Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki"

Transkrypt

1 Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017 dr inż. Sebastian Korczak

2 Wykład 2 Podział strukturalny mechanizmów, metody wyznaczania prędkości i przyspieszeń mechanizmów płaskich. Licencja: tylko do edukacyjnego użytku studentów Politechniki Warszawskiej TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 2

3 Przykłady do poprzedniego wykładu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 3

4 Przykłady do poprzedniego wykładu źródło: TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 4

5 Przykłady do poprzedniego wykładu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 5

6 Przykłady do poprzedniego wykładu Mechanizm maltański TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 6

7 Klasyfikacja łańcuchów kinematycznych Łańcuch kinematyczny prosty każdy człon łańcucha wchodzi w nie więcej niż dwie pary kinematyczne. Łańcuch kinematyczny złożony co najmniej jeden człon mechanizmu wchodzi w więcej niż dwie pary kinematyczne. Łańcuch kinematyczny otwarty istnieją człony wchodzące tylko w jedną parę kinematyczną. Łańcuch kinematyczny zamknięty żaden człon mechanizmu nie wchodzi w skład tylko jednej pary kinematycznej TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 7

8 Klasyfikacja łańcuchów kinematycznych Przykłady TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 8

9 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 9

10 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 10

11 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 11

12 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 =... II grupa strukturalna n=2 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 12

13 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 =... II grupa strukturalna III grupa strukturalna n=2 p 5 =3 n=4 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 13

14 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 =... II grupa strukturalna III grupa strukturalna IV grupa strukturalna n=2 p 5 =3 n=4 p 5 =6 n=6 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 14

15 Podział strukturalny mechanizmów I grupa strukturalna człon napędowy n=1 p 5 =1 + napęd napęd korbowy napęd liniowy napęd obrotowy TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 15

16 Podział strukturalny mechanizmów Przykład C E D TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 16

17 Podział strukturalny mechanizmów Przykład C E D I TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 17

18 Podział strukturalny mechanizmów Przykład C D C I E TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 18

19 Podział strukturalny mechanizmów Przykład C D C II I E TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 19

20 Podział strukturalny mechanizmów Przykład C D C II I E TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 20

21 Podział strukturalny mechanizmów Przykład C II D C II I E Jest to mechanizm II klasy TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 21

22 Podział strukturalny mechanizmów Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 22

23 Podział strukturalny mechanizmów Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 23

24 Kinematyka mechanizmów naliza kinematyczna mechanizmu polega na wyznaczeniu prędkości i przyspieszeń wybranych członów mechanizmu w interesujących nas położeniach tego mechanizmu. Dana musi być budowa mechanizmu (geometria członów, rodzaje par kinematycznych) oraz sposób jego napędzania TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 24

25 Metody wyznaczania prędkości i przyspieszeń mechanizmów Metody wykreślne - metoda rzutów prędkości, - metoda chwilowego środka obrotu, - metoda chwilowego środka przyspieszeń, - metoda prędkości obróconych, - metoda rozkładu prędkości, - metoda rozkładu przyspieszeń, - metoda planu prędkości, - metoda planu przyspieszeń. Metoda analityczna TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 25

26 Metody wyznaczania prędkości i przyspieszeń mechanizmów Metody wykreślne Metoda analityczna zalety możliwość lepszego zrozumienia pracy mechanizmu, możliwość analizowania bardzo złożonych mechanizmów, brak konieczności użycia komputera. wynikiem są funkcje opisujące prędkości i przyspieszenia dla dowolnej konfiguracji mechanizmu, możliwość analizowania bardzo złożonych mechanizmów, ale z użyciem komputera. wady bardzo duża pracochłonność, konieczność powtarzania procedury rysowania dla wielu położeń mechanizmu, występowanie błędów rysunkowych. w przypadku skomplikowanych mechanizmów otrzymujemy trudne w rozwiązaniu układy równań, interpretacja wyników obliczeń może być trudna TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 26

27 Metoda rzutów prędkości Rzuty prędkości dwóch punktów bryły sztywnej na kierunek łączący te punkty są sobie równe. v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 27

28 Metoda rzutów prędkości Rzuty prędkości dwóch punktów bryły sztywnej na kierunek łączący te punkty są sobie równe. v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 28

29 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 29

30 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 30

31 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 31

32 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 32

33 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 33

34 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 34

35 Metoda chwilowego środka obrotu Z chwilowego środka obrotu widać końce wektorów prędkości wszystkich punktów bryły sztywnej pod jednakowym kątem względem prostej łączącej te punkty ze środkiem obrotu. v v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 35

36 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 36

37 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 37

38 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v ω S ω= v S = v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 38

39 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v ω S ω= v S = v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 39

40 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C v C v C =ω SC C v v ω S ω= v S = v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 40

41 Metoda chwilowego środka obrotu Przykład zastosowania 2 v v =ω C v C v C =ω C ω D v D v D =ω D TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 41

42 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 42

43 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 1 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 43

44 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 2 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 44

45 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 2 = + Prędkość bezwzględna punktu v = v + v Prędkość ruchu postępowego całej bryły Prędkość ruchu obrotowego punktu względem punktu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 45

46 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 2 = + ω Prędkość bezwzględna punktu v = v + v Prędkość ruchu postępowego całej bryły Prędkość ruchu obrotowego punktu względem punktu v = ω TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 46

47 Metoda planu prędkości Planem prędkości członu sztywnego nazywamy miejsce geometryczne końców wektorów prędkości bezwzględnych członu odłożonych z punktu zwanego biegunem planu prędkości. Plan prędkości członu jest do niego podobny pod względem konfiguracji punktów i obrócony o kąt 90 o zgodnie ze zwrotem chwilowej prędkości kątowej członu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 47

48 Metoda planu prędkości Przykład C v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 48

49 Metoda planu prędkości Przykład v C O v v v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 49

50 Metoda planu prędkości Przykład a v C 90 o O v v v v b TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 50

51 Metoda planu prędkości Przykład a v C 90 o O v v v c v b TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 51

52 Metoda planu prędkości Przykład a v C 90 o O v v C v v c v b TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 52

53 Metoda planu prędkości Przykład a v C 90 o O v v C v v c v b rysunek w skali skala prędkości: np. 1cm 1m/s skala geometrii obiektu: np. 2 : TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 53

54 Metoda planu prędkości Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 54

55 Prędkości w ruchu złożonym TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 55

56 Prędkości w ruchu złożonym TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 56

57 Prędkości w ruchu złożonym 1 2 v 2 = v 1 + v 2 1 Prędkość bezwzględna punktu 2 Prędkość unoszenia Prędkość względna TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 57

58 Prędkości w ruchu złożonym Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 58

PAiTM - zima 2014/2015

PAiTM - zima 2014/2015 PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

Mechanika Teoretyczna Kinematyka

Mechanika Teoretyczna Kinematyka POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Ogłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz

Ogłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz Laboratorium Badań Technoklimatycznych i Maszyn Roboczych Ogłoszenie Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz. 9 00 12 00. II

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Teoria maszyn i podstawy automatyki ćwiczenia projektowe Wydział Samochodów i Maszyn Roboczych

Teoria maszyn i podstawy automatyki ćwiczenia projektowe Wydział Samochodów i Maszyn Roboczych grupa 1 (poniedziałek, 8-10, s. 2.19, mgr inż. M. Bieliński) grupa 2 (poniedziałek, 8-10, s. 2.19, mgr inż. R. Nowak) grupa 7 (poniedziałek, 17-19, s. 2.19, mgr inż. M. Bieliński) grupa 8 (poniedziałek,

Bardziej szczegółowo

Teoria maszyn i mechanizmów Kod przedmiotu

Teoria maszyn i mechanizmów Kod przedmiotu Teoria maszyn i mechanizmów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria maszyn i mechanizmów Kod przedmiotu 06.1-WM-MiBM-P-54_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

KINEMATYKA POŁĄCZEŃ STAWOWYCH

KINEMATYKA POŁĄCZEŃ STAWOWYCH KINEMATYKA POŁĄCZEŃ STAWOWYCH RUCHOMOŚĆ STAWÓW Ruchomość określa zakres ruchów w stawach, jedną z funkcjonalnych właściwości połączeń stawowych. WyróŜniamy ruchomość: czynną zakres ruchu jaki uzyskamy

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

1. K 5 Ruch postępowy i obrotowy ciała sztywnego

1. K 5 Ruch postępowy i obrotowy ciała sztywnego 1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

ZARYS TEORII MECHANIZMÓW I MASZYN

ZARYS TEORII MECHANIZMÓW I MASZYN cssno JAN ODERFELD ZARYS TEORII MECHANIZMÓW I MASZYN ŁÓDŹ - 1959 - WARSZAWA PAŃSTWOWE WYDAWNICTWO NAUKOWE Spia- rzeczy SPIS' RZECZY Pr a edmowa... 4... *.... 3 1. Wstęp '. 5 2. Struktura mechanizmów-k

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Podstawowe informacje o module

Podstawowe informacje o module Podstawowe informacje o module Nazwa jednostki prowadzącej studia: Wydział Budownictwa i Inżynierii środowiska Nazwa kierunku studiów: Budownictwo Obszar : nauki techniczne Profil : ogólnoakademicki Poziom

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: PODSTAWY ROBOTYKI 2. Kod przedmiotu: Sr 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: WYBRANE ZAGADNIENIA MECHANIKI ANALITYCZNEJ, DRGAŃ I STATECZNOŚCI KONSTRUKCJI MECHANICZNYCH (cz. I MECHANIKA ANALITYCZNA) Kierunki: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: obieralny

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016 Kierunek studiów: Zarządzanie i inżynieria

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Mechanika. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Studia pierwszego stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Mechanika. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Studia pierwszego stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Mechanika. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok studiów I/ semestr 5. LICZBA PUNKTÓW ECTS:

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1

Bardziej szczegółowo

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych. Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MECHANIKA TECHNICZNA. Kod przedmiotu: Kt 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja

Bardziej szczegółowo

Kiść robota. Rys. 1. Miejsce zabudowy chwytaka w robocie IRb-6.

Kiść robota. Rys. 1. Miejsce zabudowy chwytaka w robocie IRb-6. Temat: CHWYTAKI MANIPULATORÓW I ROBOTÓW Wprowadzenie Chwytak jest zabudowany na końcu łańcucha kinematycznego manipulatora zwykle na tzw. kiści. Jeżeli kiść nie występuje chwytak mocowany jest do ramienia

Bardziej szczegółowo

Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Geometria i grafika inżynierska Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika

Bardziej szczegółowo

2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):

2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują): WYŻSZA SZKOŁA UMIEJĘTNOŚCI SPOŁECZNYCH SYLABUS PRZEDMIOT Perspektywa i aksonometria I. Informacje ogólne 1. Nazwa przedmiotu: Perspektywa i aksonometria 2. Rodzaj przedmiotu - obowiązkowy 3. Poziom i kierunek

Bardziej szczegółowo

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora. DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania

Bardziej szczegółowo

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Spis treści. Przedmowa... 7

Spis treści. Przedmowa... 7 Spis treści SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac przygotowanych... 22 1.4. Przyrost funkcji i wariacja funkcji...

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Roboty przemysłowe. Wprowadzenie

Roboty przemysłowe. Wprowadzenie Roboty przemysłowe Wprowadzenie Pojęcia podstawowe Manipulator jest to mechanizm cybernetyczny przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka. Należy wyróżnić dwa rodzaje funkcji

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Struktura manipulatorów

Struktura manipulatorów Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów.

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów. Automatyka i Robotyka. Podstawy modelowania i syntezy mechanizmów arcie w parach kinematycznych mechanizmów 1 ARCIE W PARACH KINEMAYCZNYCH MECHANIZMÓW Analiza wpływu tarcia na reakcje w parach kinematycznych

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ

Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Sesja Naukowa objęta honorowym patronatem przez Jego Magnificencję Rektora Politechniki Śląskiej prof. dr hab. inż. Andrzeja

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN KLASA I TECHNIKUM ZAWODOWE DZIAŁ : ODWZOROWANIE PRZEDMIOTÓW Stopień celujący otrzymuje uczeń, który: opanował w pełni wymagania programowe a jego wiadomości i umiejętności są twórcze (dodatkowe prace,

Bardziej szczegółowo

Przenośnik zgrzebłowy - obliczenia

Przenośnik zgrzebłowy - obliczenia Przenośnik zgrzebłowy - obliczenia Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik zgrzebłowy - obliczenia Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (67) 0 7 B- parter p.6 konsultacje:

Bardziej szczegółowo

Podstawy robotyki - opis przedmiotu

Podstawy robotyki - opis przedmiotu Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka

Bardziej szczegółowo

UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH

UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH POLITECHNIKA GDAŃSKA KRZYSZTOF LIPIŃSKI UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Roboty przemysłowe. Cz. II

Roboty przemysłowe. Cz. II Roboty przemysłowe Cz. II Klasyfikacja robotów Ze względu na rodzaj napędu: - hydrauliczny (duże obciążenia) - pneumatyczny - elektryczny - mieszany Obecnie roboty przemysłowe bardzo często posiadają napędy

Bardziej szczegółowo

Obwody elektryczne prądu stałego

Obwody elektryczne prądu stałego Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, projekt I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate Podstawy Konstrukcji Maszyn Wykład nr. 13 Przekładnie zębate 1. Podział PZ ze względu na kształt bryły na której wykonano zęby A. walcowe B. stożkowe i inne 2. Podział PZ ze względu na kształt linii zębów

Bardziej szczegółowo

Z-LOGN1-739L Elementy dynamiki Elements of dynamics. Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOGN1-739L Elementy dynamiki Elements of dynamics. Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu (taki jak w USOS) Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-739L Elementy dynamiki Elements of dynamics

Bardziej szczegółowo

Treści programowe przedmiotu

Treści programowe przedmiotu WM Karta (sylabus) przedmiotu Zarządzanie i Inżynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A P Przedmiot: Mechanika techniczna z wytrzymałością materiałów I Status

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia Przedmiot: Drgania lotniczych zespołów napędowych Rodzaj przedmiotu: podstawowy Kod przedmiotu: MBM S 3 5-0_1 Rok:

Bardziej szczegółowo

Pojazdy samochodowe - opis przedmiotu

Pojazdy samochodowe - opis przedmiotu Pojazdy samochodowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Pojazdy samochodowe Kod przedmiotu 06.1-WM-MiBM-KiEP-D-01_15W_pNadGenE5EFV Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Podstawy fizyki sezon 1

Podstawy fizyki sezon 1 Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł

Bardziej szczegółowo

Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C.

Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C. Instrukcja laboratoryjna do WORKING MODEL 2D. 1.Wstęp teoretyczny. Do opisu kinematyki prostej niezbędne jest podanie równańkinematyki robota. Zadanie kinematyki prostej można określićnastępująco: posiadając

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Opanowanie sposobu

Bardziej szczegółowo

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny Politechnika Śląska Wydział Mechaniczny Technologiczny Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Praca dyplomowa inżynierska Temat pracy Symulacja komputerowa działania hamulca tarczowego

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu Fiz010WMATBUD_pNadGen1D5JT Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska Inżynieria środowiska

Bardziej szczegółowo

Dynamika mechanizmów

Dynamika mechanizmów Dynamika mechanizmów napędy zadanie odwrotne dynamiki zadanie proste dynamiki ogniwa maszyny 1 Modelowanie dynamiki mechanizmów wymuszenie siłowe od napędów struktura mechanizmu, wymiary ogniw siły przyłożone

Bardziej szczegółowo

Dynamika ruchu technicznych środków transportu. Politechnika Warszawska, Wydział Transportu

Dynamika ruchu technicznych środków transportu. Politechnika Warszawska, Wydział Transportu Karta przedmiotu Dynamika ruchu technicznych Opis przedmiotu: Nazwa przedmiotu Dynamika ruchu technicznych A. Usytuowanie przedmiotu w systemie studiów Poziom Kształcenia Rodzaj (forma i tryb prowadzonych

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: EIT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: EIT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Fizyka 1 Rok akademicki: 2013/2014 Kod: EIT-1-205-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Informatyka Specjalność: - Poziom

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: HYDRAULIKA, PNEUMATYKA I SYSTEMY AUTOMATYZACJI PRODUKCJI Hydraulics, pneumatics and production automation systems Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na

Bardziej szczegółowo

Analiza kinematyczna i dynamiczna mechanizmów za pomocą MSC.visualNastran

Analiza kinematyczna i dynamiczna mechanizmów za pomocą MSC.visualNastran Analiza kinematyczna i dynamiczna mechanizmów za pomocą MSC.visualNastran Spis treści Omówienie programu MSC.visualNastran Analiza mechanizmu korbowo wodzikowego Analiza mechanizmu drgającego Analiza mechanizmu

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.1-WM-MiBM-P-09_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn / Automatyzacja i organizacja procesów

Bardziej szczegółowo

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE PASOWE LINOWE ŁAŃCUCHOWE a) o przełożeniu stałym a) z pasem płaskim a) łańcych pierścieniowy b) o przełożeniu zmiennym b) z pasem okrągłym

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Fizyka A (0310-CH-S1-009)

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Fizyka A (0310-CH-S1-009) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Fizyka A (009) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma studiów

Bardziej szczegółowo

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo