STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW
|
|
- Angelika Jabłońska
- 7 lat temu
- Przeglądów:
Transkrypt
1 STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne
2 2 Kodowane predykcyjne ) ( ) ( n s n p r n n s n s ) ( ) ( ) ( ) ( ) ( n p n s n d ) ( ) ( ) ( n d n p n s NADAWCA ODBIORCA r normalzujemy, aby np. z autokorelacj czyl r
3 Kodowane entropowe EC od ang. Entropy Codng s( n) s M m m Ilość nformacj stowarzyszona z komunkatam s m : m,..., M wynos I wystąpena m) log p, gdze p m ( 2 m s m, a jej marą jest lość btów. jest prawdopodobeństwem Średna lość btów potrzebnych do bezstratnego zakodowana komunkatu (entropa) jest wartoścą oczekwaną H M m p m log 2 p m 3
4 Alfabet Morse a Samuel Fnley Breese MORSE (79-872) amerykańsk malarz wynalazca 837 aparat telegrafczny alfabet telegrafczny 844 perwsza na śwece lna Baltmore - Washngton e t bt a n m s u r w d k g o h v f l ą p j b x c y z q ó ch 2 bty 3 bty 4 bty 4
5 Sprawność kodowana H M m p m log 2 p m Oczekwana lość btów H w M m b m p m gdze p m jest prawdopodobeństwem komunkatu zakodowanego przez symbol posadający btów. b m Sprawność kodowana 00% H H w może być co najwyżej równa 00%, bo entropa jest dolną grancą średnej lczby btów wymaganych do reprezentacj komunkatów. 5
6 Kodowane ze zmenną długoścą słowa VLC ang. Varable Length Codng sm pm - /8 0 /4 3/8 2 /4 H log log 3 log log 2 4 8,9 6
7 Przykład algorytmu kodowana metodą Huffmana 952 rok Symbol 0 2-3/8 /4 /4 /8 0 3/8 3/8 /4 Prawdopodobeństwo Prawdopodobeństwo Prawdopodobeństwo 5/8 3/
8 Kontynuacja przykładu kodu Huffmana Symbol Prawdopodobeństwo 0,25 0,250 0,375 0,250 Kod bnarny Przecętna lość btów na symbol 3 2 3( ) 2,9 2 H w Sprawność kodowana 00% 95% % sprawność kodowana gdy prawdopodobeństwa są potęgam /2 8
9 Kolejny przykład kodowana Huffmana e [0,076] e [0,076] a [0,073] a [0,073] c [0,037] db ()[0,038] d()[0,030] } c (0)[0,037] b(0)[0,008] } e [0,076] c d b ()[0,075] a (0)[0,073] } a c d b()[0,48] e (0)[0,076] Symbol a b c d e Prawdopodobeństwo 0,073 0,008 0,037 0,030 0,076 Kod bnarny
10 Prosty przykład kodu Huffmana pm gęstość prawdopodobeństwa zmennej losowej sm m F m p dystrybuanta Znak Prawdopodobeństwo Kod Huffmana H = 0,335 bt/symbol 0,95 0,02 0, H w,05 bt/symbol Sprawność tylko 3,9% 0
11 Kod Huffmana sekwencj symbol Sekwencja symbol Iloczyn prawdopo- Kod Huffmana dobeństw H = 0,6 bt/symbol 0,9025 0,090 0, H w,222 sprawność bt/symbol 50% 0, ,0004 0,0006 0,0285 0, Poprzedno: H = 0,335 bt/symbol H w,05 3,9% 0,
12 Tworzene sekwencj elementów dla kodowana arytmetycznego 0 0,95 0, 97 0,95 0,969 0, 97 0,9694 0,969 Ilość btów potrzebna do zakodowana komunkatu jest częścą całkowtą log 2 p n 0, ,9694 0,
13 Przykład kodowana arytmetycznego H, ,7 % w Sekwencja symbol Iloczyn prawdopo- Grance przedzału Wartość środkowa Wartość środkowa dobeństw w kodze dzesętnym w kodze bnarnym log 2 p n 0, ,9025 0,4525 0, ,5 0,090 0,9025 0,925 0,92 0, ,72 0,0285 0,925 0,95 0, , ,3 0,090 0,95 0,969 0,9595 0, ,72 0,0004 0,969 0,9694 0,9692 0, ,29 0,0006 0,9694 0,97 0,9697 0, ,70 0,0285 0,97 0,9985 0, ,00 0 6,3 0,0006 0,9985 0,999 0,9988 0,0000 0,70 0,0009 0,999-0, ,0000,2 3
14 Kodowane cągów RLC ang. Run Length Codng v, r gdze v (od ang. value) powtarzający sę symbol r (od ang. run) lczba powtórzeń , 0,,2 0,, 0,2,3 kod 0 kod 000 4
15 Metody kompresj stratnej SYGNAŁ Kodowane stratne Dekodowane SYGNAŁ neco nny 5
16 Kwantyzacja skalarna s wy SQ ang. Scalar Quantzaton s we Kwantyzacja równomerna s 2 s s2 s s s s 2 s s s2 s 3 s Q( s) gdze s s s s () nerównomerna pozomy reprezentacyjne prog decyzyjne pozom reprezentacyjny lub kod, są rozdzelnym zboram pokrywającym podzbór lczb rzeczywstych. Kwantyzacja strefowa 6
17 Kwantowane wektorowe Przykład gdy s, s 2 Ksążka kodowa Q( s) s np. dzałane w/g reguły ds, s ds, s j M j,..., M- lość elementów ksążk kodowej 7
18 Kodowane transformatowe T - transformacja Q -kwantowane K kodowane bezstratne K - - dekodowane Q - - dekwantyzacja IT- transformacja odwrotna 8
19 Transformacje częstotlwoścowe krótkoczasowa Fourera sˆ( f ) w( t) s( t) e 2jft dt w( t) s( t) cos(2jf ) j sn(2jf ) dt kosnusowa s ( f ) s( t) cos(2tf ) dt falkowa ~, s a b st a ( ) t b a dt 9
20 Dyskretna transformacja kosnusowa DCT od ang. Dscrete Cosne Transform s( k) 2 N c( k) (2n ) N N s( n)cos n0 2 k k 0,,, N gdze c(k) 2 dla dla k k 0 0 Transformacja odwrotna s( n) 2 N (2n ) N N c( k) s( k)cos k 0 2 k 20
21 DCT dla bloków po 8 próbek Dzeląc sygnał na blok po 8 próbek posługujemy sę transformacją s( k) 0,5 c( k) 7 n0 s( n)cos (2n ) k /
22 Bank fltrów cyfrowych z s 2 2 Kwantyzacja 2 2 z 2s z s 2 2 z Kwantyzacja z 2 2 z s 22
23 Sygnał audo: próbek/sekundę po 6 btów daje btów/s w jednym kanale Sygnał telefonczny: Fltrowane do 4 khz, Próbkowane 8000 próbek/sekundę, Zamana próbek na 3-btowe pakety - strumeń 04 kbt/s, KOMPRESJA do 3 kbt/s. Kompresja / ~ 54,28 23
24 Kompresja audo w GSM Sygnał dzelony na blok po 20 ms, Każdy blok kodowany na 260 btach, Bbloteka wzorców (sygnałów wzorcowych) 04 bty na sygnał wzorcowy, 56 btów opsuje różncę mędzy wzorcem a orygnałem. 260 bt 3 kbt/s 20 ms 24
5/25/2017. Elementy teorii informacji. Co to jest informacja? Słownik Języka Polskiego: Elementy teorii informacji
Elementy teorii informacji Co to jest informacja? Słownik Języka Polskiego:. «wiadomość o czymś lub zakomunikowanie czegoś» 2. «dział informacyjny urzędu, instytucji» 3. «dane przetwarzane przez komputer»
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Wybrane metody kompresji obrazów
Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana
Kodowane nformacj Instytut Informatyk UWr Studa weczorowe Wykład nr 2: rozszerzone dynamczne Huffmana Kod Huffmana - nemłe przypadk... Nech alfabet składa sę z 2 lter: P(a)=1/16 P(b)=15/16 Mamy H(1/16,
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
Fundamentals of Data Compression
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
architektura komputerów w. 3 Arytmetyka komputerów
archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG
Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzane kompresja danyh dr nż.. Wojeh Zają Wykład 4. Dyskretna transformata kosnusowa Shemat przetwarzana danyh w systeme yfrowym Cyfryzaja danyh Dekorelaja kwantyzaja ompresja FEC + przeplot
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Informacja - pojęcie abstrakcyjne Dane: konkretna reprezentacja informacji. 3 "Podstawy informatyki", Tadeusz Wilusz 2004
Współczesna technologa systemu nformacyjnego wedza wedza Podstawy nformatyk nformacja nformacja nformacja Temat 02 Maszynowa reprezentacja nformacj wykłady 2 3 źródło nformacj (nadawca nformacj) IBM Compatble
dr inż. Piotr Odya Wprowadzenie
dr inż. Piotr Odya Wprowadzenie Dane multimedialne to przede wszystkim duże strumienie danych liczone w MB a coraz częściej w GB; Mimo dynamicznego rozwoju technologii pamięci i coraz szybszych transferów
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Kompresja obrazów w statycznych - algorytm JPEG
Kompresja obrazów w statycznych - algorytm JPEG Joint Photographic Expert Group - 986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Kwantowanie sygnałów analogowych na przykładzie sygnału mowy
Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
Kompresja video (MPEG)
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 8, strona 1. Kompresja video (MEG) Zasadniczy schemat kompresora video Typy ramek przy kompresji czasowej Analiza ramek przez syntezę Sposób detekcji
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Joint Photographic Experts Group
Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1.
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1. SYSTEMY MULTIMEDIALNE Co to jest system multimedialny? Elementy systemu multimedialnego Nośniki danych i ich wpływ na kodowanie Cele
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Kompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12
Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
Podstawy kompresji danych
Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów
Podstawowe pojęcia. Teoria informacji
Kodowanie i kompresja informacji - Wykład 1 22 luty 2010 Literatura K. Sayood, Kompresja danych - wprowadzenie, READ ME 2002 (ISBN 83-7243-094-2) Literatura K. Sayood, Kompresja danych - wprowadzenie,
RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski
RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Zaawansowane teksturowanie wprowadzenie Próbkowanie i rekonstrukcja sygnału Granica Nyquista Filtry do rekonstrukcji Antyaliasing tekstur
dr hab. inż. Lidia Jackowska-Strumiłło, prof. PŁ Instytut Informatyki Stosowanej, PŁ
Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Politechnika Łódzka Środowisko pracy grafików dr hab. inż. Lidia Jackowska-Strumiłło, prof. PŁ Instytut Informatyki Stosowanej, PŁ Formaty
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Komputer kwantowy Zasady funkcjonowania. Dr hab. inż. Krzysztof Giaro Politechnika Gdańska Wydział ETI
Komputer kwantowy Zasady funkcjonowana Dr hab. nż. Krzysztof Garo Poltechnka Gdańska Wydzał ETI Oblczena kwantowe. R. Feynman [985] symulację zachowana układu kwantowego należy przeprowadzć na "maszyne"
Cyfrowe przetwarzanie i kompresja danych. dr inż.. Wojciech Zając
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 7. Standardy kompresji obrazów nieruchomych Obraz cyfrowy co to takiego? OBRAZ ANALOGOWY OBRAZ CYFROWY PRÓBKOWANY 8x8 Kompresja danych
Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a
Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie
PRACA DYPLOMOWA MAGISTERSKA
POLITECHNIKA WARSZAWSKA Wydzał Elektronk Technk Informacyjnych Instytut Radoelektronk Rok akademck 2003/2004 PRACA DYPLOMOWA MAGISTERSKA Domnk Rves Optymalzacja stopna znekształceń progresywnej kompresj
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Je n ai fait celle-ci plus longue
Rozpoznawanie kodów splotowych
Buletyn WAT Vol. LV, Numer specjalny, 2006 Rozpoznawane kodów splotowych LESZEK NOWOSIELSKI, BARTOSZ ORLIŃSKI Wojskowa Akadema Technczna, Wydzał Elektronk, Instytut Telekomunkacj, 00-908 Warszawa, ul.
Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Organizacja zajęć Wykład: czwartek 14:15 16:00,
KOMPRESJA OBRAZÓW RUCHOMYCH Z WYKORZYSTANIEM KODOWANIA SUBPASMOWEGO
KOMPRESJA OBRAZÓW RUCHOMYCH Z WYKORZYSTANIEM KODOWANIA SUBPASMOWEGO Andrzej Popławski Instytut Informatyki i Elektroniki, Uniwersytet Zielonogórski 65-6 Zielona Góra, ul. Podgórna 50 e-mail: A.Poplawski@iie.uz.zgora.pl
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Kody Tunstalla. Kodowanie arytmetyczne
Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter
Podstawy teorii falek (Wavelets)
Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc
Krótki przegląd pierwszych standardów kompresji obrazów
Krótki przegląd pierwszych standardów kompresji obrazów Najstarszymi (980 rok) i szeroko stosowanymi obecnie standardami kompresji obrazów cyfrowych są międzynarodowe standardy kodowania cyfrowych faksów,
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Sieci neuronowe - projekt
Sieci neuronowe - projekt Maciej Barański, Kamil Dadel 15 stycznia 2015 Streszczenie W ramach projektu został zrealizowany algorytm kompresji stratnej bazujący na działaniu samoorganizującej się sieci
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Przetwarzanie obrazu cyfrowego
Kompresja Kompresja Obrazu Po co kompresja Podstawowe pojęcia RLE LZ78 LZW Huffman JPEG Po co kompresja Obraz FullHD 1920x1080 w kolorze RGB to 49766400 bity danych (5,94 MiB) Przeciętne zdjęcie 18Mpixel
Kompresja sekwencji obrazów - algorytm MPEG-2
Kompresja sekwencji obrazów - algorytm MPEG- Moving Pictures Experts Group (MPEG) - 988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et TélégraphieT
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12,
1 Kompresja stratna Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12, 5.05.2005 Algorytmy kompresji bezstratnej oceniane są ze względu na: stopień kompresji; czas działania procesu kodowania
dr inż. Jacek Naruniec
dr inż. Jacek Naruniec J.Naruniec@ire.pw.edu.pl Entropia jest to średnia ilość informacji przypadająca na jeden znak alfabetu. H( x) n i 1 p( i)log W rzeczywistości określa nam granicę efektywności kodowania
Przetwarzanie analogowo-cyfrowe sygnałów
Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Konwersja dźwięku analogowego do postaci cyfrowej
Konwersja dźwięku analogowego do postaci cyfrowej Schemat postępowania podczas przetwarzania sygnału analogowego na cyfrowy nie jest skomplikowana. W pierwszej kolejności trzeba wyjaśnić kilka elementarnych
Kompresja sekwencji obrazów
Kompresja sekwencji obrazów - algorytm MPEG-2 Moving Pictures Experts Group (MPEG) - 1988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie T et TélégraphieT
Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
dr hab. inż. Artur Janicki pok. 407 Zakład Cyberbezpieczeństwa Instytut Telekomunikacji PW
dr hab. inż. Artur Janicki email: A.Janicki@tele.pw.edu.pl, pok. 407 Zakład Cyberbezpieczeństwa Instytut Telekomunikacji PW Kodowanie źródła podstawowe informacje Sygnał mowy informacje ogólne, jak powstaje
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Algorytmy kodowania predykcyjnego
Algorytmy kodowania predykcyjnego 1. Zasada kodowania 2. Algorytm JPEG-LS 3. Algorytmy CALIC, LOCO-I 4. Algorytmy z wielokrotn rozdzielczoci. Progresywna transmisja obrazów Kompresja obrazów - zestawienie
TECHNIKI MULTIMEDIALNE
Studia Podyplomowe INFORMATYKA TECHNIKI MULTIMEDIALNE dr Artur Bartoszewski Film ile klatek na sekundę? Impulsy świetlne działają na komórki nerwowe jeszcze przez kilka ułamków sekundy po ustąpieniu faktycznego
Kodowanie źródeł sygnały video. Sygnał video definicja i podstawowe parametry
Kodowanie źródeł sygnały video (A) (B) (C) Sygnał video definicja i podstawowe parametry Liczba klatek na sekundę Przeplot Rozdzielczość obrazu Proporcje obrazu Model barw Przepływność binarna Kompresja
Inżynieria obrazów cyfrowych. Ćwiczenie 5. Kompresja JPEG
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Inżynieria obrazów cyfrowych Ćwiczenie 5 Kompresja JPEG Zadaniem ćwiczenia jest
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego
Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Za pomocąsygnałów przekazywana jest informacja. Sygnałjest nośnikiem informacji. Za pomocą sygnału moŝna: badać
Przetwarzanie i transmisja danych multimedialnych. Wykład 2 Podstawy kompresji. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład Podstawy kompresji Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Zawartość wykładu.
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
KOMPRESJA STRATNA OBRAZÓW. Paradygmat klasyczny. Kwantyzacja. Koncepcja podstawowa. PODSTAWY TECHNIK MULTIMEDIALNYCH A.Przelaskowski.
KOMPRESJA STRATNA OBRAZÓW Koncepcja podstawowa PODSTAWY TECHNIK MULTIMEDIALNYCH A.Przelaskowski Wprowadzenie Kwantyzacja Koncepcja kodowania transformacyjnego DCT JPEG Falki JPEG2000 Rodzina MPEG i inne
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Przykład: Znaleźć max { f (x)=x 2 } Nr osobnika Po selekcji: Nr osobnika
Przykład: Znaleźć max { f (x)=x } METODY HEURYSTYCZNE wykład 3 dla wartośc całkowtych x z zakresu -3. Populacja w chwl t: P(t)= {x t,...x t n} Założena: - łańcuchy 5-btowe (x=,,...,3); - lczebność populacj
Kodowanie informacji
Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie
Kodowanie i entropia
Kodowanie i entropia Marek Śmieja Teoria informacji 1 / 34 Kod S - alfabet źródłowy mocy m (np. litery, cyfry, znaki interpunkcyjne), A = {a 1,..., a n } - alfabet kodowy (symbole), Chcemy przesłać tekst
Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki
Podstawy kompresji treści multimedialnych. Opracował: dr inż. Piotr Suchomski
Podstawy kompresji treści multimedialnych Opracował: dr inż. Piotr Suchomski Wprowadzenie Dane multimedialne to przede wszystkim duże strumienie danych liczone w MB a coraz częściej w GB; Mimo dynamicznego
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Technika audio część 1
Technika audio część 1 Wykład 9 Technologie na urządzenia mobilne Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie technologii audio Próbkowanie Twierdzenie
Technologie cyfrowe semestr letni 2018/2019
Technologie cyfrowe semestr letni 2018/2019 Tomasz Kazimierczuk Dyski optyczne http://en.wikipedia.org/wiki/optical_disc CC BY-SA 3.0 Zapis audio CD Standardowa płyta CD: 333 000 sektorów Sektor: 2352
Teoria informacji i kodowania Ćwiczenia
Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość