Saturn i jego pierścienie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Saturn i jego pierścienie"

Transkrypt

1 Fizyka układów planetarnych Saturn i jego pierścienie Wykład 7

2 Saturn Ziemia półoś wielka 9,6 j.a. 1,0 j.a. okres orbitalny 29,4 roku 1 rok mimośród 0,057 0,017 inklinacja (kąt nachylenia płaszczyzny orbity względem ekliptyki) 2,5 okres rotacji (doba gwiazdowa) 10 h 39 min 22 s 23 h 56 min 04 s promień równikowy (1 bar) biegunowy masa km (9,45 R Z ) km (8,55 R Z ) kg (95 M Z ) 6378 km 6357 km kg (1,0 M Z ) śr. gęstość 0,7 g cm - 3 5,5 g cm - 3 przysp. grawit. (na równiku) 10,4 m s - 2 9,8 m s - 2 albedo 0,47 0,367 I/(MR 2 ) 0,21 0,3308

3 Budowa wewnętrzna ATMOSFERA WODÓR CZĄSTECZKOWY METALICZNY WODÓR pojawia się na głębokości ok km JĄDRO średnica ok km temperatura K, mieszanina skał (krzemiany, żelazo) i lodów (wody, metanu i amoniaku) Źródło: P.Bond, Exploring the Solar System, 2010 Źródło: LPI

4 Pole magnetyczne Mniejsza wersja magnetosfery Jowisza. 30 razy słabsze niż Jowisza, ale 600 razy silniejsze niż Ziemi oś pola równoległa do osi rotacji planety (wyjątek w US) torus plazmowy zasilany jonami z H 2 O wyrzucanej przez gejzery na Eceladusie (300 kg/s). Średnia gęstość: 3000 cząstek na cm 3, rozmiar promieni planety rozpościera się średnio 1,8 mln km w kierunku Słońca (wartość zmienia się w granicach 1,2 2,1 mln km w zależności od aktywności słonecznej) Źródło: Univ. of Colorado

5 Pasy radiacyjne Obszary występowania cząstek wysokoenergetycznych (10 7 ev) uwięzionych przez magnetosferę ENERGIA JONÓW è ENERGIA e è KOLORY KODUJĄ GĘSTOŚĆ kilka MeV GŁÓWNY PAS RADIACYJNY 30 kev kilka MeV głównie jony z fotodysocjacji (UV) wody nad pierścieniami rozpościera się stosunkowo cienki (do 6000 km) i rozrzedzony pierścień z cząstkami o energiach poniżej 150 kev /JPL/APL

6 Zorze Mogą trwać dłużej (do kilku dni) niż na Ziemi (kilka godzin) średnica owala zorzowego wynosi ok km, a podstawa sięga wysokości 1600 km powyżej warstwy chmur widoczne tylko w UV skorelowane z natężeniem promieniowania radiowego zmiany średnicy owala w zależności od intensywności świecenia efekt kompresji pola magnetycznego przez wiatr słoneczny /ESA/Boston Univ. Zorze w UV (na niebiesko) na tle tarczy planety w zakresie widzialnym. Zmiany są odzwierciedleniem oddziaływań z wiatrem słonecznym /Univ. of Arizona

7 Ciepło wewnętrzne Planeta emituje 1,8 razy więcej energii (cieplnej) niż dostaje od Słońca. Wynik ten jest sprzeczny z modelem uwzględniającym jedynie ciepło zakumulowane w czasie powstawania planety i powstające wskutek kontrakcji globu. Atmosfera planety wykazuje względny niedobór helu w porównaniu z Jowiszem. Modele wskazują, że spadek helowego deszczu do centrum planety wyzwala wskutek tarcia obserwowaną nadwyżkę ciepła. Proces ten trwa od ok lat. /Univ. of Arizona Obraz północnej półkuli Saturna uzyskany w podczerwieni (5,1 µm). Emisja termiczna z wnętrza planety (do ok. 70 km poniżej chmur) zaznaczona na czerwono i biało. Widoczny wzór wynika ze struktury chmur

8 Atmosfera - skład wodór cząsteczkowy H 2 : 96.3±2.4% He: 3.25±2.4% metan CH 4 : 0.45±0.2% amoniak NH 3 : ±0.075% HD (atom wodoru i deuteru): 0.011±0.0058% etan C 2 H 6 : ± % woda, ecetylen, fosforowodór, wodorosiarczek amonu aerozole lodów wody, amoniaku i wodorosiarczku amonu

9 Atmosfera - chmury Na pierwszy rzut oka planeta wygląda jak wyblakły Jowisz 25% energii od Słońca jaką otrzymuje Jowisz mniejszy gradient ciśnienia (mniejsza grawitacja) chmury występują głębiej, nad nimi mgła (kryształki amoniaku i węglowodory będące efektem oddziaływania światła słonecznego z metanem) brak relacji konwekcja-kolor kryształki amoniaku 140 K /JPL Źródło: Open University

10 Atmosfera - wiatry Jedne z najsilniejszych w Układzie Słonecznym, słabo skorelowane z pasami i strefami wieją w większości z zachodu na wschód duża zmienność spowodowana porami roku i przesłanianiem przez pierścienie główny prąd strumieniowy między 35 N i 35 S z prędkością do 1700 km/h (4 razy więcej niż na Jowiszu) źródło energii: ciepło planety Źródło: Planetary Sciences, de Pater & Lissauer (2010)

11 Atmosfera burze Podobne do tych na Jowiszu (antycyklony) lecz znacznie słabsze pas burz w czasie lata na półkuli północnej zaobserwowany w listopadzie Burze trwały przez kilka miesięcy skutek wynoszenia cieplejszego gazu przez konwekcję Źródło: HST

12 Atmosfera burze Burza z grudnia 2010 widziana przez sondę Cassini

13 Atmosfera burze Ewolucja burzy z grudnia 2010 Kolor koduje wysokość chmur: brązowo-czerwony chmury najniższe, niebieskie - najwyższe

14 Atmosfera burze Kolejna z początku 2013 roku

15 Atmosfera burze Źródło: Nature 475, 44 (2011)

16 Fizyka układów planetarnych 7. Saturn i jego pierścienie Polarny sześciokąt Heksagonalna struktura polarna Efekt dynamiki płynów z nietrywialnymi warunkami brzegowymi w okolicach bieguna północnego ç km è Źródło: Icarus 206, 755 (2010)

17 Polarny Wir polarny sześciokąt Układ niskiego ciśnienia nad biegunem południowym, z wyraźnie zaznaczonym okiem cyklonu i pierścieniami wypiętrzonych chmur W oku jest o kilka K cieplej

18 Polarny Pierścienie sześciokąt widziane z Ziemi Pozorne znikanie i pojawianie się to efekt nachylenia płaszczyzny równikowej planety względem płaszczyzny orbitalnej o kąt 27 Źródło: P.Bond, Exploring the Solar System, 2010

19 Struktura Obraz pierścieni wykonany przez sondę Cassini. Obszary żółte są nieprzezroczyste skutek zagęszczenia materii, ale jednocześnie cechują się wieloma przerwami Obszary niebieskie są stosunkowo przezroczyste Rozciągają się do km, grubość kilkadziesiąt metrów Jest jeszcze pierścień wewnętrzny D oraz zewnętrzne F, G i E /Univ. of Colorado

20 Struktura Składają się odłamków skalnych i lodu wodnego tworzących luźne śnieżki Pierścień C jest ciemniejszy niż A, co wskazuje, że śnieżki są bardziej zanieczyszczone /Univ. of Colorado

21 Struktura Pierścienie to w rzeczywistości zbiór koncentrycznych zagęszczeń materii o grubości radialnej od 2 13 m dla pierścienia A do m dla pierścienia B Dynamika grudek materii jest niesłychanie niestabilna łatwo migrują między sąsiednimi zagęszczeniami. Tym samym rozkład poszczególnych zagęszczeń zmienia się jedne zanikają, inne odbudowują się. Ten cykliczny proces rządzony siłami grawitacji zapewnia stabilność pierścieni w długich skalach czasowych

22 Granica Roche a Rozważmy układ planeta księżyc, w którym planetę można przybliżyć punktem o masie M p, a księżyc jest kulisty i utrzymywany w całości jedynie przez grawitację. Ponadto jego orbita jest kołowa, a okres rotacji zsynchronizowany z okresem obiegu. Na jednostkę masy fragmentu księżyca działać będzie siła grawitacji g p = GM p gdzie r to odległość planeta-element, oraz siła odśrodkowa gdzie ω to prędkość kątowa związana z ruchem orbitalnym. Dla środka masy księżyca g p = g n, czyli ω 2 rˆr GM p r 2 gdzie a to promień orbity. Efektywne przyspieszenie grawitacyjne, jakiego doświadcza fragment księżyca położony r od planety wyniesie r 2 g ω = ω 2 rˆr, ˆr, ˆr = 0 ω 2 = GM p r 3 " r g ef = g ω g p = GM p a 1 % $ ' ˆr. # 3 r 2 & = GM p a 3, Siły pływowe zależą od gradientu g eff dg ef dr = GM " 1 p a 2 % $ ' ˆr # 3 r 3 & r a 3GM p a 3 ˆr.

23 Granica Roche a Na powierzchni siła grawitacji równoważy siły pływowe, gdy GM k R k 2 = 3GM pr k a 3, gdzie M k i R k to masa i promień księżyca. Warunek ten jest spełniony dla orbity o promieniu a R R p = 3 M 3 p R k! 3 =1, 44 ρ $ p 3 # & R p " % gdzie ρ to średnie gęstości obu ciał. Dla ciaśniejszych orbit księżyc ulegnie fragmentacji. M k ρ k 1 3,

24 Struktura Przerwy i zagęszczenia to efekt wymiatania materii przez satelity zanurzone w pierścieniach lub oddziaływania rezonansowe Księżyc Pan (26 km średnicy) generuje przerwę Enckego w pierścieniu A Dafnis (8 km średnicy, 2005) odpowiedzialny jest za przerwę Keelera w pierścieniu A. Wzbudza 0,5 1,5 km pionowe fale na brzegach przerwy Przerwa Cassiniego to efekt rezonansu orbitalnego 1:2 z Mimasem (397 km)

25 Perturbacje i rezonanse Ruch drobinki o masie m d można rozważać jako ruch keplerowski w polu grawitacyjnym ciała centralnego zaburzany przez ciała trzecie, np. księżyc o masie m k. Zaburzenia te opisuje funkcja perturbacyjna $ 1 R = Gm k & % r k r d r k r d r k 3 gdzie r to położenia obu ciał względem ciała centralnego. Siła działająca na drobinkę od księżyca wynosi F = m d R. W ruchu orbitalnym perturbacje te mają charakter okresowy. Nawet niewielkie perturbacje mogą wygenerować silne efekty, gdy ich częstotliwość jest równa częstotliwości drgań własnych oscylatora. Równanie ruchu jednowymiarowego oscylatora harmonicznego zaburzanego siłą F f z częstotliwością ω f przyjmuje postać gdzie m to masa oscylatora, ω 0 jego częstość własna, x położenia, t czas. Rozwiązanie przyjmuje postać x = F f m ω o 2 ω f 2 gdzie C 1 i C 2 to stałe wynikające z warunków początkowych. Gdy obie częstości są sobie bliskie, pojawia się zaburzenie o dużej amplitudzie. W przypadku, gdy obie częstotliwości są równe (rezonans), równanie przyjmuje postać x = ' ), ( m d2 x dt + mω x = F f cos( ω f t), ( ) cos ( ω f t) + C 1 cos ω 0 t ( ) + C 2 sin ω 0 t ( ), F f 2mω t sin 2 ( ω 0t) + C 1 cos( ω 0 t) + C 2 sin( ω 0 t). o

26 Perturbacje i rezonanse W ruchu orbitalnym rezonans zachodzi wtedy, gdy zaburzenie występuje w tej samej fazie ruchu orbitalnego (stąd stosunek okresów drobinki i księżyca musi być równy stosunkowi dwóch liczb naturalnych). Drobinka w rezonansie zyskuje duży mimośród. Jednak ten nadmiar energii kinetycznej jest dysypowany w czasie wzajemnych zderzeń drobinek (także z tego powodu pierścienie są płaskie).

27 Struktura Rezonanse wysokiego rzędu z księżycami formują zagęszczenia w pierścieniach. Poniżej fragment pierścienia A

28 Struktura Nawet przerwy nie są zupełnie puste fale brzegowe to efekt oddziaływania grawitacyjnego Pana ślad po jeszcze nie odkrytym księżycu? smuga na orbicie Pana świadectwo erozji księżyca? Przerwa Enckego w pierścieniu A

29 Struktura Śmigiełka w pierścieniu A zaburzenia powodowane przez nieodkryte księżyce o rozmiarach rzędu m

30 Struktura Szprychy w pierścieniu B zaburzenia gęstości pyłu generowane przez pole magnetyczne

31 Struktura Pierścień F utrzymywany przez Prometeusza (86 km) i Pandorę (80 km) księżyce pasterskie Źródło: P.Bond, Exploring the Solar System, 2010

32 Struktura Pierścienie zewnętrzne są trudno dostrzegalne, związane z małymi księżycami. Pierścień E, relatywnie szeroki, związany jest z gejzerami na Enceladusie

33 Struktura Pierścień Febe bardzo daleko od planety (7,7 12,5 mln km), odkryty 2009 r. dzięki obserwacjom w podczerwieni. Jest związany z księżycem (220 km) o tej samej nazwie, nachylony pod kątem 27 względem płaszczyzny pozostałych pierścieni

34 Największe księżyce Saturna Mimas Enceladus Tetyda Dione Rea Tytan Hyperion Japet Febe okres orb. [d] 0,95 1,37 1,89 2,74 4,52 15,9 21,3 79,3 550,5 mimośród 0,0202 0,0045 0,000 0, ,0289 0,1230 0,0286 0,163 Źródło: LPI średnica [km] gęstość [g/cm 3 ] 1,15 1,61 0,97 1,48 1,23 1,88 0,54 1,09 1,64 albedo 0,96 1,38 1,22 0,99 0,95 0,22 0,3 0,05 0,5 0,06 temp. pow. [K] ,

35 Tytan Metanowy świat OCEAN WODY I AMONIAKU SKAŁY I LÓD Chmury etanu Toliny LÓD WODNY SKOMPRESOWANY LÓD WODNY Toliny związki organiczne bogate w azot, powstałe np. metanu i etanu wskutek UV

36 Enceladus fragmenty powierzchni relatywnie młode (<1 mln lat), pokryte gładkim wodnym lodem wiek obszarów gęsto pokrytych kraterami szacuje się na kilka mld lat jądro skalne (gęstość ok 3 g/cm 3 ) o promieniu 170 km, powyżej lodowa skorupa o grubości ok. 80 km ciemniejsze tygrysie paski bogate w CO 2 i węglowodory (metan, etan, etylen) ç 504 km è

37 Enceladus okolice bieguna południowego znacznie cieplejsze gejzery H 2 O wyrzucające materię z prędkością do 500 m/s, 10% materii opuszcza księżyc ç 504 km è

38 Enceladus tygrysie paski korelują się z obszarami podwyższonej temperatury (nawet o 100 K), co pokazują obserwacje w podczerwieni Nie ma przekonywującej hipotezy tłumaczącej obserwacje. Sugeruje się m.in. kombinację energii cieplnej z rozpadu izotopów promieniotwórczych oraz pływów od Saturna i pobliskich Księżyców.

39 Mimas ç 397 km è promień biegunowy o 10% mniejszy niż równikowy relatywnie duży krater uderzeniowy Herschela o średnicy 130 km, pozostałość po zderzeniu, które prawie zniszczyło ten księżyc

40 Tetyda relatywnie duży wielopierścieniowy krater uderzeniowy Odyseusza o średnicy 450 km posiada księżyce trojańskie ç 1060 km è

41 Dione średnia gęstość wskazuje na znacznych rozmiarów skalne jądro pod warstwami lodu większa część powierzchni jest stara, gęsto pokryta kraterami niektóre obszary są wygładzone, z małą liczbą kraterów uderzeniowych możliwy efekt procesów kriowulkanicznych ślady zamierzchłej aktywności tektonicznej napędzanej zakumulowanym ciepłem z wnętrza, rozpadem izotopów promieniotwórczych, a także dynamiką rezonansu orbitalnego z Enceladusem posiada księżyce trojańskie ç 1118 km è

42 Rea ç 1528 km è powierzchnia stara, gęsto usiana kraterami uderzeniowymi struktura wewnętrzna jednorodna z dużym skalno-lodowym jądrem okrytym cienkim płaszczem lodowym

43 Hyperion jeden z największych nieregularnych księżyców ( km) struktura zewnętrzna podobna do gąbki zamiast rotować koziołkuje (efekt nieregularnego kształtu, niekołowej orbity [e = 0,12] i rezonansu 4:3 z Tytanem) powierzchnia pokryta lodem wodnym i suchym, z domieszką węglowodorów mała gęstość (0,55 g/cm 3 ) świadczy, że ciało przypomina duży pumeks. Może to tłumaczyć kształt kraterów uderzeniowych, niespotykany na żadnym innym ciele US (uderzenie ściska materię) km

44 Japet kształt podobny do orzecha włoskiego kilka basenów uderzeniowych wzdłuż równika stary pas gór o długości 1300 km, szerokości 20 km i wysokości do 13 km ciemne obszary odbijają zaledwie 4% światła (jasne 50%). Struktura kraterów uderzeniowych wskazuje, że warstwa ta jest cienka (do kilkudziesięciu cm). Prawdopodobnie jest to pył zakreowany po uwolnieniu z pobliskiej Febe ç 1436 km è

45 Febe obiega planetę w kierunku przeciwnym do jej rotacji, orbita nachylona pod kątem 27 względem płaszczyzny równika planety rotuje w ciągu 9 godz. (brak synchronizacji z okresem obiegu równym 18 miesięcy) mieszanina lodów (wodnego i suchego) z niewielką domieszką skał. Niskie albedo (6%) wskazuje, że powierzchnia pokryta jest warstwą związków węgla km

Fizyka układów planetarnych II. Uran i Neptun. Wykład 1

Fizyka układów planetarnych II. Uran i Neptun. Wykład 1 Fizyka układów planetarnych II Uran i Neptun Wykład 1 Uran Neptun Ziemia półoś wielka 19,2 j.a. 30,1 j.a. 1,0 j.a. okres orbitalny 84,0 lata 164,8 roku 1 rok mimośród 0,046 0,011 0,017 inklinacja 0,77

Bardziej szczegółowo

Fizyka układów planetarnych. Merkury. Wykład 5

Fizyka układów planetarnych. Merkury. Wykład 5 Fizyka układów planetarnych Merkury Wykład 5 101 10 6 km -1,4 mag, 14 55,8 10 6 km -2,9 mag, 25 parametr Merkury Ziemia półoś wielka 0,387 j.a. 1,0 j.a. okres orbitalny 0,24 roku 1 rok okres synodyczny

Bardziej szczegółowo

Saturn. Voyager 2, 21 lipiec1981

Saturn. Voyager 2, 21 lipiec1981 Saturn Voyager 2, 21 lipiec1981 Parametry i dane orbitalne Parametry Saturna Masa 568.46 10^24 kg 9 515 % MZ Gęstość 0.687 g/cm^3 12.5 % GZ Promień równikowy (1 bar) 60 268 km 945 % RZ Promień biegunowy

Bardziej szczegółowo

Fizyka układów planetarnych. Wenus. Wykład 3

Fizyka układów planetarnych. Wenus. Wykład 3 Fizyka układów planetarnych Wenus Wykład 3 parametr wartość okres synodyczny 583 d (1 rok i 7 mies) rozm. kątowy 10 66 WENUS MERKURY HORYZONT Słońce pod horyzontem Źródło: NASA Źródło: NASA Źródło: Wordpress

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org ENCELADUS KSIĘŻYC SATURNA Źródło: en.wikipedia.org Wojciech Wróblewski 2017 PODSTAWOWE DANE DOTYCZĄCE ENCELADUSA Odkryty w 1789 r. Przez Williama Herschela Odległość od Saturna (perycentrum): 237378 km

Bardziej szczegółowo

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków

Bardziej szczegółowo

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5. Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd

Bardziej szczegółowo

Układ Słoneczny Układ Słoneczny

Układ Słoneczny Układ Słoneczny Fizyka i Chemia Ziemi Układ Słoneczny we Wszechświecie Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta

Bardziej szczegółowo

Układ słoneczny. Rozpocznij

Układ słoneczny. Rozpocznij Układ słoneczny Rozpocznij Planety układu słonecznego Mapa Merkury Wenus Ziemia Mars Jowisz Saturn Neptun Uran Sprawdź co wiesz Merkury najmniejsza i najbliższa Słońcu planeta Układu Słonecznego. Jako

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Fizyka układów planetarnych. Mars. Wykład 4

Fizyka układów planetarnych. Mars. Wykład 4 Fizyka układów planetarnych Mars Wykład 4 parametr wartość jasność obserwowana od +1.6 do 2.9 mag rozm. kątowy 3,5 25,1 101 10 6 km -1,4 mag, 14 55,8 10 6 km -2,9 mag, 25 parametr Mars Ziemia półoś wielka

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Fizyka układów planetarnych. Ziemia, Księżyc. Wykład 2

Fizyka układów planetarnych. Ziemia, Księżyc. Wykład 2 Fizyka układów planetarnych Ziemia, Księżyc Wykład 2 Voyager 1, 1990 Źródło: NASA parametr śr. promień masa śr. gęstość śr. przyspiesz. graw. wartość 6370 km 6 10 24 kg 5,5 g cm - 3 9,8 m s - 2 albedo

Bardziej szczegółowo

Pola Magnetyczne w Układzie Słonecznym

Pola Magnetyczne w Układzie Słonecznym Pola Magnetyczne w Układzie Słonecznym MAGNETOSFERA SŁOŃCA 2 Magnetosfera słońca Szybki wiatr (do 900 km/s) wypływa z niemal nieaktywnych rejonów biegunowych Powolny wiatr (od 200 km/s) z obszarów aktywniejszych,

Bardziej szczegółowo

Układ Słoneczny. Pokaz

Układ Słoneczny. Pokaz Układ Słoneczny Pokaz Rozmiary planet i Słońca Orbity planet Planety typu ziemskiego Merkury Najmniejsza planeta U.S. Brak atmosfery Powierzchnia podobna do powierzchni Księżyca zryta kraterami część oświetlona

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Rok 2019 1. Wstęp teoretyczny Wszyscy ludzie zamieszkują wspólną planetę Ziemię. Nasza planeta, tak jak siedem pozostałych, obiega Słońce dookoła.

Bardziej szczegółowo

PARAMETRY I DANE ORBITALNE

PARAMETRY I DANE ORBITALNE Jowisz PARAMETRY I DANE ORBITALNE Parametry Jowisza Masa 1 898.6 10^24 kg 31 783% MZ Gęstość 1 326 kg/m^3 24% GZ Promień równikowy (1 bar) 71 492 km 1 120% RZ Promień biegunowy 66 854 km 1 051% BZ g na

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

Jowisz i jego księżyce

Jowisz i jego księżyce Fizyka układów planetarnych Jowisz i jego księżyce Wykład 6 Jowisz Ziemia półoś wielka 5,2 j.a. 1,0 j.a. okres orbitalny 11,86 roku 1 rok mimośród 0,05 0,017 inklinacja (kąt nachylenia płaszczyzny orbity

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Księżyc to ciało niebieskie pochodzenia naturalnego.

Księżyc to ciało niebieskie pochodzenia naturalnego. 2b. Nasz Księżyc Księżyc to ciało niebieskie pochodzenia naturalnego. Obiega on największe ciała układów planetarnych, tj. planeta, planeta karłowata czy planetoida. W niektórych przypadkach kiedy jest

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058 Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące

Bardziej szczegółowo

Układ słoneczny, jego planety, księżyce i planetoidy

Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny składa się z ośmiu planet, ich księżyców, komet, planetoid i planet karłowatych. Ma on około 4,6 x10 9 lat. W Układzie słonecznym wszystkie

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun

Bardziej szczegółowo

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Teoria ruchu Księżyca

Teoria ruchu Księżyca Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

W poszukiwaniu życia pozaziemskiego

W poszukiwaniu życia pozaziemskiego W poszukiwaniu życia pozaziemskiego Czy istnieje życie we Wszechświecie? 1473 1543 r. TAK, bo: zasada kopernikaoska mówi, że Ziemia nie jest wyróżnionym miejscem we Wszechświecie Biblioteka Uniwersytetu

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Prezentacja. Układ Słoneczny

Prezentacja. Układ Słoneczny Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców

Bardziej szczegółowo

Ciała drobne w Układzie Słonecznym

Ciała drobne w Układzie Słonecznym Ciała drobne w Układzie Słonecznym Planety karłowate Pojęcie wprowadzone w 2006 r. podczas sympozjum Międzynarodowej Unii Astronomicznej Planetą karłowatą jest obiekt, który: znajduje się na orbicie wokół

Bardziej szczegółowo

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak

Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Plan wystąpienia Troszkę niedalekiej historii. Dlaczego wokół podwójnych? Pobieżna statystyka. Typy planet w układach podwójnych. Stabilność

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Szymon Malinowski Metody opisu ruchu płynu, skale ruchu. Siły działające na cząstkę (elementarną objętość) powietrza. Równanie ruchu, analiza skali,

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Rys. 1 Przekrój Saturna

Rys. 1 Przekrój Saturna O UKŁADZIE SŁONECZNYM. Siedem planet krążących wokół Słońca obraca się w jedną stronę, a dwie w drugą stronę. Każda z nich nachylona jest pod innym kątem. Uran wręcz turla się po płaszczyźnie orbity. Pluton

Bardziej szczegółowo

Księżyce Neptuna. [km] km]

Księżyce Neptuna. [km] km] Księżyce Neptuna Księżyce Neptuna Numer Nazwa [mag] Średnica Masa [kg] [km] a [tys. km] T [dni] e I [deg] II Nereida 19.2 340 3.1 *1019 5513.8 360.1 0.751 7.09 III Najada 24.1 58 1.9*1017 48.2 0.294 0.000

Bardziej szczegółowo

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2 Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące

Bardziej szczegółowo

Aktywność magnetosfery i zaburzenia w wietrze słonecznym.

Aktywność magnetosfery i zaburzenia w wietrze słonecznym. Aktywność magnetosfery i zaburzenia w wietrze słonecznym. Piotr Koperski Obserwatorium Astronomiczne (Zakład Fizyki Wsokich Energii) Uniwersytet Jagielloński, Kraków 1 Zagadnienia Zródła i charakterystyka

Bardziej szczegółowo

Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN. Astro Izery

Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN. Astro Izery Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN Astro Izery Po co nam Wszechświat? Podstawowe założenie OTW: sformułować prawa fizyczne i opis ruchu

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,

Bardziej szczegółowo

4. Ruch obrotowy Ziemi

4. Ruch obrotowy Ziemi 4. Ruch obrotowy Ziemi Jednym z pierwszych dowodów na ruch obrotowy Ziemi było doświadczenie, wykazujące ODCHYLENIE CIAŁ SWOBODNIE SPADAJĄCYCH Z WIEŻY: gdy ciało zostanie zrzucone z wysokiej wieży, to

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Planowanie obserwacji ciał Układu Słonecznego Plan zajęć: planety wewnętrzne planety zewnętrzne systemy

Bardziej szczegółowo

Zjawiska fizyczne. Autorzy: Rafał Kowalski kl. 2A

Zjawiska fizyczne. Autorzy: Rafał Kowalski kl. 2A Zjawiska fizyczne Autorzy: Rafał Kowalski kl. 2A Co to są zjawiska fizyczne??? Zjawiska fizyczne są to przemiany na skutek, których zmieniają się tylko właściwości fizyczne ciała lub obiektu fizycznego.

Bardziej szczegółowo

Ziemia. jako obiekt fizyczny. Tomasz Sowiński Centrum Fizyki Teoreytcnzej PAN

Ziemia. jako obiekt fizyczny. Tomasz Sowiński Centrum Fizyki Teoreytcnzej PAN Ziemia jako obiekt fizyczny Tomasz Sowiński Centrum Fizyki Teoreytcnzej PAN Ziemia okiem fizyka XII Festiwal Nauki, 27 września 2008 Ziemia wydaje się płaska! Texas, USA Ziemia jest płaska i kończy się

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 5: Zjawiska w układzie Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca

Bardziej szczegółowo

Nasza Galaktyka

Nasza Galaktyka 13.1.1 Nasza Galaktyka Skupisko ok. 100 miliardów gwiazd oraz materii międzygwiazdowej składa się na naszą Galaktykę (w odróżnieniu od innych pisaną wielką literą). Większość gwiazd (podobnie zresztą jak

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 60 minut. 1. 11 kwietnia 2017 roku była pełnia Księżyca. Pełnia w dniu 11 kwietnia będzie

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Załóżmy, że sonda kosmiczna mając prędkość v1 leci w kierunku planety pod kątem do toru tej planety poruszającej się z prędkością

Bardziej szczegółowo

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Informacje Neptun ósma i ostatnia planeta Układu Słonecznego. Jej jasność nie przekracza 7,6m. Posiada 13 odkrytych księżyców, spośród których największy jest Tryton. Nazwa tej planety pochodzi od rzymskiego

Bardziej szczegółowo

Uogólniony model układu planetarnego

Uogólniony model układu planetarnego Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej 22.05.2009 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

Słońce i jego miejsce we Wszechświecie. Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego

Słońce i jego miejsce we Wszechświecie. Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego Słońce i jego miejsce we Wszechświecie Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego Dlaczego badamy Słońce? Wpływ Słońca na klimat Pogoda kosmiczna Słońce jako

Bardziej szczegółowo

Małe ciała Układu Słonecznego

Małe ciała Układu Słonecznego Fizyka układów planetarnych II Małe ciała Układu Słonecznego Wykład 2 Fizyka układów planetarnych II 2. Małe ciała Układu Słonecznego Planeta 1. ciało niebieskie okrążające gwiazdę (w różnych etapach ewolucji),

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Odkryj planety naszego Układu Słonecznego W ciągu 90 minut przez wszechświat Na wycieczkę między Ehrenfriedersdorf i Drebach

Odkryj planety naszego Układu Słonecznego W ciągu 90 minut przez wszechświat Na wycieczkę między Ehrenfriedersdorf i Drebach Odkryj planety naszego Układu Słonecznego W ciągu 90 minut przez wszechświat Na wycieczkę między Ehrenfriedersdorf i Drebach układ planetarny - Sonnensystem Układ Słoneczny układ planetarny składający

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY LISTOPAD 2013 Instrukcja dla zdającego Czas pracy: 120 minut 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

Powstanie i ewolucja Układu Słonecznego I

Powstanie i ewolucja Układu Słonecznego I Astrobiologia Powstanie i ewolucja Układu Słonecznego I Wykład 2 Chondryty węgliste Meteoryty te mają skład chemiczny najbardziej zbliżony do materii pierwotnej, z której powstał Układ Słoneczny. Zawierają:

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy. I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA

Bardziej szczegółowo

Cząstki elementarne z głębin kosmosu

Cząstki elementarne z głębin kosmosu Cząstki elementarne z głębin kosmosu Grzegorz Brona Zakład Cząstek i Oddziaływań Fundamentalnych, Uniwersytet Warszawski 24.09.2005 IX Festiwal Nauki Co widzimy na niebie? - gwiazdy - planety - galaktyki

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Energia wody. Mikołaj Szopa

Energia wody. Mikołaj Szopa Energia wody Mikołaj Szopa Fizyka pływów energia księżycowa uzasadnienie powstawania pływów oraz ich częstości rozmiary Ziemi są znacznie mniejsze od odległości między Ziemią a Księżycem wpływ

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Pulsacje Pc1/Pc5 Kilometrowego Promieniowania Radiowego Ziemi (AKR)

Pulsacje Pc1/Pc5 Kilometrowego Promieniowania Radiowego Ziemi (AKR) Pulsacje Pc1/Pc5 Kilometrowego Promieniowania Radiowego Ziemi (AKR) Roman Schreiber Centrum Badań Kosmicznych PAN 1 / 42 Zorza polarna na Alasce zdjęcie Jan Curtis 2 / 42 Zorza polarna (Iowa) 3 / 42 Zorza

Bardziej szczegółowo

ŻYCIE W UKŁADZIE SŁONECZNYM. Ziemia

ŻYCIE W UKŁADZIE SŁONECZNYM. Ziemia ŻYCIE W UKŁADZIE SŁONECZNYM Ziemia Gdzie może istnieć życie? Od lat naukowcy zastanawiają się, gdzie może istnieć życie poza Ziemią. Ludzie wyobrażali sobie Marsjan zielone ludziki, statki kosmiczne. W

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Inormacje dla oceniających. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów oceny poszczególnych

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Inormacje dla oceniających. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów oceny poszczególnych

Bardziej szczegółowo

Zorza polarna- zjawisko świetlne obserwowane w górnej atmosferze w pobliżu biegunów

Zorza polarna- zjawisko świetlne obserwowane w górnej atmosferze w pobliżu biegunów Zorza polarna- zjawisko świetlne obserwowane w górnej atmosferze w pobliżu biegunów magnetycznych planty, która posiada silne pole magnetyczne o charakterze dipolowym (dwubiegunowym). Na Ziemie zorze występują

Bardziej szczegółowo

O aktywności słonecznej i zorzach polarnych część I

O aktywności słonecznej i zorzach polarnych część I O aktywności słonecznej i zorzach polarnych część I dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Słooce Protuberancja Fotosfera Plama Chromosfera Włókno Dziura koronalna Proporzec koronalny

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

RUCH ROTACYJNY ZIEMI. Geodezja Satelitarna

RUCH ROTACYJNY ZIEMI. Geodezja Satelitarna RUCH ROTACYJNY ZIEMI Geodezja Satelitarna ROTACJA ZIEMI Niejednostajność ruchu (spowalnianie obrotu wydłużanie długości dnia) Zmienność położenia osi rotacji - ruch względem inercjalnego układu współrzędnych

Bardziej szczegółowo

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego Piotr Brych Wzajemne zakrycia planet Układu Słonecznego 27 sierpnia 2006 roku nastąpiło zbliżenie Wenus do Saturna na odległość 0,07 czyli 4'. Odległość ta była kilkanaście razy większa niż średnica tarcz

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo