teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

Wielkość: px
Rozpocząć pokaz od strony:

Download "teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015"

Transkrypt

1 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia

2 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe. Pierwsze twierdzenie Shannona. Kody Huffmana. 2

3 dziś 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja. 4. Kodowanie. Pierwsze twierdzenie Shannona. 5. Kodowanie Huffmana. 6. Entropia warunkowa i łączna. Informacja wzajemna. 7. Kanał komunikacyjny. Przepustowość kanału. 8. Binarny kanał symetryczny. 9. Drugie twierdzenie Shannona. 10. Kody korygujące błędy. Kod Hamminga. 11. Algorytmy kompresji: RLE, kodowanie arytmetyczne. 12. Złożoność Kolomogorova

4 dwie gry na rozgrzewkę

5 zgadywanie liczby Pomyśl sobie liczbę od 1 do 32 włącznie. Zapisz ją na kartce papieru i nie pokazuj nikomu. Pokażę ci 5 zestawów liczb, za każdym razem pytając czy twoja liczba znajduje się w danym zestawie. Potem powiem ci jaka była twoja liczba. 5

6 zgadywanie liczby (i) 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 6

7 zgadywanie liczby (ii) 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 7

8 zgadywanie liczby (iii) 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 8

9 zgadywanie liczby (iv) 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 9

10 zgadywanie liczby (v) 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 10

11 zgadnij regułę Podam wam ciąg 3 liczb, które spełniają pewną regułę. Wy możecie podawać mi dowolne inne ciągi trzech liczb, a ja wam powiem czy spełniają one moją regułę czy nie. Musicie odgadnąć jaka to reguła. 11

12 zgadnij regułę 2, 4, 8 12

13 entropia warunkowa i łączna. informacja wzajemna

14 notacja prawdopodobieństwa dla wielu alfabetów Do zapisu prawdopodobieństw wewnątrz jednego alfabetu używaliśmy skróconego zapisu p(a). W przypadku wielu alfabetów (żródeł) używać będziemy zapisu p(x = a). 14

15 prawdopodobieństwo warunkowe Prawdopodobieństwo p(x = a Y = b) oznacza prawdopodobieństwo że wartość źródła X będzie równa a, jeżeli wartość źródła Y wynosi b. Ta wartość, podobnie jak inne, będzie z reguły dana, jednak możemy ją zdefiniować jako p(x = a Y = b) = p(x = a, Y = b) p(y = b) gdzie p(x = a, Y = b) to prawdopodobieństwo łączne. 15

16 prawdopodobieństwo łączne Prawdopodobieńśtwo łączne określa prawdopodobieństwo że dwa wydarzenia zajdą jednocześnie. Zapisujemy to p(x = a, Y = b). 16

17 entropia łączna Entropia łączna opisuje wspólną entropię dwóch alfabetów. Jest po prostu entropią na zbiorze par symboli wziętych z dwóch alfabetów. H(X, Y) = a,b p(x = a, Y = b) log 1 p(x = a, Y = b) 17

18 zadanie Dane są dwa źródła: X i Y, z tym samym alfabetem {0, 1, 2, 3}. Prawdopodobieństwo dla każdego z tych symboli w źródle X wynosi 1 4. Jeżeli źródło X emituje symbol n, to źródło Y emituje z prawdopodobieństwem 1 2 ten sam symbol i z prawdopodobieństwem 1 2 symbol n + 1 (przy czym jeżeli n = 3, to n + 1 = 0). Policz entropię łączną H(X, Y) tych dwóch źródeł. 18

19 entropia warunkowa Podobnie do prawdopodobieństwa warunkowego, entropia warunkowa określa wpływ znajomości jednego źródła na entropię drugiego. H(X Y) = a,b p(x = a, Y = b) log p(x = a Y = b) 19

20 zadanie Dane są dwa źródła: X i Y, z tym samym alfabetem {0, 1, 2, 3}. Prawdopodobieństwo dla każdego z tych symboli w źródle X wynosi 1 4. Jeżeli źródło X emituje symbol n, to źródło Y emituje z prawdopodobieństwem 1 2 ten sam symbol i z prawdopodobieństwem 1 2 symbol n + 1 (przy czym jeżeli n = 3, to n + 1 = 0). Policz entropię warunkową H(X Y) tych dwóch źródeł. 20

21 informacja wzajemna Informacja wzajemna między dwoma źródłami mierzy jaką ilość informacji jedno ze źródeł niesie na temat drugiego. Innymi słowy, jest to średnia redukcja niepewności na temat jednego źródła przy uzyskiwaniu informacji na temat drugiego. I(X; Y) = a,b p(x = a, Y = b) log p(x = a, Y = b) p(x = a)p(y = b) 21

22 zadanie Spójrz na diagram Venna prezentujący związki między entropiami, entropiami warunkowymi, entropią łączną i informacją wzajemną. Na jego podstawie znajdź 3 różne wyrażenia pomagające obliczyć informację wzajemną z pozostałych 5 wartości. 22

23 kanał komunikacyjny

24 kanał komunikacyjny Kanał komunikacyjny składa się z dwóch źródeł (każdy z własnym alfabetem): wejściowego X i wyjściowego Y, oraz zestawu prawdopodobieństw warunkowych p(y = b X = a), które opisują prawdopodobieństwo otrzymania danego symbolu na wyjściu, jeżeli dany symbol pojawił się na wejściu. 24

25 przepustowość kanału Przepustowość kanału to maksymalna wartość informacji wzajemnej między wejściem a wyjściem kanału jaką możemy otrzymać zmieniając rozkład prawdopodobieństw symboli na wejściu. 25

26 binarny kanał symetryczny Binarny kanał symetryczny posiada dwuelementowy alfabet na wejściu i na wyjściu (na przykład {0, 1}). Posiada także stałe prawdopodobieństwo p, że symbol na wyjściu będzie inny niż na wejściu. 26

27 zadanie Policz entropię źródła wejściowego i wyjściowego o prawdopodobieństwie błędu p oraz równym prawdopodobieństwie pojawienia się obu symboli na wejściu. Znajdź warunkową entropię H(X Y) oraz wzajemną informację I(X; Y) między źródłem wejściowym a wyjściowym. Oblicz liczbowe wartości tych wielkości dla (a) p = 0 (b) p = 1 2 (c) p = 1 (d) p =

28 korekcja błędów

29 retransmisja Aby zmniejszyć szansę na błędną transmisję, możemy przesłać jeden bit wielokrotnie i wybrać jako wiążącą tę wartość, która występuje więcej razy. Jeżeli powtórzymy każdy bit siedmiokrotnie, co najmniej 4 z transmisji muszą być błędne. 29

30 zadanie Jeżeli prawdopodobieństwo błędnej transmisji pojedynczego bitu wynosi p = 0.01, jakie jest prawdopodobieństwo błędnej transmisji przy siedmiokrotnej retransmisji tego bitu? A 2k 1 krotnej? 30

31 detekcja błędów Naiwna retransmisja jest bardzo kosztowna. Co jeżeli przy pierwszej próbie nie było błędu? Pozostałe 6 prób było wtedy całkowicie zbędnych. Możemy spróbować tak zakodować sygnał, aby wiedzieć czy żaden z bitów nie został zamieniony przy transmisji. 31

32 dystans hamminga Dystans Hamminga między dwoma ciągami 0 i 1 o jednakowych długościach to liczba symboli które trzeba zamienić w jednym ciągu aby uzyskać drugi. Na przykład: dystans Hammina między 0110 i 1100 to 2. 32

33 zadanie Policz dystans Hamminga między poniższymi parami ciągów: (a) 01001, (b) , (c) ,

34 kodowanie wykrywające 1 błąd na n (i) Możemy do każdego bloku n bitów dodać jeszcze jeden bit tak, aby między żadną parą możliwych n + 1-bitowych ciągów nie występował dystans Hamminga równy 1. Wtedy pojedyncza zmiana wartości bitu będzie wykrywalna (otrzymamy na wyjściu ciąg, który nie mógł być wysłany) i będziemy mogli poprosić o retransmisję. 34

35 kodowanie wykrywające 1 błąd na n (ii) Wystarczy jako n + 1-szy bit dodać bit parzystości. Jeżeli w n bitach występuje parzysta liczba jedynek, dodatkowy bit będzie równy 0, w przeciwnym razie będzie równy 1. Każdy n + 1-bitowy blok będzie zawierać wtedy parzystą liczbę jedynek. Zmiana wartości jednego bitu da nam nieparzystą liczbę jedynek w bloku, czyli łatwo wykrywalny błąd przesyłu. 35

36 zadanie Skonstruuj 4-bitowy kod wykrywający pojedynczy błąd w 3-bitowych blokach. 36

37 zadanie Co się stanie, jeżeli zmianie ulegną 2 bity? A 3 bity? 37

38 drugie twierdzenie shannona Mając dany kanał o przepustowości C i źródło o entropii H, przy założeniu, że H C, da się skonstruować taki kod, aby prawdopodobieństwo błędu przesyłu (bez retransmisji!) było mniejsze niż dowolnie małe ϵ 0. 38

39 kodowanie systematyczne 7/4 hamminga (i) Przykładem takiego kodu jest kodowanie Hamminga. Jest ono w stanie przesłać 4 bity informacji na 7 bitach transmitowanych, mogąc przy tym poprawić pojedynczy błąd na dowolnym z 7 transmitowanych bitów (bez retransmisji!). 39

40 kodowanie systematyczne 7/4 hamminga (ii) Dane są przesyłane w 7-bitowych blokach b 1 b 2 b 3 b 4 b 5 b 6 b 7. 40

41 kodowanie systematyczne 7/4 hamminga (ii) Dane są przesyłane w 7-bitowych blokach b 1 b 2 b 3 b 4 b 5 b 6 b 7. Wyłącznie bity b 3, b 5, b 6 i b 7 przesyłają właściwe informacje, natomiast bity b 1, b 2 i b 4 służą do wykrywania i korekcji błędów. 41

42 kodowanie systematyczne 7/4 hamminga (iii) Bity korygujące błędy zdefiniowane są następująco: b 4 = b 5 b 6 b 7 b 2 = b 3 b 6 b 7 b 1 = b 5 b 5 b 7 42

43 kodowanie systematyczne 7/4 hamminga (iii) Bity korygujące błędy zdefiniowane są następująco: b 4 = b 5 b 6 b 7 b 2 = b 3 b 6 b 7 b 1 = b 5 b 5 b 7 Przy odbiorze bloku obliczamy syndromy s 1, s 2 i s 4 : s 4 = b 4 b 5 b 6 b 7 s 2 = b 2 b 3 b 6 b 7 s 1 = b 1 b 3 b 5 b 7 Jeżeli wszystkie syndromy są równe 0, nie było błędu. W przeciwnym razie bit 4s 4 + 2s 2 + s 1 był błędny. 43

44 gra ulama Pomyślę o liczbie między 0 a 15 włącznie. Możesz zadać 7 pytań tak/nie o moją liczbę. Mogę skłamać w odpowiedzi na co najwyżej jedno pytanie. Czy jesteś w stanie odgadnąć moją liczbę? 44

45 podsumowanie dzisiejszych zajęć Entropia warunkowa i łączna. Informacja wzajemna. Kanał komunikacyjny i przepustowość. Binarny kanał symetryczny. Retransmisja. Wykrywanie błędów przez bit parzystości. Drugie twierdzenie Shannona. Kod korygujący błędy kod Hamminga. 45

46 praca domowa 2 Wypisz wszystkie 7-bitowe bloki kodu systematycznego Hamminga. Policz dystans Hamminga między każdą parą bloków. Jaka jest minimalna wartość? Co to oznacza? 46

47 jutro 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja. 4. Kodowanie. Pierwsze twierdzenie Shannona. 5. Kodowanie Huffmana. 6. Entropia warunkowa i łączna. Informacja wzajemna. 7. Kanał komunikacyjny. Przepustowość kanału. 8. Binarny kanał symetryczny. 9. Drugie twierdzenie Shannona. 10. Kody korygujące błędy. Kod Hamminga. 11. Algorytmy kompresji: RLE, kodowanie arytmetyczne. 12. Złożoność Kolomogorova

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Entropia to wielkość określająca liczbę bitów informacji zawartej w danej wiadomości lub źródle. Spełnia ona trzy naturalne warunki: I(s) jest

Entropia to wielkość określająca liczbę bitów informacji zawartej w danej wiadomości lub źródle. Spełnia ona trzy naturalne warunki: I(s) jest Entropia to wielkość określająca liczbę bitów informacji zawartej w danej wiadomości lub źródle. Spełnia ona trzy naturalne warunki: I(s) jest malejącą funkcją prawdopodobieństwa zajścia zdarzenia s. I(s)

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Sieci Komputerowe Mechanizmy kontroli błędów w sieciach

Sieci Komputerowe Mechanizmy kontroli błędów w sieciach Sieci Komputerowe Mechanizmy kontroli błędów w sieciach dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Zasady kontroli błędów

Bardziej szczegółowo

Kompresja danych kodowanie Huffmana. Dariusz Sobczuk

Kompresja danych kodowanie Huffmana. Dariusz Sobczuk Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Teoria informacji i kodowania

Teoria informacji i kodowania Teoria informacji i kodowania Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Systemów i Sieci Radiokomunikacyjnych dr inż. Małgorzata Gajewska e-mail: malgorzata.gajewska@eti.pg.gda.pl

Bardziej szczegółowo

Podręcznik. Wzór Shannona

Podręcznik. Wzór Shannona MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula

Bardziej szczegółowo

Detekcja i korekcja błędów w transmisji cyfrowej

Detekcja i korekcja błędów w transmisji cyfrowej Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski

Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny

Bardziej szczegółowo

Nierówność Krafta-McMillana, Kodowanie Huffmana

Nierówność Krafta-McMillana, Kodowanie Huffmana Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Wybrane metody kompresji obrazów

Wybrane metody kompresji obrazów Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Temat 5. 20 pytań Teoria informacji

Temat 5. 20 pytań Teoria informacji Temat 5 20 pytań Teoria informacji Streszczenie Ile informacji znajduje się w tysiącstronicowej książce? Czy więcej informacji znajduje się w książce telefonicznej, na 1000 stron tradycyjnych wydruków

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Detekcja i korekcja błędów w transmisji cyfrowej

Detekcja i korekcja błędów w transmisji cyfrowej Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa

Bardziej szczegółowo

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004 4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Kwantowe przelewy bankowe foton na usługach biznesu

Kwantowe przelewy bankowe foton na usługach biznesu Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać

Bardziej szczegółowo

KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu

KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu KODY SYMBOLI Materiały KODA, A.Przelaskowski Koncepcja drzewa binarnego Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Koncepcja przedziałów nieskończonego alfabetu Proste kody

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 3 Kodowanie Shannona Fano i Huffmana Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach

Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Witold Tomaszewski (Instytut

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:

Bardziej szczegółowo

Algorytmy kodowania entropijnego

Algorytmy kodowania entropijnego Algorytmy kodowania entropijnego 1. Kodowanie Shannona-Fano 2. Kodowanie Huffmana 3. Jednoznaczność kodów Huffmana. Kod o minimalnej wariancji 4. Dynamiczne kodowanie Huffmana Poprzedni wykład - podsumowanie

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) 182761

(12) OPIS PATENTOWY (19) PL (11) 182761 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 182761 (21) Numer zgłoszenia: 329110 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 28.03.1997 (86) Data i numer zgłoszenia

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Streszczenie Komputery do przechowywania rysunków, zdjęć i innych obrazów używają tylko liczb. Te zajęcia mają ukazać w jaki sposób to robią.

Streszczenie Komputery do przechowywania rysunków, zdjęć i innych obrazów używają tylko liczb. Te zajęcia mają ukazać w jaki sposób to robią. Temat 2 Kolory jako liczby Kodowanie obrazów Streszczenie Komputery do przechowywania rysunków, zdjęć i innych obrazów używają tylko liczb. Te zajęcia mają ukazać w jaki sposób to robią. Wiek 7 i więcej

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Podstawy działania sieci

Podstawy działania sieci Podstawy działania sieci Topologie, adresy, serwery i protokoły 26 marca 2013 Mariusz Różycki 1 Początek Internetu Pierwszy komputer lata 40. XX wieku Pierwsza sieć 29 października 1969 Advanced Research

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Interfejsy systemów pomiarowych

Interfejsy systemów pomiarowych Interfejsy systemów pomiarowych Układ (topologia) systemu pomiarowe może być układem gwiazdy układem magistrali (szyny) układem pętli Ze względu na rodzaj transmisji interfejsy możemy podzielić na równoległe

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera

Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera Praca dyplomowa magisterska Opiekun: prof. nzw. Zbigniew Kotulski Andrzej Piasecki apiaseck@mion.elka.pw.edu.pl Plan

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Instrukcja obsługi Profesjonalny bezprzewodowy czytnik kodów HD2000

Instrukcja obsługi Profesjonalny bezprzewodowy czytnik kodów HD2000 Instrukcja obsługi Profesjonalny bezprzewodowy czytnik kodów HD2000 Specyfikacja: Źródło światła: 650nm Laser Materiał wykonania: ABS+PC / Aluminium Metoda skanowania: ręczne/ automatyczne Potwierdzenie

Bardziej szczegółowo

Interfejsy. w systemach pomiarowych. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Interfejsy. w systemach pomiarowych. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Interfejsy w systemach pomiarowych Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Interfejsy w systemach pomiarowych Układ (topologia) systemu pomiarowe może być układem gwiazdy

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów)

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) 1. Dla ciągu danych: 1 1 0 1 0 narysuj przebiegi na wyjściu koderów kodów transmisyjnych: bipolarnego NRZ, unipolarnego RZ,

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Arytmetyka komputera

Arytmetyka komputera Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Funkcja Boolowska a kombinacyjny blok funkcjonalny

Funkcja Boolowska a kombinacyjny blok funkcjonalny SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach

Bardziej szczegółowo

ROUTER ROUTER ROUTER. Przełącznik Przełącznik Przełącznik Przełącznik. 25 komp. 12 komp. 10 komp. 25 komp. P3 P4 P5 P6

ROUTER ROUTER ROUTER. Przełącznik Przełącznik Przełącznik Przełącznik. 25 komp. 12 komp. 10 komp. 25 komp. P3 P4 P5 P6 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2011/2012 Rozwiązania zadań dla grupy teleinformatycznej na zawody II stopnia ZADANIE 1 Administrator sieci komputerowej

Bardziej szczegółowo

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder Algorytmy Kompresji Danych Laboratorium Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder 1. Zapoznać się z opisem implementacji kodera entropijnego range coder i modelem danych opracowanym dla tego

Bardziej szczegółowo

Podstawy kompresji danych

Podstawy kompresji danych Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów

Bardziej szczegółowo

Podsieci IPv4 w przykładach. mgr inż. Krzysztof Szałajko

Podsieci IPv4 w przykładach. mgr inż. Krzysztof Szałajko Podsieci IPv4 w przykładach mgr inż. Krzysztof Szałajko I. Podział sieci IP na równe podsieci Zadanie 1: Podziel sieć o adresie IP 220.110.40.0 / 24 na 5 podsieci. Dla każdej podsieci podaj: Adres podsieci

Bardziej szczegółowo

Konwersja dźwięku analogowego do postaci cyfrowej

Konwersja dźwięku analogowego do postaci cyfrowej Konwersja dźwięku analogowego do postaci cyfrowej Schemat postępowania podczas przetwarzania sygnału analogowego na cyfrowy nie jest skomplikowana. W pierwszej kolejności trzeba wyjaśnić kilka elementarnych

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Efektywna analiza składniowa GBK

Efektywna analiza składniowa GBK TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo