METODY HODOWLANE - zagadnienia

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY HODOWLANE - zagadnienia"

Transkrypt

1 METODY HODOWLANE

2 METODY HODOWLANE - zaadninia. Matmatczn podtaw mtod odowlanc. Wartość cc ilościow i dfinic paramtrów ntcznc. Mtod zacowania paramtrów ntcznc 4. Wartość odowlana cc ilościow (ocna wartości odowlan na podtawi różnc źródł informaci, porównani ic dokładności) 5. Indk lkcn (łączni źródł informaci o wartości odowlan) 6. Eliminaca wpłwów środowika w ocni wartości odowlan (mtod równoczno porównania, mtoda BLUP) 7. Slkca i potęp odowlan

3 Eliminaca wpłwów środowika w ocni wartości odowlan Ocna buaa na podtawi wdaności córk z różnc tad Modl: Ocna: ik i ik Gˆ by P W każdm modlu t zawz fktm tałm, zawz fktm loowm. Pozotał (, ) możm uznać za tał lub loow; mówim wtd o całm modlu, ż t tał lub loow. n b n a a 4 fkt tał aki t wpłw konkrtnc tad fkt loow aki t oólni wpłw ocowki

4 Przkład: ak zrobić drinki z kroplą tabaco? EFEKTY MODELU Spoób : Rozlwam butlkę,5l do 5 zklank i do każd dodam kroplę tabaco Spoób : Do butlki,5l wpuzczam 5 kropli tabaco, mizam i rozlwam do 5 zklank. Jaki t fkt tabaco w nazc drinkac? STAŁY LOSOWY

5 MODEL MIESZANY W OCENIE WARTOśCI HODOWLANEJ W modlac związanc z ocną wartości odowlan, np.: ik i ik fkt tad cz rup w modlu to fkt tał ocnian wartości odowlan to fkt loow Jt to tzw. modl mizan

6 Skutk wiloltnio toowania mtod CC Dokładna ocna buaów Trafn wbór na oców Z roku na na rok rośni śrdnia wartość odowlana populaci poawia ię trnd ntczn Potomtwo lpz ntczni Trzba dopaować modl Populaca dzili ię na tada Populaca dzili ię na tada i itni trnd ntczn ik i ik ikl i a k ikl a fkt roku urodznia buaa

7 Dodatkow fkt ntczn w modlu W modlu ikl i a k ikl fkt a oznacza śrdnią wartość odowlaną buaów urodzonc w roku. Jt to dodatkow (oprócz fktu k ) fkt ntczn w modlu. Rozwiązani problmu dodatkowc fktów ntcznc w modlu umożliwia METODA BLUP

8 Nazwa BLUP krót od Bt Linar Unbiad Prdiction, po polku: nalpza liniowa niobciążona prdkca, daąca: METODA BLUP nalpz (o minimalnm błędzi tandardowm) prz założniu liniow zalżności niobciążon (o wartości oczkiwan równ o prawdziw wartości w populaci) prdktor fktu loowo modlu (ocnę wartości odowlan) Prdkca przwidwani wartości zminn loow na podtawi wartości przmowanc przz inn zminn. Szacowani fktów loowc modlu to prdkca, w wniku otrzmum prdktor; analoiczni: zacowani fktów tałc to tmaca; otrzmum tmator.

9 METODA BLUP Mtoda BLUP: opracowana w roku 949 (C.R.Hndron) wprowadzona do zroki praktki od lat 8-tc XXw od tron tcniczn oparta na racunku macirzowm umożliwia dnoczną ocnę dużc rup zwirząt dopuzcza i wkorztu zalżności fktów modlu mizano Wmaa MOCY oblicz niow

10 Modl ocowki (Sir Modl, SM) MODELE MIESZANE W METODZIE BLUP ik i ik ikl i a k ikl Modl oobnicz (Animal Modl, AM) i i i (zapi uprozczon) dzi fkt ntczn ocniano oobnika i o wdaność (obrwaca), i fkt pcficzn dla t obrwaci, i fkt tada. Są to modl mizan: przmu ię, ż i i a ą fktami tałmi, natomiat, k, fktami loowmi. Mtoda BLUP ni wmaa ię założń o nizalżności fktów. Zalżności wnikaąc np. z pokrwninia umożliwiaą wkorztani dodatkowc źródł informaci.

11 METODA BLUP Mtoda BLUP oparta na racunku macirzowm wkorztu zalżności fktów, np. pokrwnini W obliczniac wkorztu ię MACIERZ SPOKREWNIEŃ

12 METODA BLUP MACIERZ SPOKREWNIEŃ Nr o ob ni ka Nr o ca Nr m at ki - Przkład macirz pokrwniń rodzic,, 4, 4 5, 6 Nr i ,5,5,5,75,65 4,5,5,5, ,5,5,65,75, ,5,5,5,65,75,6875 5,5,5,65,65,5,565,8475 6,75,5,75,75,565,5,965 7,65,5,5,6875,8475,965,85

13 METODA BLUP MACIERZ SPOKREWNIEŃ Macirz pokrwniń A: macirz mtrczna lmnt a i to wpółcznniki pokrwińtwa lmnt diaonaln a ą równ + wp. inbrdu śli rodzic oobnika ni ą pokrwnini to a = Przkład protc macirz pokrwniń dla trzc oobników: A,5,5,5,5,5,5 A,5,5,5,5,5,5 A I A płn rodzńtwo A półrodzńtwo T macirz tak wlądaą śli rodzic ni ucztniczą w ocni! A zwirzęta nipokrwnion (macirz idntczności)

14 METODA BLUP MACIERZ SPOKREWNIEŃ Elmnt macirz pokrwniń to wpółcznniki pokrwińtwa Wpółcznnik pokrwińtwa z dfinici: a prz założniu i i a i ( ( i i Zatm: lmnt macirz pokrwniń to iloraz kowarianci i warianci ntcznc, np. a i ) ) A

15 METODA BLUP MACIERZ KOWARIANCJI Jśli pomnożm macirz pokrwniń przz wariancę ntczną otrzmam macirz kowarianci ocnianc wartości odowlanc G A G G A Prz braku pokrwniń G I

16 MODELE MIESZANE W METODZIE BLUP Modl ocowki ik i ik ikl i a k ikl Modl oobnicz i i i Oólna potać modlu mizano ik a i ik dzi a fkt tał (tada, rup itp.), fkt loow (ntczn)

17 METODA BLUP Wźm podtawow modl ocowki ik i ik Taki modl to oóln zapi układu wilu równań. Jśli mam np. wdaności pięciu krów z dwóc tad, któr ą córkami trzc buaów, to tn układ wląda tak:

18 METODA BLUP Równania można przdtawić tak =

19 METODA BLUP = = = a śli w każdm równaniu uwzlędnim wztki informac o t tawc zwirząt, przdtawiam tak:

20 METODA BLUP Zapi klaczn układu równań Zapi macirzow układu równań

21 METODA BLUP Zapi macirzow układu równań wktor obrwaci wktor fktów tałc wktor fktów pcficznc wktor fktów loowc macirz wtąpiń fktów tałc macirz wtąpiń fktów loowc

22 METODA BLUP Zapi macirzow układu równań wktor obrwaci wktor fktów tałc wktor fktów pcficznc wktor fktów loowc macirz wtąpiń fktów tałc macirz wtąpiń fktów loowc X a Z

23 METODA BLUP X a Z = Xa + Z Zapi macirzow układu równań =

24 Oólna potać modlu mizano MODELE MIESZANE W METODZIE BLUP zapi klaczn ik a i ik zapi macirzow = Xa + Z + dzi a fkt tał (tada, rup, roku itp.), fkt loow (ntczn; ocnian wartości odowlan), X, Z macirz wtąpiń. Co z wktorm? Zakłada i, ż fkt maą rozkład normaln o t am warianci i ą parami nikorlowan. Do obliczń birz ię tlko

25 METODA BLUP Modl: = Xa + Z + Założni: fkt maą rozkład normaln o warianci i ą parami nikorlowan. Rozwiązani: tmator fktów a oraz prdktor wartości odowlanc uzku ię w wniku rozwiązania natępuąco układu równań modlu mizano, Mixd Modl Euation, MME): X'X Z' X Z'Z X'Z σ G aˆ ˆ X' Z' dzi macirz G to macirz kowarianci dla lmntów wktora.

26 MACIERZ KOWARIANCJI Przpomnim obi: A G G A Prz braku pokrwniń G I

27 METODA BLUP Układ równań oólni X'X Z'X Z'Z X'Z σ G aˆ ˆ X' Z' Jśli ocnian zwirzęta ą nipokrwnion: G I, wtd G I σ X'X Z'X X'Z Z'Z I σ σ aˆ ˆ X' Z'

28 METODA BLUP Układ równań oólni X'X Z'X Z'Z X'Z σ G aˆ ˆ X' Z' Jśli ocnian zwirzęta ą pokrwnion: G X'X Z'X A Z'Z, wtd G A σ X'Z A _ σ σ aˆ ˆ X' Z'

29 METODA BLUP Zwirzęta ą pokrwnion: Z' X' a A Z'Z Z'X X'Z X'X ˆ ˆ σ σ Zwirzęta ni ą pokrwnion: Z' X' a I Z'Z Z' X X'Z X'X ˆ ˆ σ σ k 4 k Wrażni oznaczam ako k. Ocn BLUP opart na modlu ocowkim: Ocn BLUP opart na modlu oobniczm: Skąd m to znam?

30 METODA BLUP Układ równań MME oólni X'X Z' X Z'Z X'Z σ G aˆ ˆ X' Z' L b = r L b r A ak rozwiązać taki układ równań??? No, śli L b = r to b = L - r X'X Z'X Z'Z X'Z σ G X' aˆ Z' ˆ b = L - r

31 METODA BLUP Układ równań Rozwiązani X'X Z' X Z'Z X'Z σ G aˆ ˆ X' Z' X'X Z'X Z'Z X'Z σ G X' aˆ Z' ˆ L b = r b = L - r Tak po protu?! Nitt, uzkani odwrotności macirz L to poro prac; ni dość, ż bwa wilka, to t w dodatku oobliwa Cętni to waśnię Spada! Sam tś oobliw!!!

32 PODSUMOWANIE METODA BLUP oparta t na racunku macirzowm wmaa duż moc obliczniow (ocna wilu zwirzat naraz, odwracani dużc macirz) pozwala na dobr dopaowani modlu: można uzwlędnić wil fktów, w tm dodatkow fkt ntczn umożliwia dnoczną ocnę fktów tałc i loowc, przz co ą on na ibi nawzam poprawion dopuzcza i wkorztu zalżności fktów; poprzz włączni do obliczń macirz kowarianci ntcznc wkorztu dodatkow źródła informaci da ocn o woki dokładności

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zdnini. Dn w prc hodowlnj prc z dużm zbiorm dnch (Excl). Podstw prc z rlcjną bzą dnch w prormi MS Accss 3. Sstm sttstczn n przkłdzi pkitu SAS i bzpłtno pkitu

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnna 1. Dan w prac hodowlanj praca z dużm zborm danch (Excl). Podtaw prac z rlacjną bazą danch w program MS Acc 3. Stm tattczn na przkładz paktu SAS

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

Ł Ą Ń

Ł Ą Ń Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = + REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.

Bardziej szczegółowo

Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć

Bardziej szczegółowo

ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zagadnena 1. Matematyczne podtawy metod odowlanyc. Wartość cecy loścowej defncje parametrów genetycznyc 3. Metody zacowana parametrów genetycznyc 4. Wartość odowlana

Bardziej szczegółowo

Wykład 6. Klasyczny model regresji liniowej

Wykład 6. Klasyczny model regresji liniowej Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,

Bardziej szczegółowo

Ż Ą Ź ć Ę Ź ć

Ż Ą Ź ć Ę Ź ć Ą Ż Ą Ź ć Ę Ź ć ć Ż Ę Ę ć Ś ć Ż Ż Ź ć Ą ć Ę Ź ć Ś Ś Ę ć Ę ć Ź Ś ć ć ć Ż Ż Ę Ź Ę Ż Ź Ść Ś Ż Ś Ę Ź Ż Ś Ć Ą Ź Ę Ź ć Ż Ć Ę Ź Ż ź Ę Ź Ż Ę Ś Ź Ż Ż Ś Ś Ź Ź Ź Ź Ś Ę Ą Ę Ć Ś Ę Ź Ś Ś Ś Ź Ś Ę Ę Ź Ś Ź Ę Ź Ż Ę Ę ź

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz 1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek.

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek. Ćwiczni Nr 0 Tmat: Wznaczani odlgłości ognikowj i owiękznia cinkich oczwk. I. LITERTUR:. D. Hallida, R. Rnick, Fizka t. II, PWN, Warzawa.. J.R. Mr-rndt. Wtę do otki, PWN, Warzawa 977.. Ćwicznia laboratorjn

Bardziej szczegółowo

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

INFORMATYKA W SELEKCJI 9 MODELE MIESZANE

INFORMATYKA W SELEKCJI 9 MODELE MIESZANE INFORMATYKA W SELEKCJI 9 MODELE MIESZANE SAS WYKORYSTANIE PAKIETU SAS DO ESTYMACJI EFEKTÓW MODELI MIESZANYCH. Modl stały, a modl miszany. Macirz spokrwniń addytywni polignicznych 3. Przygotowani danych

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2 Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó

ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó ż Ż Ż ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó Ż ć ó Ó ó ó ó ń ń ó ń Ż Ż ó ó ó ć ó ń Ą Ż ó Ź Ł Ż ć Ó Ó ó Ż Ż ó ć ń ń Ź Ź ó Ź Ź Ż ó Ó Ź Ż Ź ó Ż ó ó ó ó Ó Ź ć ó Ż Ż Ż ó ó Ź ó Ż ó ź Ż ć ć ó ń ó Ź Ć Ą Ż ć ć ó Ż Ż ó ż ć Ż

Bardziej szczegółowo

Szacowanie wartości hodowlanej. Zarządzanie populacjami

Szacowanie wartości hodowlanej. Zarządzanie populacjami Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Ł Ź Ż ć Ą Ż ć Ż Ż Ż ć ć Ż Ż ć Ż ć Ź Ź ć Ż Ż Ż Ę Ę Ż ć ć ć Ż Ż ć ć ć ć Ż ć ć Ż ć Ż Ż Ż Ź Ź Ż Ż Ż ć Ż Ż Ó Ż Ż ć Ż Ż ć Ż ć Ż ć Ż ć ć Ź ć Ć Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ź Ż ć Ż Ż Ż Ż Ż ć ć ć Ż ć Ł Ź ć Ź Ź Ź ć Ż Ż Ż

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus

Optymalizacja reguł przejścia systemu bonus-malus Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus

Bardziej szczegółowo

Ć Ź ć Ę ć Ę Ć Ź Ź Ć

Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

ć ć Ń Ę

ć ć Ń Ę ż ź ć ć Ń Ę ć Ś Ę Ś ć ć ż ć ż ż ż ć ć ć ż ź ć ż ż ż ż ć ż ż Ś ź ż ć Ą ż ż ż ż ż ż ź ć ż ć ż Ś ż ć ż ż Ą ż ż Ę ć Ż ż ć Ż ż ż ż ż ć ż ż ż ż ż ź ć ż ż ć ż ź Ś ż ż ć ż ż ż ż ć ćż ż ć ż ż ż ź ż ć ż ż ż Ś

Bardziej szczegółowo

Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń

Bardziej szczegółowo

Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą

Bardziej szczegółowo

ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż

Bardziej szczegółowo

ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć

Bardziej szczegółowo

Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć

Bardziej szczegółowo

Ł Ś Ą Ł Ę ź Ł Ł Ę Ł ź Ł Ł Ś Ł Ł ż Ł Ś Ł Ł Ś Ł ź Ę ź Ł Ł Ł Ł Ł Ł ź ć ż Ę ż Ł ż ż ć ć ć ć ć ć ż Ę ć ć ć ć ć ć ż ż ć ż ż ż ż Ł Ś Ł ż ż ć ć ć ż ć ć ć ć ż ż ż Ł Ś Ł ż Ł Ł Ł ż Ł Ś Ł Ł Ś Ł ż Ł Ś Ł ź ż Ę ż ż ź

Bardziej szczegółowo

ź Ę ć Ż Ż ń ć Ż Ę Ż ć ć ć Ż ć ć ź Ż ć Ż Ż ć ć ń Ż ć Ś Ę Ż ń Ż ć Ż ć Ż ć Ż Ż Ę ć Ż Ż Ż Ą Ę Ą ć Ż ć ć Ż Ą Ż ć ń ń Ż ń Ż Ę Ż ć Ż Ż Ł Ą źź ź ć Ż Ż Ż Ż Ę ź ź ź ź Ż Ż ń Ż Ż Ó ń Ś ć ń Ą Ę Ą Ż Ą Ę Ś Ę Ż ć Ę Ś

Bardziej szczegółowo

Ł Ń Ł Ł ź Ż ź Ł Ż Ó ż ż Ą ź Ą Ó Ń Ą Ł Ł Ą Ż Ś Ą ź Ż Ż ź Ż Ż ż Ą Ł Ż Ź Ź ź Ó ź Ł Ą ź Ń ź Ó Ł ż ć Ś Ś Ą Ł Ś ż ź ź Ą Ż Ł Ś Ś Ł Ż Ń Ń Ł Ó Ś Ś ć Ś Ó Ć ć ć Ś ż Ó Ó ź Ó Ó Ś Ó Ą Ą ć Ą Ą Ł Ą Ł Ą Ł ż Ł ź ć Ł Ą

Bardziej szczegółowo

Ż ń ń Ł Ą ń Ą Ż Ą Ż ń Ą ń ń ń ń Ł Ą ń ń ń ń ń Ą ń ń ń ń ń ń ń ć ń Ż ń ń Ą Ś Ą Ś Ą ń Ą Ś Ę ń Ś ń ń Ą ń Ż ń ź ź ń Ś ń ń Ś Ę Ś Ź Ś ń ń ć Ż ń ń Ą ń Ś Ż ń Ż Ż Ć Ż Ś Ś ć Ż Ż ć Ą ń Ą ń Ż ń ń ń Ż ć Ż Ż ń ń Ś Ż

Bardziej szczegółowo

Ł Ż Ł Ł Ł Ł ż ż ć ź ć ż ż Ż ż Ż ż Ż ć Ż Ł Ż ć ŻŻ ź ż Ł ż ż ż Ż ć Ł Ł ż ż ż ż Ż ż ż ź ć Ż ż ż Ż ż Ż ć ż ć Ż ź ż ż ć ć Ż ż Ź ż ż ż ź ż ż ź ż ż ż ż ż ź Ż Ż ź ż ć ż ż Ł ż ć ż ż ż ć ż ż ć Ż Ż ż ż ż ź ć ż ż

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Ż ń Ż

Ż ń Ż Ó Ł Ż ń Ż Ę ć Ź Ę ź ć ć ć ć Ł ć ć ć Ż ć ć ć ć ć Ę ź Ż Ż ć ć ć Ą Ł ć Ż ć ć Ę ć ć ć ć ź Ę ć Ę Ę ć ć ć ć Ę ć ć Ż Ę Ę ć Ż ć Ę ć Ę Ż ć ń ć ć Ż Ż ć Ż ć ń ć ć Ż ń ń ź ć ń ń ć Ę ć ć ć ń ć ć ć Ę ń Ę ć ć ć ź Ę ń

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

PRZYKŁAD 1. RozłóŜ na ułamki proste następującą funkcję operatorową: Rozwiązanie. Przy pomocy rozkładu na ułamki proste otrzymujemy: Czyli + +

PRZYKŁAD 1. RozłóŜ na ułamki proste następującą funkcję operatorową: Rozwiązanie. Przy pomocy rozkładu na ułamki proste otrzymujemy: Czyli + + Powrd by xo lalik.krzyzo@wp.pl PRZYŁAD RozłóŜ na ułamki pro naępuącą unkcę opraorową: Rozwiązani Przy pomocy rozkładu na ułamki pro orzymumy: Czyli Po przmnoŝniu przz mianownik lw części równania orzymano:

Bardziej szczegółowo

EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.

EKONOMETRIA. Ekonometryczne modele specjalne.   Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel. EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80

Bardziej szczegółowo

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne PLAN WYKŁADU Sooby dochodznia do tanu naycnia Procy izobaryczn Ochładzani izobaryczn (mratura unktu roy) Ochładzani rzz izobaryczn i adiabatyczn wyarowani/kondnację wody (mratura wilgotngo trmomtru, mratura

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć

ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć Ł Ł ź Ą Ź ć Ź ć Ę ć ź Ż ć ć Ń Ę Ę Ś ć ć ć ć Ć ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć ć Ź Ż ć Ą ć Ł Ó Ł Ę Ę ĘŚĆ Ę ĘŚ ź Ę Ą Ą Ą ĘŚ Ź Ź Ź Ź Ż Ź ć ć Ź ć Ź Ł Ź Ź Ź ć ć Ą ć ć ć ć ć ć ć Ź Ź ź ć ć ć ć ć ć ć Ź ć Ą Ę Ą

Bardziej szczegółowo

ź Ł ć Ę ź ć Ą Ó Ą Ó Ą Ą ć ń ć Ą ć ź ń ń Ó ź ć ć ź ź ć ń ć ń ć ć ć ć ć ć ć ź Ą ć ć ć ć ć ć ź ć ź ć ć ć ć ć ń ć ć ć Ł ć ń ń ń ź ń ź ń Ę Ę Ę ń ź ź ć ć Ąć Ą ć ń ź ź Ą ź Ś ń ź ń ź ń Ł Ę Ł ń Ń ć ć ć ć ć ć Ś

Bardziej szczegółowo

6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów

6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów 6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x ()

Bardziej szczegółowo

ć Ę Ż ć ć ć Ż Ź

ć Ę Ż ć ć ć Ż Ź Ł ć ć Ź Ź Ą ź Ż ć Ę Ż ć ć ć Ż Ź Ź Ź Ż Ż Ń ć ć Ń Ż Ź Ż Ź Ż ć Ó Ń Ż ć Ż ć Ę ć ć Ę Ż Ź Ż Ź Ź ć Ż Ź Ź Ź Ż ć Ź Ź Ź Ź Ź Ż Ż Ę Ż ć Ę Ę Ź ć Ż Ż ĘĄ Ź Ź ć Ż Ź Ą Ż Ść Ż Ę Ź Ż Ż Ż Ź Ż Ż ć ć ć ŻŻ ć ć ć ć Ę Ż ć ć Ż

Bardziej szczegółowo

Ó Ś

Ó Ś Ł ć ć Ż Ó Ś Ł Ż Ż ć Ż ć Ż Ż Ą Ż ć Ż ć ć Ż ć ć Ł Ź Ź ć Ż Ż Ż Ż Ż Ż Ż Ż Ź Ł Ł Ż ć Ą ć ć Ź Ż Ź Ż Ś Ł Ą Ą Ą Ł Ą Ś ć Ł Ż Ż ć Ż ć Ń Ś Ż ć ź ć Ą Ł ź Ż ć ź Ł ć Ż ć ć ć Ą Ś Ł Ń Ć Ł ŚĆ Ś Ó Ż Ą ź Ą Ą Ą ź Ś Ś Ł Ź

Bardziej szczegółowo

ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż

ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ż Ń ż ż Ń Ń Ń ż ć ż ż ć ż ż ż ć Ą Ń ż ć ć ż ż ż ż ć ćż ż Ń Ń Ł ż Ń Ń Ń ć Ń ć ć Ń ż Ń Ń ż ż ż ć Ń ć ż ć ć ć ć Ń ż Ń Ń ć Ń Ę ż Ń ż ż ż Ł ż ć ż ć ż ż ż ż ć ć ż ż ć ź ż ż

Bardziej szczegółowo

Ć ą ć ą ą ć ś ń ć śćś ń ć ć ść ż ą ś ż ż ą ń ż ż ą ś Ę ą ą ś ą ż ą ż ą ś ć ą ż ś ś ś ż ż ń ż Ć ś ż ą ś ś ś ć ś ą ą ś ą ś ś ą ż ż

Ć ą ć ą ą ć ś ń ć śćś ń ć ć ść ż ą ś ż ż ą ń ż ż ą ś Ę ą ą ś ą ż ą ż ą ś ć ą ż ś ś ś ż ż ń ż Ć ś ż ą ś ś ś ć ś ą ą ś ą ś ś ą ż ż Ł ż ń Ś ą ą Ę ń Ł ą ą ą ą Ń ą ą ą ą ś ą ż ą ż ąć Ś ą ś ą ś ą ą ż ń ż Ś Ę ń ą żź ż ż Ć ą ć ą ą ć ś ń ć śćś ń ć ć ść ż ą ś ż ż ą ń ż ż ą ś Ę ą ą ś ą ż ą ż ą ś ć ą ż ś ś ś ż ż ń ż Ć ś ż ą ś ś ś ć ś ą ą ś

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

ń Ą ę ę Ż ę Ó Ó ż żę ę ę ę ę ę ę ę ę ę ę ź ż ż Ż ż ż

ń Ą ę ę Ż ę Ó Ó ż żę ę ę ę ę ę ę ę ę ę ę ź ż ż Ż ż ż Ą ń Ą ę ę Ż ę Ó Ó ż żę ę ę ę ę ę ę ę ę ę ę ź ż ż Ż ż ż Ł ę ę Ż ę Ż ę ę ę ż Ż ę ń ę ę ę ę Ą ń ę ę Ź ę ę ż ż ę ę Ż ę Ż ę Ź ę ę Ą ę Ń ę ę ż ż ę Ą ę ź Ż ę ę ę Ó ć ń ę ę Ł ę ć ę ż ę Ń ę Ż ż ę ę Ż ę ę Ż ę ę

Bardziej szczegółowo

I. Wymagania/ograniczenia obiektowe. II. Struktura układu sterowania

I. Wymagania/ograniczenia obiektowe. II. Struktura układu sterowania Projkt kład trowania = trktraparamtr I. Wmagania/ogranicznia obiktow cl: założnia projktow poób: opi tchnologiczn, warnki tchniczn II. Strktra kład trowania cl: wbór trktr kład i tp rglatora poób: widzadoświadczni

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Uświadomienie potrzeby badawczej.

Uświadomienie potrzeby badawczej. III. BADANIA MARKETINGOWE PROWADZENIA BADAŃ 1. W badaniach marktingowych poszukuj się odpowidzi na trzy rodzaj pytań: pytania o fakty o różnym stopniu złożoności co jst? pytania o cchy (właściwości) stwirdzanych

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. Niech łączna wartość szkód: Ma złożony rozkład Poissona. Momenty rozkładu wartości poedyncze szkody wynoszą:, [ ]. Wiemy także, że momenty nadwyżki wartości poedyncze szkody ponad udział własny

Bardziej szczegółowo

Badanie zależności cech

Badanie zależności cech PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie

Bardziej szczegółowo