arytmetycznego n tego stopnia (n N i n > 1) jak oblicza się pierwiastek n tego stopnia z n tej potęgi oraz jak oblicza się n tą potęgę pierwiastka n tego stopnia z liczby nieujemnej obliczać pierwiastki n tego stopnia (n N i n > 1) obliczać wartości wyrażeń arytmetycznych zawierających pierwiastki obliczać pierwiastki iloczynu i ilorazu liczb nieujemnych obliczać iloczyny i ilorazy pierwiastków z liczb nieujemnych obliczać wartości wyrażeń arytmetycznych zawierających pierwiastki (R D) przekształcać wyrażenia zawierające potęgi i pierwiastki (R) porównać wyrażenia zawierające pierwiastki (D) wyłączać czynnik przed znak pierwiastka włączać czynnik pod pierwiastek 7

8 oszacować wartość wyrażenia arytmetycznego zawierającego pierwiastek (P R) usunąć niewymierność z mianownika Potęgi o wykładnikach wymiernych. definicję potęgi o wykładniku wymiernym prawa działań na potęgach o wykładnikach wymiernych definicję potęgi o wykładniku wymiernym obliczać potęgi o wykładnikach wymiernych zapisywać potęgi o wykładnikach wymiernych w postaci pierwiastków (K-P) porównywać potęgi o wykładnikach wymiernych (P-R) przekształcać wyrażenia arytmetyczne z zastosowaniem praw działań na potęgach o wykładnikach wymiernych (R D) wykonywać działania na potęgach o wykładnikach wymiernych (P-R) Logarytmy. definicję logarytmu pojęcia: logarytm dziesiętny oraz logarytm naturalny własności logarytmów pojęcie logarytmu własności logarytmów obliczać logarytmy (K R) wyznaczyć wielkości ze wzorów korzystając z definicji logarytmu (P D) rozwiązywać równanie, stosując definicję logarytmu (K R) wykorzystywać kalkulator do obliczania logarytmów dziesiętnych oraz naturalnych (K P) zastosowaniem definicji oraz własności logarytmów (R D) określić znak logarytmu, którego nie da się policzyć (W) 8

9 Właściwości logarytmów. twierdzenia o: logarytmie iloczynu logarytmie ilorazu logarytmie potęgi (o wykładniku naturalnym) twierdzenia o: logarytmie iloczynu logarytmie ilorazu logarytmie potęgi (o wykładniku naturalnym) wykonywać działania na logarytmach, stosując poznane twierdzenia (K R) rozwiązywać zadania z zastosowaniem poznanych twierdzeń (R D) Funkcje wykładnicze. definicję funkcji wykładniczej własności funkcji wykładniczych (K-P) definicję funkcji wykładniczej własności funkcji wykładniczych sporządzać wykresy i określać własności funkcji wykładniczych (P R) dopasowywać wzory do wykresów funkcji wykładniczych (K R) przekształcać wykresy funkcji wykładniczych (P D) określać wzory funkcji wykładniczych spełniających określone warunki (R D) zastosowaniem funkcji wykładniczych i ich własności (R D) Proste równania wykładnicze. pojęcie: równanie wykładnicze sposoby rozwiązywania prostych równań wykładniczych pojęcie: równanie wykładnicze rozwiązywać proste równania wykładnicze (K-D) Zastosowanie potęg i logarytmów. potrzebę stosowania potęg i logarytmów do opisu różnych zjawisk (R-W) rozwiązywać zadania dotyczące zjawisk opisanych funkcjami wykładniczymi (P-W) stosować model wykładniczy do opisu wielkości, które zmieniają się w stałym tempie (R W) Przekształcenia geometryczne. Symetrie. pojęcia: symetria osiowa oraz symetria środkowa pojęcia: figura osiowosymetryczna oraz oś symetrii figury pojęcia: figura środkowosymetryczna oraz środek symetrii figury definicję obrazu punktu (figury) w przekształceniu geometrycznym różnice pomiędzy symetrią osiową a symetrią środkową pojęcia: figura osiowosymetryczna oraz oś symetrii figury pojęcia: figura środkowosymetryczna wyznaczać punkty symetryczne do danych punktów względem danej prostej oraz proste, względem których dane punkty są symetryczne (K P) wskazywać figury osiowo i środkowo symetryczne (K P) wskazywać osie i środki symetrii danych figur wyznaczać punkty symetryczne do danych względem danego punktu (K P) znajdować obrazy figur w przekształceniach geometrycznych (R-D) zastosowaniem symetrii osiowej i środkowej (R W) 9

10 Symetrie w układzie współrzędnych. zależności między współ rzędnymi punktów symetrycznych względem osi układu współrzędnych zależności między współ rzędnymi punktów symetrycznych względem początku układu współ rzędnych wzór na współrzędne środka odcinka oraz środek symetrii figury zależności między współ rzędnymi punktów symetrycznych względem osi układu współrzędnych zależności między współ rzędnymi punktów symetrycznych względem początku układu współ rzędnych wyznaczać współrzędne punktów symetrycznych do danych punktów względem osi lub początku układu wyznaczać współrzędne obrazów danych punktów w symetrii względem prostej równoległej do osi x oraz osi y (P-R) wyznaczać równanie prostej, względem której dane punkty są symetryczne wyznaczać środek symetrii figury złożonej z dwóch punktów (K P) wyznaczać współrzędne wierzchołków równoległoboków i (lub) jego środka symetrii (R-D) zastosowaniem symetrii w układzie współrzędnych (R) Równanie prostej. pojęcia: ogólne równanie prostej, kierunkowe równanie prostej pojęcie współczynnika kierunkowego prostej związek między tangensem kąta nachylenia prostej y = ax + b do osi x a jej współczynnikiem kierunkowym warunek równoległości prostych warunek prostopadłości prostych pojęcia: ogólne równanie prostej, kierunkowe równanie prostej pojęcie współczynnika kierunkowego związek między tangensem kąta nachylenia prostej y = ax + b do osi x a jej współczynnikiem kierunkowym interpretację geometryczną układu dwóch równań liniowych przekształcać ogólne równanie prostej na równanie kierunkowe i odwrotnie obliczać współrzędne punktów przecięcia prostej z osiami układu badać prostopadłość prostych na podstawie ich równań kierunkowych znajdować równanie prostej: - przechodzącej przez dany punkt i równoległej do danej prostej ; -przechodzącej przez dwa dane punkty ; -przechodzącej przez dany punkt i prostopadłej do danej prostej określać liczbę rozwiązań układu równań liniowych, korzystając z jego interpretacji geometrycznej (P R) sprawdzać, czy trzy punkty są współliniowe obliczać, dla jakich wartości parametrów dany układ dwóch równań liniowych ma określoną liczbę rozwiązań (R D) obliczać miarę kąta, pod jakim przecinają się proste o danych równaniach (R D) zakresu geometrii analitycznej dotyczące równania prostej (R W) Długość odcinka. Równanie odcinka. wzór na odległość punktów na płaszczyźnie (wzór na długość odcinka) równanie okręgu (R) warunek koła (R) interpretację geometryczną zbioru obliczać odległość punktów na płaszczyźnie (długość odcinka) zastosowaniem obliczeń długości wyznaczać równanie okręgu o danym środku i promieniu (R) rozwiązywać zadania dot. 10

11 równanie okręgu (R) warunek koła (R) interpretację geometryczną zbioru punktów, których współrzędne spełniają określone warunki (R) punktów, których współrzędne spełniają określone warunki (R) odcinka (P-R) okręgu (R) opisać koło za pomocą nierówności (R) zaznaczać w układzie współrzędnych zbiory punktów, których współrzędne spełniają określone warunki, i opisywać zaznaczone zbiory punktów (R D) zastosowaniem równania okręgu (R D) Przykłady ciągów. pojęcia: ciąg, wyrazy ciągu pojęcia: ciąg skończony, ciąg nieskończony pojęcie wzoru ogólnego ciągu pojęcie wzoru rekurencyjnego ciągu (R) pojęcia: monotoniczność ciągu, ciąg malejący, ciąg rosnący, ciąg stały (R) sposób określania ciągu za pomocą wzoru ogólnego (K P) sposób określania ciągu za pomocą wzoru rekurencyjnego (R) algorytm badania monotoniczności ciągu zapisywać dowolne wyrazy ciągów na podstawie ich wzorów ogólnych (K P) podawać przykłady ciągów (K P) badać monotoniczność ciągu na podstawie wzoru ogólnego (P R) określać ciąg za pomocą wzoru ogólnego (P D) określać ciąg za pomocą wzoru rekurencyjnego (R) zapisywać dowolne wyrazy ciągów na podstawie ich wzorów rekurencyjnych (R) badać monotoniczność ciągu na podstawie wzoru rekurencyjnego (R) obliczać sumę k początkowych wyrazów ciągu na podstawie jego wzoru ogólnego (R D) obliczać kolejne wyrazy ciągu oraz określać ogólny wzór ciągu na podstawie danego wzoru na sumę n początkowych wyrazów ciągu (R) znajdować wzór ogólny ciągu określonego rekurencyjnie (R W) Ciągi arytmetyczne. pojęcia: ciąg arytmetyczny, różnica ciągu arytmetycznego wzór rekurencyjny i ogólny ciągu arytmetycznego wzór na sumę n własności ciągu arytmetycznego obliczać różnicę i kolejne wyrazy danego ciągu arytmetycznego obliczać dowolne wyrazy ciągu arytmetycznego, gdy dane są jeden wyraz i różnica ciągu lub dwa dowolne wyrazy tego ciągu (P R) podawać przykłady ciągów arytmetycznych spełniających dane zapisywać wzory ogólne ciągów arytmetycznych określonych rekurencyjnie i odwrotnie (R) określać wartości parametru, dla którego podane wyrażenia są kolejnymi wyrazami ciągu arytme- 11

12 początkowych wyrazów ciągu arytmetycznego warunki (K P) zapisywać wzory ciągów arytmetycznych (P R) obliczać sumę kolejnych wyrazów ciągu arytmetycznego (K R) sprawdzać, czy dana liczba jest wyrazem danego ciągu arytmetycznego (P R) ustalać, ile wyrazów ma podany ciąg arytmetyczny (P R) tycznego (R) rozwiązywać zadania dotyczące ciągów arytmetycznych (R D) rozwiązywać równania, w których jedna strona jest sumą wyrazów ciągu arytmetycznego (R D) Ciągi geometryczne. pojęcia: ciąg geometryczny, iloraz ciągu geometrycznego wzór rekurencyjny i ogólny ciągu geometrycznego wzór na sumę n początkowych wyrazów ciągu geometrycznego pojęcie średniej geometrycznej dwóch liczb nieujemnych własności ciągu geometrycznego obliczać ilorazy oraz kolejne wyrazy ciągów geometrycznych (K P) sprawdzać, czy podany ciąg jest ciągiem geometrycznym (K P) zapisywać dowolne wyrazy ciągu geometrycznego, gdy dany jest: iloraz i wyraz tego ciągu dwa wyrazy ciągu geometrycznego (P R) sprawdzać, czy dana liczba jest wyrazem danego ciągu geometrycznego (P R) określać monotoniczność ciągów geometrycznych (R) obliczać sumę kolejnych wyrazów ciągu geometrycznego (P R) zapisywać wzory ogólne ciągów geometrycznych określonych rekurencyjnie i odwrotnie (R D) obliczać wartości zmiennych, które wraz z danymi liczbami tworzą ciąg geometryczny (R D) rozwiązywać zadania dotyczące ciągów geometrycznych (R W) Procent składany. pojęcia: procent prosty, procent składany różnicę pomiędzy procentem prostym a procentem składanym zastosowaniem procentu prostego i składanego (P R) zastosowaniem procentu prostego i składanego (R W) 12

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka I 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony)

PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony) DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA 1 Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 160 PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Wymagania z matematyki KLASA VII

Wymagania z matematyki KLASA VII Wymagania z matematyki KLASA VII Wymagania na ocenę dopuszczającą: -porównywanie liczb wymiernych (łatwiejsze -zaznaczanie liczb wymiernych na osi liczbowej - zamiana ułamka zwykłego na dziesiętny i odwrotnie

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

zna wykresy i własności niektórych funkcji, np. y = x, y =

zna wykresy i własności niektórych funkcji, np. y = x, y = Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym i rozszerzonym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,

Bardziej szczegółowo

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Wydawnictwo GWO 4 GODZ. TYGODNIOWO

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo