20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę."

Transkrypt

1 Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego ze szkła do wody? 2. Na płasko-równoległą płytkę szklaną pada w powietrzu promień światła pod kątem α. Grubość płytki wynosi d. Obliczyć przesuniecie x, jakiego doznaje promień świetlny po przejściu przez płytkę, jeśli współczynnik załamania światła dla szkła wynosi n. 3. Na płasko-równoległą płytkę szklaną, której grubość wynosi d, pada promień świetlny pod kątem α i ulega po przejściu przez płytkę przesunięciu l. Ile wynosi współczynnik załamania światła dla szkła? 4. Ile wynosi przesunięcie promienia świetlnego padającego pod kątem α na dwie płaskorównoległe płytki, między którymi znajduje się warstwa powietrza? Współczynniki załamania światła dla materiałów, z których są wykonane płytki, wynoszą odpowiednio n 1 i n 2, a ich grubości d 1 i d 2. Jak zaleŝy to przesunięcie od grubości warstwy powietrza między płytkami? 5. Dwie płytki płasko-równoległe o grubościach d 1 i d 2 oraz współczynnikach załamania światła n 1 i n 2 leŝą jedna na drugiej. Obliczyć przesunięcie x, jakiego doznaje promień świetlny padający na pierwszą płytkę pod kątem α. 6. Wiązka światła czerwonego o długości λ 1 = 700 nm rozchodząca się w powietrzu pada na powierzchnię cieczy pod kątem α = 30, a załamuje się pod kątem β = 22 37'. Obliczyć długość fali λ 2 światła czerwonego w cieczy. 7. Światło monochromatyczne rozchodzące się w cieczy ma długość fali λ 1 = 580 nm, a po przejściu do powietrza λ 2 = 669 nm. Obliczyć kąt graniczny dla tej cieczy. 8. Na brzeg szklanego prostopadłościanu o współczynniku załamania n pada promień światła (patrz poniŝszy rysunek). Pod jakim kątem α powinien padać promień, aby na ścianie pionowej nastąpiło całkowite wewnętrzne odbicie?

2 9. Na ścianę szklanego pryzmatu zanurzonego w wodzie (patrz poniŝszy rysunek) pada prostopadle wiązka światła jednobarwnego. Podać warunek dla kąta α, przy którym wiązka nie wejdzie do wody. Współczynnik załamania światła dla wody n 1 = 1,33, a dla szkła n 2 = 1, Przekrojem poprzecznym pryzmatu szklanego o współczynniku załamania n = 3/2 jest trójkąt równoboczny. Promień świetlny pada prostopadle na jedną ze ścian tak, jak pokazano to na poniŝszym rysunku. a) Jaki kąt a tworzy kierunek promienia wychodzącego z pryzmatu z kierunkiem promienia padającego? b) Jaki powinien być współczynnik załamania światła dla materiału, z którego wykonany jest pryzmat, aby nie nastąpiło całkowite wewnętrzne odbicie na wewnętrznej ścianie pryzmatu, jeŝeli pryzmat znajduje się w powietrzu? 11. Promień światła pada pod kątem α na trzy płytki płasko-równoległe wykonane z materiałów, których współczynniki załamania światła wynoszą odpowiednio n 1, n 2, n 3. Płytki leŝą jedna na drugiej. Czy promień światła po przejściu przez płytki jest równoległy do promienia padającego? Uzasadnić odpowiedź i zastanowić się, czy wynik stosuje się do dowolnej liczby płytek płasko-równoległych. Czy grubość płytek ma znaczenie dla otrzymanego wyniku? 12. Dolna powierzchnia szklanej płytki płasko-równoległej jest posrebrzona. Promień światła padający pod kątem α na płytkę ulega częściowo załamaniu i częściowo odbiciu. Promień załamany odbija się od posrebrzonej powierzchni płytki. Obliczyć odległość l między promieniami wychodzącymi z płytki, wiedząc, Ŝe współczynnik załamania światła dla szkła wynosi n, a grubość płytki jest d. 13. Na płaszczyznę klina wykonanego z materiału o współczynniku załamania światła n pada prostopadle do jego powierzchni promień świetlny. Promień ulega odchyleniu o kąt θ od pierwotnego kierunku. Ile wynosi kąt łamiący ϕ klina? 14. Punkt świecący S leŝy na osi optycznej w odległości większej niŝ ogniskowa soczewki skupiającej. Znaleźć geometrycznie punkt S', będący obrazem tego punktu, znając połoŝenie ognisk i soczewki.

3 15. Promień świetlny wychodzący z punktu S przechodzi przez soczewkę i załamuje się tak, jak zaznaczono na poniŝszym rysunku. Znaleźć konstrukcyjnie ognisko soczewki. 16. Na rysunku poniŝszym rysunku zaznaczono bieg promienia 1 po przejściu przez soczewkę. Narysować bieg promienia 2. Uwaga. Nie jest konieczne znajdowanie połoŝenia ognisk soczewki. 17. Na poniŝszym rysunku zaznaczono bieg promienia 1 przez soczewkę rozpraszającą. Podaj konstrukcję geometryczną pozwalającą znaleźć bieg promienia 2, który biegnie równolegle do osi optycznej. Znajdź konstrukcyjnie połoŝenie pozornych ognisk soczewki. 18. Dana jest soczewka rozpraszająca i jej pozorne ogniska (patrz poniŝszy rysunek). Wyznaczyć konstrukcyjnie bieg promienia 1 po przejściu przez soczewkę. 19. Na poniŝszym rysunku linia pozioma jest osią optyczną soczewki skupiającej, a strzałki AB i A'B' przedstawiają schematycznie przedmiot świecący i obraz tego przedmiotu. Podaj konstrukcję wyznaczającą połoŝenie soczewki i jej ogniska. Czy odpowiedź zmieni się, gdy A'B' będzie przedmiotem, a AB obrazem? 20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.

4 21. Między przedmiot AB i soczewkę wstawiono bardzo cienką przesłonę nie przepuszczającą światła, tak jak to pokazano na poniŝszym rysunku. Wyjaśnij, czy powstanie obraz tego przedmiotu. Czym róŝnią się obrazy otrzymane w obecności przesłony i przy braku przesłony? 22. ZbieŜna wiązka światła pada na soczewkę skupiającą, której ogniskowa wynosi f. Punkt zbieŝności S wiązki w nieobecności soczewki znajduje się w odległości l od soczewki, tak jak na poniŝszym rysunku. Gdzie powstanie punkt zbieŝności S'? Przedyskutować wynik w zaleŝności od l. 23. ZbieŜna wiązka światła pada na soczewkę rozpraszającą o ogniskowej f (f < 0). Punkt zbieŝności S wiązki w nieobecności soczewki znajduje się w odległości l od płaszczyzny, w której umieszczono soczewkę. Gdzie powstanie rzeczywisty punkt zbieŝności S'? Przedyskutować wynik w zaleŝności od l. Dla jakich wartości l punkt S' jest rzeczywisty? 24. Na ekranie otrzymano ostry obraz przedmiotu znajdującego się w odległości d od ekranu. W jakiej odległości od przedmiotu ustawiono soczewkę o ogniskowej f i jakie jest powiększenie obrazu? 25. Oświetlony przedmiot znajduje się w odległości d = 2,25 m od ekranu. Między przedmiot i ekran wstawiono soczewkę o ogniskowej f = 0,5 m. Przy dwóch połoŝeniach soczewki na ekranie powstał ostry obraz przedmiotu. Określić połoŝenia soczewki i powiększenia obrazów. 26. W celu wyznaczenia ogniskowej soczewki wytworzono ostry, powiększony obraz świecy na ekranie odległym od świecy o d = l m, a następnie przesunięto soczewkę o odcinek l = 0,6 m tak, Ŝe otrzymano obraz ostry, ale pomniejszony. Ile wynosi ogniskowa soczewki? 27. Odległość między przedmiotem i ekranem, na którym powstaje ostry obraz tego przedmiotu, wynosi d. Jak wiadomo (porównaj zadaniem 25), moŝliwe są dwa połoŝenia soczewki, dla których powiększenia obrazu wynoszą p i 1/p. Udowodnić, Ŝe jeśli odległość miedzy ekranem i przedmiotem zwiększymy n-krotnie i uŝyjemy soczewki o ogniskowej nf, to otrzymane ostre obrazy będą miały powiększenia równieŝ p i 1/p. 28. Odległość między przedmiotem i ekranem, na którym powstaje ostry obraz tego przedmiotu, wynosi d. Jaka moŝe być maksymalna wartość ogniskowej soczewki, przy której moŝna otrzymać obraz rzeczywisty tego przedmiotu? 29. Soczewka dwuwypukła o promieniach krzywizny r 1 = 0,2 m i r 2 = 0,1 m jest wykonana z materiału o współczynniku załamania światła n 1 = 1,2 i umieszczona w cieczy, której współczynnik załamania wynosi n 2 = 1,5. Ile wynosi ogniskowa tej soczewki? Czy soczewka dwuwypukła jest zawsze soczewką skupiającą?

5 30. Soczewka płasko-wypukła o promieniu krzywizny r daje na ekranie obraz rzeczywisty, powiększony p razy. Odległość przedmiotu od ekranu wynosi d. Ile wynosi współczynnik załamania n materiału, z którego wykonana jest soczewka? 31. Soczewka płasko-wklęsła o promieniu krzywizny r = -0,4 m jest wykonana z materiału o współczynniku załamania n 1 = 1,4 i umieszczona w cieczy o współczynniku załamania n 2 = 1,6. Ile wynosi ogniskowa soczewki f? 32. Soczewka płasko-wypukła jest wykonana z materiału, którego współczynnik załamania wynosi n = 1,5. Jej promień krzywizny r = 0,5 m. Za pomocą tej soczewki otrzymano obraz rzeczywisty o wysokości h = 1 m w odległości y = 8 m. Jaka jest wysokość H przedmiotu, którego obraz otrzymano, i w jakiej odległości x od soczewki znajduje się przedmiot? 33. Ogniskowa soczewki, wykonanej z materiału o współczynniku załamania n i umieszczonej w powietrzu, wynosi f 1. Ta sama soczewka umieszczona w cieczy, ma ogniskową f 2. Ile wynosi współczynnik załamania światła n c cieczy względem powietrza? Współczynnik załamania światła dla powietrza wynosi n p. 34. Obliczyć ogniskową obiektywu fotograficznego, który na matówce daje obraz fotografowanego przedmiotu o wysokości h 1 = 0,015 m, gdy odległość obiektywu od matówki wynosi y 1 = 0,04 m, i obraz o wysokości h 2 = 0,03 m, gdy odległość ta wynosi y 2 = 0,03 m. 35. Przedmiot świecący o wysokości H = 0,06 m znajduje się ponad osią optyczną na wysokości a = 0,04 m w odległości x = 0,3 m (rysunek poniŝej). Ogniskowa soczewki wynosi f = 0,1 m. W jakiej odległości y od soczewki powstanie obraz, jaka jest jego wysokość h i jaka jest jego odległość b od osi optycznej? Narysować bieg promieni. 36. Ostry obraz punktu świecącego, wytworzonego przez soczewkę, porusza się po ekranie prostopadle do osi optycznej soczewki ruchem jednostajnym prostoliniowym z prędkością u = 0,01 m/s. Odległość między ekranem i płaszczyzną, w której porusza się punkt świecący, wynosi d = 10 m, a ogniskowa soczewki f = 0,1 m. Ile wynosi prędkość v punktu świecącego? (Prędkość światła jest znacznie większa od prędkości występujących w zadaniu i przyjmujemy ją za nieskończenie duŝą). 37. Punkt świecący wykonuje ruch drgający prosty wzdłuŝ osi S odległej od x od soczewki (rysunek poniŝej). PołoŜenie punktu dane jest wzorem s = a sin(ωt). Obraz punktu uzyskany dzięki soczewce o ogniskowej f równieŝ wykonuje ruch harmoniczny wzdłuŝ pewnej osi S'. Napisać równania dla wychylenia s' obrazu poruszającego się wzdłuŝ osi S'. (Prędkość światła jest znacznie większa niŝ prędkość punktu poruszającego się i nie uwzględniamy jej w rozwiązaniu, przyjmując za nieskończenie duŝą.)

6 38. Wiązki świetlne wytwarzane przez laser charakteryzują się między innymi bardzo dobrą monochromatycznością oraz równoległością. Wiązka ta po zogniskowaniu daje bardzo duŝe gęstości mocy, to znaczy bardzo duŝą ilość energii promieniowania na jednostkę powierzchni w ciągu jednostki czasu. Błysk świetlny z lasera rubinowego po zogniskowaniu daje plamkę o średnicy d = m. Ile wynosi średnia wartość natęŝenia I światła laserowego, jeśli wiadomo, Ŝe całkowita energia jednego błysku wynosi E = 1 J, a czas trwania błysku t = 10-3 s? 39. Równoległa wiązka światła z lasera gazowego (laser ten pracuje w sposób ciągły, nie tak jak laser rubinowy, który daje krótko trwające błyski świetlne) o średnicy przekroju kołowego d 1 = m i mocy P = 10-2 W pada na soczewkę o ogniskowej f = 0,02 m. Ile wynosi natęŝenie światła I w prostopadłym przekroju wiązki w odległości x = 0,04 m od soczewki? 40. Moc równoległej wiązki światła laserowego wynosi P = 10-4 W, a powierzchnia przekroju kołowego tej wiązki S 1 = m 2. Wiązka pada na soczewkę o ogniskowej f 1 = 0,01 m, a następnie na soczewkę ogniskowej f 2 = 0,02 m ustawioną tak, Ŝe ogniska soczewek pokrywają się (mają one wspólną oś optyczną). Ile wynosi gęstość mocy p wiązki świetlnej po przejściu przez obydwie soczewki? Straty związane z pochłanianiem i dyfrakcją pomijamy. 41. Odległość między przedmiotem świecącym i ekranem, na którym powstaje ostry, powiększony obraz tego przedmiotu o wysokości h 1 wynosi d. Przesunięcie soczewki o l w kierunku ekranu pozwala otrzymać ostry, pomniejszony obraz tego przedmiotu o wysokości h 2. Obliczyć stosunek h 1 /h Z wieŝy o wysokości h 1 wybiega promień światła i dociera do płetwonurka znajdującego się na głębokości h 2 pod wodą. Odległość między wieŝą a płetwonurkiem, licząc po powierzchni wody, wynosi a. Współczynnik załamania światła dla wody wynosi n. a) Obliczyć czas t przebiegu światła od wieŝy do płetwonurka, zakładając, Ŝe promień wbiega do wody w odległości x od wieŝy, licząc poziomo; b) Wykazać, Ŝe ze wszystkich moŝliwych linii prostych załamanych na powierzchni wody, łączących płetwonurka i wieŝę, promień biegnie po drodze, którą przebywa w najkrótszym czasie. 43. Soczewka daje na ekranie dwa ostre obrazy o wysokościach h 1 i h 2 w dwóch róŝnych połoŝeniach, przy tej samej odległości między ekranem i przedmiotem świecącym. Ile wynosi wysokość przedmiotu H? 44. Na ekranie otrzymano ostry obraz przedmiotu o powiększeniu p 1. Przedmiot przesunięto w stronę soczewki o odcinek l, a następnie odsunięto ekran tak, Ŝe powiększenie obrazu wyniosło p 2. Obliczyć ogniskową soczewki. 45. Soczewkę o ogniskowej f przecięto na połowy i kaŝdą część odsunięto od osi optycznej na odległość a (rysunek poniŝej). Oś optyczna soczewki nie rozciętej jest osią symetrii układu. Na osi tej w odległości b od soczewki umieszczono punkt świecący. Obliczyć połoŝenie obrazu punktu świecącego. Znaleźć konstrukcyjnie obraz.

7 46. Z soczewki o ogniskowej f wycięto część środkową w postaci pasa o szerokości 2a. Pozostałe dwie części soczewki pozostają w odległości a od osi optycznej całej soczewki. Na osi soczewki w odległości b od środka nierozciętej soczewki umieszczono punkt świecący. W jakiej odległości powstanie obraz tego punktu? Porównaj rozwiązanie z rozwiązaniem zadania Mucha leci wzdłuŝ osi optycznej soczewki o ogniskowej f z prędkością u. Obliczyć prędkość v poruszania się obrazu rzeczywistego muchy, jeŝeli w danej chwili czasu powiększenie obrazu wynosi p. 48. Na powierzchni kulki szklanej znajduje się punktowe źródło światła. Światło po przejściu przez kulkę tworzy dalej wiązkę rozbieŝną. Czy w tej wiązce znajdują się promienie biegnące równolegle do osi symetrii wiązki? Współczynnik załamania światła dla szkła n = 1,5. Obliczyć największy kąt β < π przecinania się promieni za kulką.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,

Bardziej szczegółowo

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie

Bardziej szczegółowo

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych

Bardziej szczegółowo

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2. Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

OPTYKA W INSTRUMENTACH GEODEZYJNYCH

OPTYKA W INSTRUMENTACH GEODEZYJNYCH OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Załamanie na granicy ośrodków

Załamanie na granicy ośrodków Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48

Bardziej szczegółowo

Problemy optyki geometrycznej. Zadania problemowe z optyki

Problemy optyki geometrycznej. Zadania problemowe z optyki . Zadania problemowe z optyki I LO im. Stefana Żeromskiego w Lęborku 3 lutego 2012 Zasada Fermata Sens fizyczny zasady Zasada, sformułowana przez Pierre a Fermata w 1650 roku dotyczy czasu przejścia światła

Bardziej szczegółowo

TEST nr 1 z działu: Optyka

TEST nr 1 z działu: Optyka Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć

Bardziej szczegółowo

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych. Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych

Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych Moc optyczna (właściwa) układu soczewek Płaszczyzny główne układu soczewek: - płaszczyzna główna przedmiotowa - płaszczyzna główna obrazowa Punkty kardynalne: - ognisko przedmiotowe i obrazowe - punkty

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Ć W I C Z E N I E N R O-3

Ć W I C Z E N I E N R O-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR KRZYWIZNY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania krzywizny soczewek. 2. Zakres wymaganych zagadnieo: Zjawisko dyfrakcji i interferencji

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA 1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna

Bardziej szczegółowo

TARCZA KOLBEGO V 7-22

TARCZA KOLBEGO V 7-22 TARCZA KOLBEGO V 7-22 Przyrząd służy do zasadniczych pokazów z optyki geometrycznej, dotyczących odbicia i załamania światła. Ma on budowę wskazaną na rys. 1. Rys. 1. Na trójnożnej podstawie (1) jest umocowany

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) 2. Optyka (co najmniej 12 godzin lekcyjnych, w tym 1 2 godzin na powtórzenie materiału i sprawdzian bez treści rozszerzonych) Zagadnienie (tematy lekcji) Światło i jego właściwości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH Ćwiczenie 77 E. Idczak POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH Cel ćwiczenia: zapoznanie się z procesem wytwarzania obrazów przez soczewki cienkie oraz z metodami wyznaczania odległości ogniskowych

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ METODĄ GRAFICZNĄ I ANALITYCZNĄ

WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ METODĄ GRAFICZNĄ I ANALITYCZNĄ WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ METODĄ GRAFICZNĄ I ANALITYCZNĄ I. Cel ćwiczenia: wyznaczanie ogniskowej soczewki skupiającej i rozpraszającej, zapoznanie z metodą graiczną i analityczną wyznaczania

Bardziej szczegółowo

Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki.

Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki. 1 Badamy jak światło przechodzi przez soczewkę - obrazy tworzone przez soczewki. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:

Bardziej szczegółowo

Soczewki. Ćwiczenie 53. Cel ćwiczenia

Soczewki. Ćwiczenie 53. Cel ćwiczenia Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Rozdział 9. Optyka geometryczna

Rozdział 9. Optyka geometryczna Rozdział 9. Optyka geometryczna 206 Spis treści Optyka geometryczna i falowa - wstęp Widzenie barwne Odbicie i załamanie Prawo odbicia i załamania Zasada Fermata Optyka geometryczna dla soczewek Warunki

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory gdzie: vi prędkość fali w ośrodku i, n1- współczynnik załamania światła ośrodka 1, n2- współczynnik załamania światła ośrodka 2. Załamanie (połączone z częściowym odbiciem) promienia światła na płaskiej

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 22. Ruch drgający podać

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

Optyka nauka o świetle. promień świetlny

Optyka nauka o świetle. promień świetlny Optyka nauka o świetle Nikogo nie trzeba przekonywać, jak ważne dla naszego życia jest światło. Jest zarówno źródłem energii jak i środkiem, który niesie nam informację o otoczeniu. Dział fizyki zajmujący

Bardziej szczegółowo

Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie

Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Zwierciadła niepłaskie Obrazy w zwierciadłach niepłaskich Obraz rzeczywisty zwierciadło wklęsłe Konstrukcja obrazu w zwierciadłach

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

Ćwiczenie nr 53: Soczewki

Ćwiczenie nr 53: Soczewki Wydział Imię i nazwisko.. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaiczenia OCENA Ćwiczenie nr : Soczewki Ce ćwiczenia

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania

Bardziej szczegółowo

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl 1 ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl DZIAŁ 3 Optyka geometryczna i elementy optyki falowej. Budowa materii. 3.1. Optyka

Bardziej szczegółowo

PL B1. Hybrydowy układ optyczny do rozsyłu światła z tablicy znaków drogowych o zmiennej treści

PL B1. Hybrydowy układ optyczny do rozsyłu światła z tablicy znaków drogowych o zmiennej treści PL 219112 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219112 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 392659 (22) Data zgłoszenia: 15.10.2010 (51) Int.Cl.

Bardziej szczegółowo

Zestaw do prezentacji zjawisk optyki geometrycznej laserowym źródłem światła LX-2901 INSTRUKCJA OBSŁUGI

Zestaw do prezentacji zjawisk optyki geometrycznej laserowym źródłem światła LX-2901 INSTRUKCJA OBSŁUGI Zestaw do prezentacji zjawisk optyki geometrycznej laserowym źródłem światła LX-2901 LASEROWY ZESTAW DYDAKTYCZNY LX-2901 2 SPIS TREŚCI 1. Wstęp... 3 2. Przeznaczenie zestawu... 5 3. Elementy wchodzące

Bardziej szczegółowo

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność. Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające

Bardziej szczegółowo

Wykład 11 Elementy optyki geometrycznej Widmo i natura światła

Wykład 11 Elementy optyki geometrycznej Widmo i natura światła Wykład Elementy optyki geometrycznej Widmo i natura światła Optyka to nauka o falach elektromagnetycznych, ich wytwarzaniu, rozchodzeniu się w różnych ośrodkach, i oddziaływaniu z tymi ośrodkami. Różnice

Bardziej szczegółowo

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń:

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń: Fizyka. Klasa 3. Semestr 1. Dział : Optyka Wymagania na ocenę dopuszczającą. Uczeń: 1. wymienia źródła światła 2. wyjaśnia, co to jest promień światła 3. wymienia rodzaje wiązek światła 4. wyjaśnia, dlaczego

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów

Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów Podręcznik zeszyt ćwiczeń dla uczniów Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Spotkania z fizyką, część 4 Test 1 1. (1 p.) Na lekcji fizyki uczniowie demonstrowali zjawisko załamania światła na granicy wody i powietrza, po czym sporządzili rysunek przedstawiający bieg promienia

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ WADY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi wadami soczewek i pomiar aberracji sferycznej, chromatycznej i astygmatyzmu badanych soczewek. 2. Zakres wymaganych

Bardziej szczegółowo

Spis treści. Od Autorów... 7

Spis treści. Od Autorów... 7 Spis treści Od Autorów... 7 Drgania i fale Ruch zmienny... 10 Drgania... 17 Fale mechaniczne... 25 Dźwięk... 34 Przegląd fal elektromagnetycznych... 41 Podsumowanie... 49 Optyka Odbicie światła... 54 Zwierciadła

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III I. Drgania i fale R treści nadprogramowe Ocena dopuszczająca dostateczna dobra bardzo dobra wskazuje w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

SZKŁA OPTYCZNE. Zestaw do ćwiczeń

SZKŁA OPTYCZNE. Zestaw do ćwiczeń Zestaw do ćwiczeń SZKŁA OPTYCZNE (V 7-30) Wykaz części wchodzących w skład zestawu: 1. zwierciadło płaskie o średnicy 6 cm, 2. zwierciadło wklęsłe f = 8 cm 3. pryzmat z uchwytem, 4. soczewka dwuwypukła

Bardziej szczegółowo

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer:

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer: Przyjazne testy Fizyka dla gimnazjum Wojciech Dindorf, Elżbieta Krawczyk Informacje, dźwięki, światło, oko, ucho C27. Fale poprzeczne tym się różnią od fal podłużnych, że: (A) rozchodzą się w poprzek zamiast

Bardziej szczegółowo

1. Wektory E i B są zawsze prostopadłe do kierunku rozchodzenia się fali. 2. Wektor natężenia pola elektrycznego jest zawsze prostopadły do wektora indukcja pola magnetycznego. 3. Iloczyn wektorowy E x

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości w sytuacjach typowych

Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości w sytuacjach typowych Temat lekcji w podręczniku Wiadomości K + P - konieczne + podstawowe Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych Umiejętności A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości

Bardziej szczegółowo

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 1. Przestrzenna filtracja szumu optycznego

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 1. Przestrzenna filtracja szumu optycznego Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 1. Przestrzenna filtracja szumu optycznego Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: Stopień Zakres wymagań niedostateczny mniej niż 75 % wymagań koniecznych dopuszczający około 75% wymagań koniecznych dostateczny dobry

Bardziej szczegółowo