Kwantowanie sygnałów analogowych na przykładzie sygnału mowy

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kwantowanie sygnałów analogowych na przykładzie sygnału mowy"

Transkrypt

1 Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze PCM G.711 Kwantowanie wektorowe Kodowanie różnicowe, predykcja, kodery ADPCM Kodery telefonii komórkowej (CELP) Wokoder predykcyjny Przemysław Dymarski, Instytut Telekomunikacji Politechniki Warszawskiej

2 Literatura: K.Sayood Kompresja danych wprowadzenie, Wyd. RM, W-wa 00 A.Drozdek Wprowadzenie do kompresji danych R.Tadeusiewicz "Sygnał mowy W.Skarbek MULTIMEDIA algorytmy i standardy kompresji T.P.Zieliński «Cyfrowe przetwarzanie sygnałów od teorii do zastosowań», WKiŁ, Warszawa 005 T.P.Zieliński «Cyfrowe przetwarzanie sygnałów w telekomunikacji», PWN, Warszawa 014

3 1. Sygnał mowy i jego modele Badanie jakości sygnału mowy

4 Sygnał mowy

5 Próbkowanie sygnału analogowego Claude Shannon Próbkowanie idealne Harry Nyquist Próbkowanie chwilowe Vladimir Kotelnikov Tw. o próbkowaniu (Shannon, Nyquist, Kotelnikow): Próbkowanie jest procesem bezstratnym (można odzyskać sygnał analogowy bez zniekształceń), jeśli częstotliwość próbkowania (tzn. liczba próbek na sekundę) jest większa niż B, gdzie B jest szerokością pasma sygnału analogowego. fs 1 B T

6 Ocena jakości mowy: metody subiektywne (odsłuchowe) MOS mean opinion score (oceny od 1 do 5) Wyrazistość logatomowa (%) = odtworzenie ze słuchu krótkich słów pozbawionych semantycznego znaczenia, np. tra, bru zastosowanie zdań nieprzewidywalnych semantycznie (SUS - Semantically Unpredictable Sentences), np. Umysł ugrzązł podczas marsowego wiadra

7 Metody obiektywne: SNR jako najprostszy obiektywny wskaźnik jakości

8 Metody obiektywne: SNR w ujęciu segmentowym

9 Maskowanie szumu widmo sygnału widmo szumu Metody obiektywne uwzględniające maskowanie: - PESQ (ITU-T P.86) - POLQA (ITU-T P.863) Wynik: MOS w skali 1-5

10 Kwantyzacja skalarna {x n } - zbiór próbek, {x* n } próbki skwantowane y 1 y, x* n y L x n

11 Kwantyzacja skalarna {x n } - zbiór próbek, {x* n } próbki skwantowane y 1 y, x* n y L Kwantyzacja jest procesem stratnym x n

12 Kwantyzacja równomierna Zwiększenie rozdzielczości o 1 bit na próbkę: -> podwojenie liczby poziomów -> -krotne zmniejszenie amplitudy błędu kwantyzacji -> 4-krotne zmniejszenie mocy błędu kwantyzacji 1 e -> 4-krotne (o 6 db) zwiększenie SNR 1 x e x SNR 3 L z 103 [ db] 0log10 z 10log10 SNR[ db] 10log x L (gdy nie ma przesterowania) Zasada 6 db/bit 1 z 1 z ( ) 1 L 3 L

13 Charakterystyki kwantyzatora równomiernego

14 Kwantyzacja nierównomierna (logarytmiczna) Zasada logarytmiczna: (x) proporcjonalne do x Zasady logarytmicznej nie można stosować dla x~0 gdyż wymagałoby to użycia nieskończonej liczby poziomów kwantyzacji. Z tego względu dla sygnałów o małej amplitudzie kwantyzator logarytmiczny przechodzi w równomierny (stosowane są dwa algorytmy: A i µ). Pociąga to za sobą spadek SNR dla tych sygnałów. Kwantyzatory logarytmiczne A i µ stosowane są w najpopularniejszym standardzie PCM G.711 (pasmo sygnału mowy Hz, częstotliwość próbkowania 8 khz, L=56 poziomów kwantyzacji, n=8 bitów na próbkę, przepływność binarna 64 kbit/s)

15 Charakterystyki kwantyzatorów a) równomierny b) logarytmiczny typu A c) logarytmiczny typu µ d) optymalny dla sygnału o mocy -5 db

16 Kwantyzacja adaptacyjna Zakres pracy z podąża za amplitudą sygnału 1. Adaptacja w przód (MPEG Audio) brak przesterowań opóźnienie przesyłanie z

17 Kwantyzacja adaptacyjna. Adaptacja wstecz (ADPCM) np. kwantyzator 4-poziomowy przesterowania brak opóźnień nie przesyła się z

18 Kwantyzator wektorowy VQ - vector quantizer P(f 1 ),...,P(f L ): komórki Voronoi a Georgij Voronij

19 Kwantyzator wektorowy VQ - vector quantizer xp( f ) x* f j j Przewaga VQ nad kwantyzatorem skalarnym: - wykorzystanie korelacji między kolejnymi N próbkami - wykorzystanie właściwości wielowymiarowej gęstości prawdopodobieństwa próbek

20 ADPCM (adaptive differential pulse code modulation) Modulator x n p x n * n n x n n -sygnał wejściowy -sygnał różnicowy (błąd predykcji) * x n p x n * n -sygnał predykcji -skwantowany syg. różnicowy * x n -sygnał wyjściowy Demodulator * x n * n en * n n -błąd kwantyzacji p x n e n * n n x * n x n x * n x n e n

21 ADPCM (adaptive differential pulse code modulation) SNR G x x e e p SNR SNR[ db] G [ db] SNR [ db] p q q Gp x -zysk predykcji (zależy od predyktora) SNR q e -SNR kwantyzatora (w kwantyzatorze adaptacyjnym zależy głównie od liczby poziomów kwantyzacji L)

22 Kodery CELP (Code Excited Linear Prediction) na przykładzie G.78 filtr syntezy (predykcyjny) dekoder koder - Operacje na wektorach N=5 -wymiarowych (stąd opóźnienie 0.65ms) - Przesyła się indeks wybranego wektora (j) w 7 bitach i wzmocnienie g w 3 bitach. Razem 10 bitów na N=5 próbek, czyli bity na próbkę, co daje przepływność binarną 8000=16000 bit/s

23 Wokodery od kilkuset do około 400 bit/s d=1: mowa dźwięczna d=0: mowa bezdźwięczna T 0 - okres tonu krtaniowego (okres drgań strun głosowych) Można wyróżnić więcej klas pobudzeń:

24 Porównanie standardów kodowania mowy

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do pracowni specjalistycznej Temat ćwiczenia: Badanie własności koderów PCM zastosowanych do sygnałów

Bardziej szczegółowo

KOMPRESJA STRATNA SYGNAŁU MOWY. Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP

KOMPRESJA STRATNA SYGNAŁU MOWY. Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP KOMPRESJA STRATNA SYGNAŁU MOWY Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP Śledzenie i upraszczanie zmian dynamicznych sygnałów ADPCM

Bardziej szczegółowo

dr hab. inż. Artur Janicki pok. 407 Zakład Cyberbezpieczeństwa Instytut Telekomunikacji PW

dr hab. inż. Artur Janicki   pok. 407 Zakład Cyberbezpieczeństwa Instytut Telekomunikacji PW dr hab. inż. Artur Janicki email: A.Janicki@tele.pw.edu.pl, pok. 407 Zakład Cyberbezpieczeństwa Instytut Telekomunikacji PW Kodowanie źródła podstawowe informacje Sygnał mowy informacje ogólne, jak powstaje

Bardziej szczegółowo

dr inż. Artur Janicki pok. 414 Zakład Systemów Teletransmisyjnych Instytut Telekomunikacji PW

dr inż. Artur Janicki   pok. 414 Zakład Systemów Teletransmisyjnych Instytut Telekomunikacji PW dr inż. Artur Janicki email: A.Janicki@tele.pw.edu.pl, pok. 414 Zakład Systemów Teletransmisyjnych Instytut Telekomunikacji PW Kodowanie źródła podstawowe informacje Sygnał mowy informacje ogólne, jak

Bardziej szczegółowo

METODY KODOWANIA SYGNAŁU MOWY DO ZASTOSOWAŃ W TELEKOMUNIKACJI

METODY KODOWANIA SYGNAŁU MOWY DO ZASTOSOWAŃ W TELEKOMUNIKACJI METODY KODOWANIA SYGNAŁU MOWY DO ZASTOSOWAŃ W TELEKOMUNIKACJI Maciej Kulesza pok. 726 Katedra Systemów Multimedialnych Plan wykładu Właściwości (charakterystyka) sygnału mowy Właściwości kodeków mowy Metody

Bardziej szczegółowo

Kwantyzacja wektorowa. Kodowanie różnicowe.

Kwantyzacja wektorowa. Kodowanie różnicowe. Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki

Bardziej szczegółowo

Analogowa (para miedziana, radio, walkie-talkie, CB) Cyfrowa (ISDN, GSM, VoIP, DRB, DVB, Tetra, )

Analogowa (para miedziana, radio, walkie-talkie, CB) Cyfrowa (ISDN, GSM, VoIP, DRB, DVB, Tetra, ) Transmisja mowy Analogowa (para miedziana, radio, walkie-talkie, CB) Modulacje: amplitudowa (AM), częstotliwościowa (FM), fazowa (PM) Wysokie zapotrzebowanie na pasmo (np. AM df>2f) Niska sprawność energetyczna

Bardziej szczegółowo

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22 MODULACJE IMPULSOWE TSIM W10: Modulacje impulsowe 1/22 Fala nośna: Modulacja PAM Pulse Amplitude Modulation Sygnał PAM i jego widmo: y PAM (t) = n= x(nt s ) Y PAM (ω) = τ T s Sa(ωτ/2)e j(ωτ/2) ( ) t τ/2

Bardziej szczegółowo

Przetwarzanie sygnałów w telekomunikacji

Przetwarzanie sygnałów w telekomunikacji Przetwarzanie sygnałów w telekomunikacji Prowadzący: Przemysław Dymarski, Inst. Telekomunikacji PW, gm. Elektroniki, pok. 461 dymarski@tele.pw.edu.pl Wykład: Wstęp: transmisja analogowa i cyfrowa, modulacja

Bardziej szczegółowo

KODOWANIE I KOMPRESJA SYGNAŁU MOWY

KODOWANIE I KOMPRESJA SYGNAŁU MOWY Akustyka mowy KODOWANIE I KOMPRESJA SYGNAŁU MOWY Katedra Systemów Multimedialnych, Politechnika Gdańska Autor: Grzegorz Szwoch, kwiecień 2011 Potrzeba kompresji mowy Cyfrowy sygnał mowy bez kompresji:

Bardziej szczegółowo

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania

Bardziej szczegółowo

Podstawy transmisji multimedialnych podstawy kodowania dźwięku i obrazu Autor Wojciech Gumiński

Podstawy transmisji multimedialnych podstawy kodowania dźwięku i obrazu Autor Wojciech Gumiński Podstawy transmisji multimedialnych podstawy kodowania dźwięku i obrazu Autor Wojciech Gumiński Podstawy transmisji multimedialnych Plan wykładu Wprowadzenie 1. Wprowadzenie 2. Ilość informacji 3. Kodowanie

Bardziej szczegółowo

Przetwarzanie analogowo-cyfrowe sygnałów

Przetwarzanie analogowo-cyfrowe sygnałów Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

Kompresja danych DKDA (7)

Kompresja danych DKDA (7) Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów

Bardziej szczegółowo

Rozpoznawanie i synteza mowy w systemach multimedialnych. Analiza i synteza mowy - wprowadzenie. Spektrogram wyrażenia: computer speech

Rozpoznawanie i synteza mowy w systemach multimedialnych. Analiza i synteza mowy - wprowadzenie. Spektrogram wyrażenia: computer speech Slajd 1 Analiza i synteza mowy - wprowadzenie Spektrogram wyrażenia: computer speech Slide 1 Slajd 2 Analiza i synteza mowy - wprowadzenie Slide 2 Slajd 3 Analiza i synteza mowy - wprowadzenie Slide 3

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano

Bardziej szczegółowo

Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication)

Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Politechnika Śląska Katedra Elektryfikacji i Automatyzacji Górnictwa Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Opracował:

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

Wybrane metody kompresji obrazów

Wybrane metody kompresji obrazów Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.

Bardziej szczegółowo

Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów

Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów 1. Przekształcenie sygnału analogowego na postać cyfrową określamy mianem: a. digitalizacji

Bardziej szczegółowo

Próbkowanie sygnałów (ang. sampling) PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE. Literatura. Cyfrowe Przetwarzanie Sygnałów

Próbkowanie sygnałów (ang. sampling) PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE. Literatura. Cyfrowe Przetwarzanie Sygnałów Cyfrowe Przetwarzanie Sygnałów Literatura Dr inż. Jakub Gałka C2-419, jgalka@agh.edu.pl Tel. wew. AGH 50-68 Konsultacje, poniedziałek, 11:30-12:30 1. Alan V. Oppenhei, Ronald W.Schafer: Cyfrowe przetwarzanie

Bardziej szczegółowo

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Kodowanie podpasmowe Plan 1. Zasada. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Jakości usług telekomunikacyjnych

Jakości usług telekomunikacyjnych Jakości usług telekomunikacyjnych SŁAWOMIR KULA Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Warszawa, 11 maja 2015 r. Zawartość tematyczna Wprowadzenie

Bardziej szczegółowo

JAKOŚĆ USŁUG TELEKOMUNIKACYJNYCH. Sławomir Kula Przemysław Dymarski Marcin Golański

JAKOŚĆ USŁUG TELEKOMUNIKACYJNYCH. Sławomir Kula Przemysław Dymarski Marcin Golański JAKOŚĆ USŁUG TELEKOMUNIKACYJNYCH Sławomir Kula Przemysław Dymarski Marcin Golański Warszawa, maj 2015 Spis treści 1. Wstęp... 5 2. Techniki kodowania sygnałów akustycznych i obrazów... 6 2.1. Cechy sygnału

Bardziej szczegółowo

Wykład VI. Dźwięk cyfrowy. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik

Wykład VI. Dźwięk cyfrowy. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik Wykład VI Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompresja dźwięku Kompresja dźwięku bezstratna podczas odtwarzania otrzymujemy wierne odwzorowanie

Bardziej szczegółowo

Pomiary w technice studyjnej. TESTY PESQ i PEAQ

Pomiary w technice studyjnej. TESTY PESQ i PEAQ Pomiary w technice studyjnej TESTY PESQ i PEAQ Wprowadzenie Problem: ocena jakości sygnału dźwiękowego. Metody obiektywne - np. pomiar SNR czy THD+N - nie dają pełnych informacji o jakości sygnału. Ważne

Bardziej szczegółowo

1. Kodowanie PCM 1.1 Informacje podstawowe

1. Kodowanie PCM 1.1 Informacje podstawowe 1. Kodowanie PCM 1.1 Informacje podstawowe Zdefiniowanie pojęcia sygnału należy poprzedzić określeniem samej informacji, która jest pojęciem pierwotnym, a więc nie wymagającym definiowania. Encyklopedia

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Technika audio część 1

Technika audio część 1 Technika audio część 1 Wykład 9 Technologie na urządzenia mobilne Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie technologii audio Próbkowanie Twierdzenie

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Przetwornik analogowo-cyfrowy

Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego

Bardziej szczegółowo

MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk

MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk Wyższa Szkoła Informatyki Stosowanej i Zarządzania MODULACJA Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji dr inż. Janusz Dudczyk Cel wykładu Przedstawienie podstawowych

Bardziej szczegółowo

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych.

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych. Wykładowcy: A. Dąbrowski W8. Sygnały cyfr. 4 (Spread Spectrum), W11. Odbiór sygnałów 3 (Korekcja adaptacyjna) A. Janicki W2.Kodowanie źródeł - sygnały audio M. Golański W3. Kodowanie źródeł- sygnały video

Bardziej szczegółowo

Fundamentals of Data Compression

Fundamentals of Data Compression Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład II Reprezentacja danych w technice cyfrowej 1 III. Reprezentacja danych w komputerze Rodzaje danych w technice cyfrowej 010010101010 001010111010

Bardziej szczegółowo

Konwersja dźwięku analogowego do postaci cyfrowej

Konwersja dźwięku analogowego do postaci cyfrowej Konwersja dźwięku analogowego do postaci cyfrowej Schemat postępowania podczas przetwarzania sygnału analogowego na cyfrowy nie jest skomplikowana. W pierwszej kolejności trzeba wyjaśnić kilka elementarnych

Bardziej szczegółowo

Kwantyzacja wektorowa. Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje

Kwantyzacja wektorowa. Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje Kwantyzacja wektorowa Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje Zasada kwantyzacji wektorowej Kwantyzacja skalarna koduje oddzielnie kaŝdą próbkę

Bardziej szczegółowo

dr inż. Piotr Odya Parametry dźwięku zakres słyszanych przez człowieka częstotliwości: 20 Hz - 20 khz; 10 oktaw zakres dynamiki słuchu: 130 db

dr inż. Piotr Odya Parametry dźwięku zakres słyszanych przez człowieka częstotliwości: 20 Hz - 20 khz; 10 oktaw zakres dynamiki słuchu: 130 db dr inż. Piotr Odya Parametry dźwięku zakres słyszanych przez człowieka częstotliwości: 20 Hz - 20 khz; 10 oktaw zakres dynamiki słuchu: 130 db 1 Sygnał foniczny poziom analogowy czas cyfrowy poziom czas

Bardziej szczegółowo

WPŁYW PRÓBKOWANIA I KWANTYZACJI NA JAKOŚĆ DŹWIĘKU

WPŁYW PRÓBKOWANIA I KWANTYZACJI NA JAKOŚĆ DŹWIĘKU KATEDRA SYSTEMÓW MULTIMEDIALNYCH LABORATORIUM PRZETWARZANIA DŹWIĘKÓW I OBRAZÓW Ćwiczenie nr : WPŁYW PRÓBKOWANIA I KWANTYZACJI NA JAKOŚĆ DŹWIĘKU Opracowanie: mgr Marek Szczerba mgr inż. Piotr Odya mgr inż.

Bardziej szczegółowo

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych. http://cygnus.tele.pw.edu.pl/potc

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych. http://cygnus.tele.pw.edu.pl/potc Wykładowcy: A. Dąbrowski W1.Wprowadzenie, W8. Sygnały cyfrowe 4, W11. Odbiór sygnałów 3 A. Janicki W2.Kodowanie źródeł - sygnały audio M. Golański W3. Kodowanie źródeł- sygnały video S. Kula W4. Media

Bardziej szczegółowo

Sygnały, media, kodowanie

Sygnały, media, kodowanie Sygnały, media, kodowanie Warstwa fizyczna Częstotliwość, widma, pasmo Pojemności kanałów komunikacyjnych Rodzaje danych i sygnałów Zagrożenia transmisji Rodzaje i charakterystyka mediów Techniki kodowania

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

Pomiary i przyrządy cyfrowe

Pomiary i przyrządy cyfrowe Pomiary i przyrządy cyfrowe Przyrządy analogowe trochę historii Ustrój magnetoelektryczny z I z I N d S B r ~ Ω I r r zaciski pomiarowe U U = r I amperomierz woltomierz współczynnik poszerzenia zakresu

Bardziej szczegółowo

O sygnałach cyfrowych

O sygnałach cyfrowych O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do

Bardziej szczegółowo

Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa

Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe

Bardziej szczegółowo

Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)

Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12,

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12, 1 Kompresja stratna Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12, 5.05.2005 Algorytmy kompresji bezstratnej oceniane są ze względu na: stopień kompresji; czas działania procesu kodowania

Bardziej szczegółowo

Kodowanie podpasmowe

Kodowanie podpasmowe Kodowanie i kompresja informacji - Wykład 12 [10] 24 maja 2010 Wprowadzenie Rozłożenie informacji na części (pasma) i kodowanie ich oddzielnie. Wprowadzenie Rozłożenie informacji na części (pasma) i kodowanie

Bardziej szczegółowo

Sygnał a informacja. Nośnikiem informacji mogą być: liczby, słowa, dźwięki, obrazy, zapachy, prąd itp. czyli różnorakie sygnały.

Sygnał a informacja. Nośnikiem informacji mogą być: liczby, słowa, dźwięki, obrazy, zapachy, prąd itp. czyli różnorakie sygnały. Sygnał a informacja Informacją nazywamy obiekt abstarkcyjny, który może być przechowywany, przesyłany, przetwarzany i wykorzystywany y y y w określonum celu. Zatem informacja to każdy czynnik zmnejszający

Bardziej szczegółowo

Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu

Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych Kod przedmiotu 06.5-WE-EP-PSzZPS

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów Andrzej Leśnicki Laboratorium CP Ćwiczenie 9 1/5 ĆWICZEIE 9 Kwantowanie sygnałów 1. Cel ćwiczenia ygnał przesyłany w cyfrowym torze transmisyjnym lub przetwarzany w komputerze (procesorze sygnałowym) musi

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 2 Wprowadzenie część 2 Treść wykładu modulacje cyfrowe kodowanie głosu i video sieci - wiadomości ogólne podstawowe techniki komutacyjne 1 Schemat blokowy Źródło informacji

Bardziej szczegółowo

Formaty - podziały. format pliku. format kompresji. format zapisu (nośnika) kontener dla danych WAV, AVI, BMP

Formaty - podziały. format pliku. format kompresji. format zapisu (nośnika) kontener dla danych WAV, AVI, BMP dr inż. Piotr Odya Formaty - podziały format pliku kontener dla danych WAV, AVI, BMP format kompresji bezstratna/stratna ADPCM, MPEG, JPEG, RLE format zapisu (nośnika) ściśle określona struktura plików

Bardziej szczegółowo

1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego

1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Za pomocąsygnałów przekazywana jest informacja. Sygnałjest nośnikiem informacji. Za pomocą sygnału moŝna: badać

Bardziej szczegółowo

Badanie jakości sygnałów audio

Badanie jakości sygnałów audio Badanie jakości sygnałów audio Przemysław Dymarski, Inst. Telekomunikacji PW Wykorzystano prace dypl. A.Kołodziejczyk, G. Kraciuk, M.Toczko, A.Sadowska Ocena jakości audio i wideo Metody subiektywne Metody

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1.

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1. mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 1, strona 1. SYSTEMY MULTIMEDIALNE Co to jest system multimedialny? Elementy systemu multimedialnego Nośniki danych i ich wpływ na kodowanie Cele

Bardziej szczegółowo

KWANTYZACJA. kwantyzacja

KWANTYZACJA. kwantyzacja KWATYZACJA Adam Głogowski kwantyzacja W tej części prezentacji zostanie omówiony problem kwantyzacji. Przedstawiony będzie takŝe przykład kwantowania sygnału, charakterystyka kwantyzera oraz podstawowe

Bardziej szczegółowo

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH 1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów

Bardziej szczegółowo

Audio i video. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

Audio i video. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski Audio i video R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski s-rg@siwy.il.pw.edu.pl Fale dźwiękowe Dźwięk jest drganiem powietrza rozchodzącym się w postaci fali. Fala ma określoną amplitudę i częstotliwość.

Bardziej szczegółowo

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy

Bardziej szczegółowo

KOMPRESJA STRATNA DŹWIĘKU

KOMPRESJA STRATNA DŹWIĘKU ZESZYTY NAUKOWE 39-58 Leszek Grad 1 KOMPRESJA STRATNA DŹWIĘKU Streszczenie W artykule przedstawione zostały elementarne wiadomości z zakresu kompresji stratnej dźwięku. Przedstawiony został liniowy model

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 4 Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych 1. CEL ĆWICZENIA Celem niniejszego ćwiczenia jest zapoznanie studentów z dwoma

Bardziej szczegółowo

5/25/2017. Elementy teorii informacji. Co to jest informacja? Słownik Języka Polskiego: Elementy teorii informacji

5/25/2017. Elementy teorii informacji. Co to jest informacja? Słownik Języka Polskiego: Elementy teorii informacji Elementy teorii informacji Co to jest informacja? Słownik Języka Polskiego:. «wiadomość o czymś lub zakomunikowanie czegoś» 2. «dział informacyjny urzędu, instytucji» 3. «dane przetwarzane przez komputer»

Bardziej szczegółowo

Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia.

Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. TDM (Time Division Multiplexing) dzielenie przesyłanych sygnałów na części, którym później przypisuje się czasy transmisji (tzw. szczeliny czasowe).

Bardziej szczegółowo

DŹWIĘK. Dźwięk analogowy - fala sinusoidalna. Dźwięk cyfrowy 1-bitowy 2 możliwe stany fala jest mocno zniekształcona

DŹWIĘK. Dźwięk analogowy - fala sinusoidalna. Dźwięk cyfrowy 1-bitowy 2 możliwe stany fala jest mocno zniekształcona DŹWIĘK Dźwięk analogowy - fala sinusoidalna Dźwięk cyfrowy 1-bitowy 2 możliwe stany fala jest mocno zniekształcona Dźwięk cyfrowy 2-bitowy 2 bity 4 możliwe stany (rozdzielczość dwubitowa) 8 bitów - da

Bardziej szczegółowo

Cechy karty dzwiękowej

Cechy karty dzwiękowej Karta dzwiękowa System audio Za generowanie sygnału dźwiękowego odpowiada system audio w skład którego wchodzą Karta dźwiękowa Głośniki komputerowe Większość obecnie produkowanych płyt głównych posiada

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

Przykładowe zadanie praktyczne

Przykładowe zadanie praktyczne Przykładowe zadanie praktyczne Opracuj projekt realizacji prac związanych z uruchomieniem i testowaniem kodera i dekodera PCM z układem scalonym MC 145502 zgodnie z zaleceniami CCITT G.721 (załączniki

Bardziej szczegółowo

PROGRAMOWANIE APLIKACJI MULTIMEDIALNYCH

PROGRAMOWANIE APLIKACJI MULTIMEDIALNYCH PROGRAMOWANIE APLIKACJI MULTIMEDIALNYCH PRZETWARZANIE OBRAZÓW I DŹWIĘKÓW wykład 6 KOMPRESJA SYGNAŁÓW AKUSTYCZNYCH Prowadzący: Tomasz Kowalski Natura i percepcja dźwięków 2 Dźwięk - zarówno mowa, jak i

Bardziej szczegółowo

Rys. Podstawowy system przetwarzania cyfrowego sygnałów analogowych

Rys. Podstawowy system przetwarzania cyfrowego sygnałów analogowych TEORIA PRÓBKOWANIA Podstawy teorii pobierania próbek. Schemat blokowy typowego systemu pobierającego w czasie rzeczywistym próbki danych jest pokazany na rysunku poniżej. W rzeczywistych układach konwersji

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,

Bardziej szczegółowo

Percepcja dźwięku. Narząd słuchu

Percepcja dźwięku. Narząd słuchu Percepcja dźwięku Narząd słuchu 1 Narząd słuchu Ucho zewnętrzne składa się z małżowiny i kanału usznego, zakończone błoną bębenkową, doprowadza dźwięk do ucha środkowego poprzez drgania błony bębenkowej;

Bardziej szczegółowo

Dźwięk podstawowe wiadomości technik informatyk

Dźwięk podstawowe wiadomości technik informatyk Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Sygnały otaczającego nas świata mają postać analogową.

Sygnały otaczającego nas świata mają postać analogową. 1 Wstęp Wykorzystano materiały książki Marven C., Ewers G.: Zarys cyfrowego przetwarzania sygnałów, Warszawa WKŁ 1999; K. Wesołowski Systemy radiokomunikacji ruchomej, Warszawa 1998;oraz wykładu prof.

Bardziej szczegółowo

WIDMO, ELEMENTY SKŁADOWE DŹWIĘKU, ZAPIS DŹWIĘKU, SYNTEZA ADDYTYWNA

WIDMO, ELEMENTY SKŁADOWE DŹWIĘKU, ZAPIS DŹWIĘKU, SYNTEZA ADDYTYWNA WIDMO, ELEMENTY SKŁADOWE DŹWIĘKU, ZAPIS DŹWIĘKU, SYNTEZA ADDYTYWNA Kamila Tatarynowicz FALE PODŁUŻNE Fala podłużna fala, w której drgania odbywają się w kierunku zgodnym z kierunkiem jej rozchodzenia się.

Bardziej szczegółowo

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1 Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,

Bardziej szczegółowo

Teletransmisyjne systemy cyfrowe

Teletransmisyjne systemy cyfrowe Teletransmisyjne systemy cyfrowe Teletransmisja cyfrowa była pierwsza - telegrafia (telegraf) wielokrotne systemy czasowe były pierwsze - aparat Baudota zasada regeneracji sygnału (przekaźniki) przed wzmacnianiem

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Modulacja i kodowanie laboratorium. Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK)

Modulacja i kodowanie laboratorium. Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) Modulacja i kodowanie laboratorium Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) Celem ćwiczenia jest opracowanie algorytmu modulacji i dekodowania dla metody kluczowania amplitudy Amplitude Shift Keying

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Optymalizacja kodera mowy standardu LPC-10

Optymalizacja kodera mowy standardu LPC-10 Akademia Górniczo-Hutnicza im. Stanisława Staszica wkrakowie Praca magisterska Optymalizacja kodera mowy standardu LPC-10 Grzegorz Suder Kierunek: Elektrotechnika Specjalność: Inżynieria komputerowa wprzemyśle

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

58. Otwarte Seminarium z Akustyki, OSA '11, Gdańsk-Jurata, September 2011

58. Otwarte Seminarium z Akustyki, OSA '11, Gdańsk-Jurata, September 2011 109 ROZPOZNAWANIE MÓWCY W SYSTEMACH Z KODOWANIEM MOWY STEFAN BRACHMAŃSKI Politechnika Wrocławska, Instytut Telekomunikacji, Teleinformatyki i Akustyki Wybrzeże Wyspiańskiego 27, 50-370 Wrocław Stefan.brachmanski@pwr.wroc.pl

Bardziej szczegółowo

Przykładowe rozwiązanie zadania dla zawodu technik telekomunikacji

Przykładowe rozwiązanie zadania dla zawodu technik telekomunikacji PROJEKT REALIZACJI PRAC ZWIĄZANYCH Z URUCHOMIENIEM I TESTOWANIEM KODERA I DEKODERA PCM ORAZ WYKONANIE PRAC OBEJMUJĄCYCH OPRACOWANIE WYNIKÓW POMIARÓW Z URUCHOMIENIA I SPRAWDZENIA DZIAŁANIA JEGO CZĘŚCI CYFROWEJ

Bardziej szczegółowo

Sieci neuronowe - projekt

Sieci neuronowe - projekt Sieci neuronowe - projekt Maciej Barański, Kamil Dadel 15 stycznia 2015 Streszczenie W ramach projektu został zrealizowany algorytm kompresji stratnej bazujący na działaniu samoorganizującej się sieci

Bardziej szczegółowo

Kompresja sekwencji obrazów - algorytm MPEG-2

Kompresja sekwencji obrazów - algorytm MPEG-2 Kompresja sekwencji obrazów - algorytm MPEG- Moving Pictures Experts Group (MPEG) - 988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et TélégraphieT

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Podstawy kompresji stratnej+kwantyzacja

Podstawy kompresji stratnej+kwantyzacja Podstawy kompresji stratnej + Kwantyzacja Kodowanie i kompresja informacji - Wykład 6 29 III 2010 Wprowadzenie Dla każdych danych istnieje wartość której nie można przekroczyć w trakcie kompresji. Im dane

Bardziej szczegółowo

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów)

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) 1. Dla ciągu danych: 1 1 0 1 0 narysuj przebiegi na wyjściu koderów kodów transmisyjnych: bipolarnego NRZ, unipolarnego RZ,

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2311035. (96) Data i numer zgłoszenia patentu europejskiego: 06.07.2009 09793882.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2311035. (96) Data i numer zgłoszenia patentu europejskiego: 06.07.2009 09793882. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2311035 (96) Data i numer zgłoszenia patentu europejskiego: 06.07.2009 09793882.3 (13) (51) T3 Int.Cl. G10L 19/14 (2006.01)

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

1 ALGORYTMY KODOWANIA ŹRÓDŁOWEGO MOWY

1 ALGORYTMY KODOWANIA ŹRÓDŁOWEGO MOWY 1 1 ALGORYTMY KODOWANIA ŹRÓDŁOWEGO MOWY 1.1 Liniowe kodowanie predykcyjne (LPC) kodek FS1015 Większość źródłowych kodeków mowy opartych jest na liniowym kodowaniu predykcyjnym (LPC Linear Predictive Coding)

Bardziej szczegółowo

Modulacja i kodowanie laboratorium. Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) i kluczowanie Fazy (PSK)

Modulacja i kodowanie laboratorium. Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) i kluczowanie Fazy (PSK) Modulacja i kodowanie laboratorium Modulacje Cyfrowe: Kluczowanie Amplitudy (ASK) i kluczowanie Fazy (PSK) Celem ćwiczenia jest opracowanie algorytmów modulacji i dekodowania dla dwóch rodzajów modulacji

Bardziej szczegółowo