.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download ".! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty."

Transkrypt

1 !"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania tych struktur pozwoli na napisanie programu kalkulatora liczcego w odwrotnej notacji polskiej. /! $'()# Lista to uporzdkowany cig elementów. Przykładami list s wektory lub tablice jednowymiarowe. W wektorach mamy dostp do dowolnego elementu, poprzez podanie indeksu tego elementu. Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty. Na stosie dodajemy i odejmujemy elementy z samego koca. Taka organizacja obsługi listy okrelana jest LIFO (ang. last in first out ostatni wszedł, pierwszy wyjdzie). opracowała: mgr in. Izabela Skorupska 1

2 Struktura reprezentujca element stosu: struct stos char element; struct stos *wskaznik; ; struct stos *wskaznik; Deklaracja elementów stosu: struct stos *nowy, *stary; Procedura realizujca dodawanie elementów na stos: void na_stos(char znak) stary=nowy; nowy= malloc (sizeof(struct stos)); nowy->element=znak; nowy->wskaznik=stary; Procedura realizujca zdejmowanie elementów ze stosu: void ze_stosu(struct stos *wskaz_element) if (wskaz_element!=null) stary=wskaz_element->wskaznik; //printf("usunieto %c ", wskaz_element->element); free(wskaz_element); nowy=stary; Procedura usuwajca wszystkie elementy ze stosu: void oczysc_stos(void) stary=nowy; while (stary!=null) ze_stosu(stary); printf("\nstos oczyszczony."); Procedura drukujca zawarto stosu: void pokaz_stos(void) printf("zawartosc stosu \n"); stary=nowy; while (stary!=null) printf(" %c ", stary->element); stary=stary->wskaznik; Drzewo jest hierarchiczn struktur danych. Pierwszy element drzewa, zwany korzeniem jest wyróniony. Inne elementy s jego potomstwem lub potomstwem jego potomstwa itd. Elementy opracowała: mgr in. Izabela Skorupska 2

3 drzewa nazywa si wierzchołkami lub wzłami. Licie to wierzchołki nie majce potomstwa. Drzewa czsto przedstawia si w formie grafu, gdzie kady wierzchołek jest połczony krawdzi ze swoim ojcem i ze swoimi dziemi (swoim potomstwem). Dla kadego elementu w drzewie istnieje dokładnie jedna cieka prowadzca od korzenia do tego wierzchołka. Drzewa binarne to takie drzewa, w których kady wierzchołek ma co najwyej dwóch potomków. Struktura reprezentujca drzewo binarne: struct drzewo char element; struct drzewo *prawy; struct drzewo *lewy; ; Drzewa mog by zrównowaone i niezrównowaone. Drzewo jest zrównowaone, gdy rónica wysokoci obu poddrzew kadego wzła w drzewie wynosi 0 lub 1. Szczególnym przypadkiem drzewa niezrównowaonego jest stos.! ($$ Obliczenia arytmetyczne moemy zapisywa w notacji infiksowej, prefiksowej (notacja polska) lub postfiksowej (odwrotna notacja polska). Jeli dodawanie dwóch liczb a i b zapiszemy w postaci: a + b to mamy do czynienia z notacj infiksow, gdy nazwa funkcji została umieszczona pomidzy argumentami. W notacji prefiksowej działanie przybiera posta: + a b natomiast odwrotna notacja polska zostala przedstawiona przez polskiego logika J. Łukasiewicza i działanie opisujemy cigiem: a b + Odwrotna notacja polska jest stosowana w nowoczesnych kalkulatorach naukowych, gdy nie trzeba w niej uywa nawiasów i nie sprawia kłopotów przy wprowadzaniu wielu argumentów. Konwersja bardziej skomplikowanych wyrae przedstawionych w notacji infiksowej do postaci postfiksowej jest kłopotliwa zwłaszcza wtedy, gdy wyraenie oryginalne zawiera wiele zagniedonych nawiasów. 0! '%1$$, ()*)+,! Dla kolejnych zapisów wyraenia: opracowała: mgr in. Izabela Skorupska 3

4 jeeli element jest stał lub zmienn, to wkładamy jego warto na stos, jeeli element jest znakiem operacji, to: o zdejmujemy dwie wartoci z wierzchu stosu, o wykonujemy operacj na tych wartociach, o obliczon warto wkładamy na wierzch stosu, po przejciu całego wyraenia jego warto znajduje si na stosie. Przykład 1: Dany jest cig w notacji postfiksowej: a b c + * d e / + naley zamieni go w cig zapisany w notacji infiksowej: Krok 1. Kładziemy elementy a b c na stos Krok 2. Wykonujemy działanie + Krok 3. Wykonujemy działanie * Krok 4. Kładziemy elementy d e na stos Krok 5. Wykonujemy działanie / Krok 6. Wykonujemy działanie + Krok 1 Krok 2 Krok 3 Krok 4 Krok 5 Krok 6 c c+b (c+b)*a e e/d e/d+(c+b)*a b a d (c+d)*a a (c+d)*a W wyniku działania algorytmu otrzymamy wyraenie: e/d+(c+b)*a ()-)+, Dla kolejnych zapisów wyraenia, czytajc od koca wyraenia: pierwszy element stanowi wierzchołek drzewa, kolejny element stanowi jego prawego potomka, jeeli wstawiany element jest: o znakiem naley powtórzy operacj 2, o cyfr lub liter, naley wróci do najbliszego wierzchołka i sprawdzi czy ma on ju lewego potomka: jeli nie ma naley go utworzy i powtórzy operacje: 2 i 3, jeli ma wróci do najbliszego wierzchołka nie posiadajcego dwóch potomków i powtórzy operacje: 2 i 3. opracowała: mgr in. Izabela Skorupska 4

5 Wszystkie operacje wykonujemy do momentu wyczerpania elementów. Przykład 2: Obliczy warto wyraenia: * (metod stosu) Postpujemy zgodnie z opisanym algorytmem: Krok 1 Krok 2 Krok 3 Krok 4 Krok 5 Krok 6 2+3=5 5*4=20 5-1=4 4+20= Przykład 3: Cig: a b c + * d e / + za pomoc drzewa naley zamieni w cig zapisany w notacji infiksowej: Krok 1. Operator + stanowi korze drzewa, / jego prawego potomka. Poniewa / nie jest cyfr ani liter, staje si wierzchołkiem nowej gałzi. Jego prawym liciem bdzie e, które jest liter i nie moe mie swojego potomka. Naley wróci do najbliszego wierzchołka ( / ) i sprawdzi, czy ma on lewego potomka. W realizowanym przykładzie: / go nie ma, wic bdzie nim d. Ten element nie moe by wierzchołkiem nowej gałzi, dlatego szukamy najbliszego wierzchołka, który nie posiada jeszcze dwóch potomków. Warunek ten spełnia korze drzewa. Krok 2. Tworzymy lewego potomka wierzchołka +. Kolejny element cigu stanowi znak opeacji *, zatem moe by on nowym wierzchołkiem. Krok 3. Postpujemy analogicznie jak w kroku 1. Elementy: +, c, b bd stanowiły jego poddrzewo. opracowała: mgr in. Izabela Skorupska 5

6 Krok 4. Analogicznie jak w kroku 2. Tak zbudowane drzewo bdzie miało posta: Odczytywanie i obliczanie wartoci wyraenia rozpoczynamy od najniszego poziomu (poddrzewa) lewego potomka (od strony prawej do lewej) i wdrujemy ku górze a do wierzchołka, nastpnie powtarzamy operacj dla prawego potomka. Odczytane wyraenie bdzie miało posta: (c+b)*a+(e/d) Przykład 4: Obliczy warto wyraenia: * (metod drzewa) Tworzymy drzewo: Odczytujemy poszczególne składowe wyniku: opracowała: mgr in. Izabela Skorupska 6

7 2! 3$ Zadanie polega na napisaniu: programu kalkulator.c liczcego warto wyraenia podanego w odwrotnej notacji polskiej (notacji postfiksowej). Załoenia programu kalkulator: program przyjmuje tylko cyfry: 0..9 oraz symbole operacji: * / + - próba wprowadzenia innej wartoci oraz dzielenia przez zero powinna spowodowa wywietlenie odpowiedniego komunikatu i przerwanie operacji liczenia. q oznacza wyjcie z programu dozwolone s dwa sposoby wykonywania oblicze: o za pomoc stosu, o za pomoc drzewa. 4! * Przykładowe uruchomienie programu kalkulator: Wprowadz liczby: Wynik operacji: 4 Wprowadz liczby 1 a + a nie jest cyfra ani znakiem operacji. Wprowadz liczby: / Dzielenie przez 0. Wprowadz liczby: q Wyjscie z programu 5! )$ Sprawozdanie powinno zawiera nastpujce elementy: schemat blokowy działania programu, skomentowany plik ródłowy, plik makefile do kompilacji programu, w przypadku wykonywania oblicze na drzewie dokładny opis utworzonej struktury oraz funkcji, wnioski i uwagi. opracowała: mgr in. Izabela Skorupska 7

8 UWAGA: Program liczcy oparty o operacje wykonywane na drzewie bdzie wyej punktowany ni program wykorzystujcy obliczenia na stosie. 5! 6 1. A. Drozdek, D. L. Simon Struktury danych w jzyku C, WNT opracowała: mgr in. Izabela Skorupska 8

Odwrotna Notacja Polska

Odwrotna Notacja Polska Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy).

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Struktury danych 1.1 Listy, stosy i kolejki Lista to uporz adkowany ci ag elementów. Przykładami list s a wektory lub tablice

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Proces tworzenia programu:

Proces tworzenia programu: Temat 1 Pojcia: algorytm, program, kompilacja i wykonanie programu. Proste typy danych i deklaracja zmiennych typu prostego. Instrukcja przypisania. Operacje wejcia/wyjcia. Przykłady prostych programów

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Abstrakcyjne struktury danych w praktyce

Abstrakcyjne struktury danych w praktyce Abstrakcyjne struktury danych w praktyce Wykład 13 7.4 notacja polska A.Szepietowski Matematyka dyskretna rozdział.8 stos kompilacja rozłączna szablony funkcji Przypomnienie Drzewo binarne wyrażenia arytmetycznego

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

WYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5

WYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 WYKŁAD 10 Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 Tomasz Zieliński ZMIENNE O ZŁOŻONEJ BUDOWIE (1) Zmienne

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska 1 Przykład wyliczania wyrażeń arytmetycznych Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Copyright

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Wstp. Warto przepływu to

Wstp. Warto przepływu to 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze

Bardziej szczegółowo

Wprowadzenie do kompilatorów

Wprowadzenie do kompilatorów Wprowadzenie do kompilatorów Czy ja kiedykolwiek napisz jaki kompilator? Jakie zadania ma do wykonania kompilator? Czy jzyk formalny to rodzaj jzyka programowania? Co to jest UML?, Czy ja kiedykolwiek

Bardziej szczegółowo

Podstawy informatyki 2

Podstawy informatyki 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Szukanie najkrótszych dróg z jednym ródłem

Szukanie najkrótszych dróg z jednym ródłem Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek

Bardziej szczegółowo

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru. Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny Wykład nr 2 2/6 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Plan wykładu nr 2 Argumenty funkcji main Dynamiczne struktury danych

Bardziej szczegółowo

Sposoby przekazywania parametrów w metodach.

Sposoby przekazywania parametrów w metodach. Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wprowadzenie do algorytmów. START

Wprowadzenie do algorytmów. START 1 / 15 ALGORYMIKA 2 / 15 ALGORYMIKA Wprowadzenie do algorytmów. SAR 1. Podstawowe okrelenia. Algorytmika dział informatyki, zajmujcy si rónymi aspektami tworzenia i analizowania algorytmów. we: a,b,c delta:=b

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Stosy, kolejki i drzewa 1.1 Listy Lista to uporządkowany ciąg elementów. Przykładami list są tablice jednowymiarowe. W tablicach

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Wykład 8. Drzewa AVL i 2-3-4

Wykład 8. Drzewa AVL i 2-3-4 Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów

Bardziej szczegółowo

Sortowanie bąbelkowe

Sortowanie bąbelkowe 1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Rekurencyjne struktury danych

Rekurencyjne struktury danych Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi

Bardziej szczegółowo

Pozostałe zadania UWAGA: Za kade poprawne i pełne rozwizanie przyznajemy maksymaln liczb punktów nalenych za zadanie. 1 p.

Pozostałe zadania UWAGA: Za kade poprawne i pełne rozwizanie przyznajemy maksymaln liczb punktów nalenych za zadanie. 1 p. SCHEMAT PUNKTOWANIA GM - A1 LUTY 2004 Zadania WW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 B C D B C C B A D B B D A C B C A A B A C A D D D Pozostałe zadania UWAGA: Za kade poprawne

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Temat: Struktury do przechowywania danych w pamici zewntrznej. B - drzewa. B * - drzewa. B + - drzewa.

Temat: Struktury do przechowywania danych w pamici zewntrznej. B - drzewa. B * - drzewa. B + - drzewa. Temat: Struktury do przechowywania danych w pamici zewntrznej. B - drzewa. B * - drzewa. B + - drzewa. Podstawow jednostk w operacjach wejcia - wyjcia zwizanych z dyskiem (pamici zewntrzn) jest blok. czas

Bardziej szczegółowo

Program do konwersji obrazu na cig zero-jedynkowy

Program do konwersji obrazu na cig zero-jedynkowy Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,

Bardziej szczegółowo

WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński

WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński WYKŁAD 8 Funkcje i algorytmy rekurencyjne Proste przykłady Programy: c3_1.c..., c3_6.c Tomasz Zieliński METODY REKURENCYJNE (1) - program c3_1 ======================================================================================================

Bardziej szczegółowo

Bazy danych. Plan wykładu. Podstawy modeli relacyjnych. Diagramy ER. Wykład 3: Relacyjny model danych. SQL

Bazy danych. Plan wykładu. Podstawy modeli relacyjnych. Diagramy ER. Wykład 3: Relacyjny model danych. SQL Plan wykładu Bazy danych Wykład 3: Relacyjny model danych. SQL Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - podstawy Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B) Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys

Bardziej szczegółowo

Algorytmy zachłanne. dr inż. Urszula Gałązka

Algorytmy zachłanne. dr inż. Urszula Gałązka Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie

Bardziej szczegółowo

7a. Teoria drzew - kodowanie i dekodowanie

7a. Teoria drzew - kodowanie i dekodowanie 7a. Teoria drzew - kodowanie i dekodowanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7a. wteoria Krakowie) drzew - kodowanie i

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Wykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych

Wykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Wykład 6_ Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Abstrakcyjny typ danych Klient korzystający z abstrakcyjnego typu danych: o ma do dyspozycji jedynie

Bardziej szczegółowo

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()

Bardziej szczegółowo

wiczenie 5 Woltomierz jednokanaowy

wiczenie 5 Woltomierz jednokanaowy wiczenie 5 Woltomierz jednokanaowy IMiO PW, LPTM, wiczenie 5, Woltomierz jednokanaowy -2- Celem wiczenia jest zapoznanie si# z programow% obsug% prostego przetwornika analogowo-cyfrowego na przykadzie

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

INFORMATYKA DANE.

INFORMATYKA DANE. INFORMATYKA DANE http://www.infoceram.agh.edu.pl DANE Dane to zbiory liczb, znaków, sygnałów, wykresów, tekstów, itp., które mogą być przetwarzane. Pojęcie danych jest relatywne i istnieje tylko razem

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

6 Przygotował: mgr inż. Maciej Lasota

6 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 6 1/5 Język C Instrukcja laboratoryjna Temat: Wskaźniki. 6 Przygotował: mgr inż. Maciej Lasota 1) Wskaźniki. Wskaźniki (zmienne wskaźnikowe) stanowią jedno z fundamentalnych pojęć języka

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Bazy danych Podstawy teoretyczne

Bazy danych Podstawy teoretyczne Pojcia podstawowe Baza Danych jest to zbiór danych o okrelonej strukturze zapisany w nieulotnej pamici, mogcy zaspokoi potrzeby wielu u!ytkowników korzystajcych z niego w sposóbs selektywny w dogodnym

Bardziej szczegółowo

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne: Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane

Bardziej szczegółowo

ZAJ CIA 4. Podstawowe informacje o algorytmie. Operatory relacyjne i logiczne, instrukcja warunkowa if

ZAJ CIA 4. Podstawowe informacje o algorytmie. Operatory relacyjne i logiczne, instrukcja warunkowa if ZAJ CIA 4. Podstawowe informacje o algorytmie. Operatory relacyjne i logiczne, instrukcja warunkowa if. ALGORYTM Algorytm jest przepisem opisuj cym krok po kroku rozwi zanie problemu lub osi gni cie jakiego

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów

Bardziej szczegółowo

Programowanie - instrukcje sterujące

Programowanie - instrukcje sterujące Instytut Informatyki Uniwersytetu Śląskiego Laborki środowisko NetBeans, tworzenie nowego projektu; okno projekty; główne okno programu; package - budowanie paczek z klas; public class JavaApplication

Bardziej szczegółowo

Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska.

Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska. Rok akademicki 008/009, Wykład nr 5 /6 Plan wykładu nr 5 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia (zaoczne) Rok akademicki

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Dynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania

Dynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania Rok akademicki 2010/2011, Wykład nr 4 2/50 Plan wykładu nr 4 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2010/2011

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Informatyka 2. Wykład nr 5 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 2. Wykład nr 5 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2008/2009 Wykład nr 5 (22.11.2008) Rok akademicki 2008/2009,

Bardziej szczegółowo

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,

Bardziej szczegółowo

Programowanie w języku C++ Grażyna Koba

Programowanie w języku C++ Grażyna Koba Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad

Bardziej szczegółowo

Lista liniowa dwukierunkowa

Lista liniowa dwukierunkowa 53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej

Bardziej szczegółowo

Drzewa czerwono-czarne.

Drzewa czerwono-czarne. Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric

Bardziej szczegółowo

Układy VLSI Bramki 1.0

Układy VLSI Bramki 1.0 Spis treści: 1. Wstęp... 2 2. Opis edytora schematów... 2 2.1 Dodawanie bramek do schematu:... 3 2.2 Łączenie bramek... 3 2.3 Usuwanie bramek... 3 2.4 Usuwanie pojedynczych połączeń... 4 2.5 Dodawanie

Bardziej szczegółowo

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć. Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

WHILE (wyrażenie) instrukcja;

WHILE (wyrażenie) instrukcja; INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while

Bardziej szczegółowo