Powstanie i ewolucja Układu Słonecznego I

Wielkość: px
Rozpocząć pokaz od strony:

Download "Powstanie i ewolucja Układu Słonecznego I"

Transkrypt

1 Astrobiologia Powstanie i ewolucja Układu Słonecznego I Wykład 2

2 Chondryty węgliste Meteoryty te mają skład chemiczny najbardziej zbliżony do materii pierwotnej, z której powstał Układ Słoneczny. Zawierają: 17-22% wody związanej w krzemianach 25% żelaza w formie magnetytu 3-5% węgla aminokwasy Skład chemiczny i postać minerałów świadczą, że ciała te powstały na odległościach od Słońca większych niż 4 j.a. i nie doświadczyły podgrzania do temperatur powyżej 50 C. Źródło: Internet

3 Datowanie Próbki materii (skał) datuje się metodami wynalezionymi na początku XX wieku i udoskonalonymi w latach 60. Oparte są one na rozpadzie radioaktywnym wybranych jąder atomowych (np. uranu na ołów). Liczba atomów w próbce P zmienia się w czasie t zgodnie z relacją P = P 0 exp( λt), gdzie P 0 to początkowa liczba atomów, a λ to stała rozpadu charakterystyczna dla danego izotopu lub substancji równa λ = ln2, T 1/2 gdzie T 1/2 to czas połowicznego rozpadu. W 1956 roku Clair Patterson wyznacza wiek Układu Słonecznego w oparciu o badania obfitości 235 U/ 207 Pb w meteorytach (chondrytach i meteorytach żelaznych) na 4,54 ± 0,07 mld lat. Wiek skał księżycowych jest młodszy i wynosi ok. 4,43 mld lat, co wskazuje, że proces tworzenia się planet trwał ok. 100 mln lat. Clair Patterson Obecnie wiek najstarszych meteorytów określa się na 4,559 do 4,567 mld lat jest to czas związany z procesem powstawania pierwszych planetozymali i dalej protoplanet. Źródło: Internet

4 Model dysku protoplanetarnego Minimum-Mass Solar Nebula (MMSN) stanowi proste oszacowanie masy dysku protoplanetarnego, z którego powstał Układ Słoneczny. Do masy materii uwięzionej w planetach, planetach karłowatych, planetoidach i kometach dodaje się gaz (głównie wodór i hel) do poziomu obfitości słonecznej. Jej wartość szacuje się na kilka procent masy Słońca. Profil gęstości powierzchniowej MMSN przybliża się wyrażeniami Σ g = 2200 R 3/2 " % $ ' g cm 2 # j.a. & gdzie Σ g to składowa gazowa, a Σ p to pył (skały+lody). Parametr Z rel określa stosunek pyłu do gazu, jest utożsamiany z metalicznością dysku i zależy od temperatury " 1 $ 0, 78 Z rel = # $ 0,33 % $ 0 " R % Σ p = 33Z rel $ ' # j.a. & Z d = Σ p 3/2 Σ g = 0, 015Z rel g cm 2, T < 40 K 40 K < T <180 K 180 K < T < K T > K.

5 Model dysku protoplanetarnego Bryłka materii o promieniu r w odległości R od Słońca emituje jako ciało doskonale czarne energię która jest równa energii pochłoniętej E em = 4πr 2 σt eq, E ab = πr 2 L * 4π R. 2 Stąd otrzymujemy wyrażenie na temperaturę materii dysku w funkcji odległości R od gwiazdy o mocy promieniowania L * T eq = 278 L 1/4 1/2! $! * R $ # & # & K. " % " j.a. % L S Dla L * = L S i temperatury resublimacji pary wodnej 180 K otrzymuje się linię śniegu wodnego w odległości 2,4 j.a. Podobne obliczenia dla metanu (40 K) dają odległość 48 j.a.

6 Model dysku protoplanetarnego - ewolucja Źródło: Solar and Stellar Planetary Systems, Springer 2013

7 Astrobiologia 2. Powstanie i ewolucja Układu Słonecznego Wczesne fazy ewolucji Skład chemiczny silnie zależy od odległości od Protosłońca: W obszarze wewnętrznym (do 2 j.a.) materię w stanie stałym stanowią jedynie związki mineralne. Drobinki pyłu zlepiają się do rozmiarów centymetrowych głównie poprzez oddziaływania międzycząsteczkowe. Z nich powstają kilometrowych rozmiarów planetozymale. Procesy ich tworzenia nadal są tematem wnikliwych badań. Źródło: Internet W obszarze zewnętrznym (od 2-4 j.a.) dominuje lód wodny. Drobinki zlepiają się, powstają ciała o masach ok. 10 mas Ziemi zalążki planet olbrzymów. Są one zdolne do lawinowej akrecji gazu. Powstają planety olbrzymy, które w szczególności Jowisz oczyszczają okolice z pozostałej materii.

8 Zlepianie się ziaren Małe drobinki pyłu koagulują dzięki oddziaływaniom międzycząsteczkowym. Są porowate, o strukturze fraktalnej. Zjawiska te bada się w laboratoriach.

9 Zlepianie się ziaren Przyrost masy ma charakter wykładniczy.

10 Zlepianie się ziaren W zależności od warunków początkowych (prędkość, gęstość) wyróżnia się różne scenariusze zderzeń:

11 Zlepianie się ziaren Przykłady eksperymentów labolatoryjnych:

12 Astrobiologia 2. Powstanie i ewolucja Układu Słonecznego Bariera metrowa Nieznane są procesy pozwalające na utworzenie się kilometrowych ciał z pyłu o rozmiarach rzędu centymetrów. Doświadczenia laboratoryjne oraz prace teoretyczne pokazują, że dla ciał o średnich rozmiarach od 1 cm do 1 m zderzenia prowadzą raczej do fragmentacji niż do dalszej koagulacji. Jednym z proponowanych rozwiązań jest mechanizm niestabilności strumieniowej wynikający z oddziaływania pyłu z gazem. Symulacje pokazują, że zagęszczenia pyłu stają się na tyle znaczące, że mogą prowadzić lokalnie do niestabilności grawitacyjnej i tworzenia związanych grawitacyjnie obiektów o rozmiarach rzędu kilometrów. Źródło: Kowalik et al. 2013, MNRAS, 434, 1460

13 Bariera metrowa Źródło: Kowalik et al. 2013, MNRAS, 434, 1460

14 Formowanie się planetozymali Symulacje pokazują proces przybierania na wadze ciał o rozmiarach kilometrowych będących skupiskiem luźno powiązanych siłą grawitacji brył skalnych. Przy zbyt dużych prędkościach zderzeń dominuje fragmentacja, przy mniejszych łączenie. Zderzenia dostarczają energii roztapiającej planetozymale, co z kolei prowadzi do różnicowania się ich budowy wewnętrznej na jądro zawierające metale (Fe) oraz krzemianowy płaszcz. Odłamkami zderzeń takich ciał są różne typy meteorytów (np. meteoryty żelazne). Źródło: Leinhardt et al. 2000, Icarus, 146, 133

15 Formowanie się planetozymali Proces łączenia się planetozymali ma charakter lawinowy. Bardziej masywne obiekty M 1 nabierają masy szybciej niż małe M 2, co gwałtownie poszerza przedział obserwowanych mas, d M 1 > 0. dt M 2 Na początku procesu lawinowego wzrostu masywne ciała stanowią niewielką część całkowitej masy dysku. Dlatego dynamika dysku zależy w głównej mierze od drobinek niewielkich rozmiarów, których względne prędkości są rzędu prędkości ucieczki V u(2). Prędkość ta jest niezależna od M 1 i prędkości ucieczki z bardziej masywnych ciał V u(1). Dla danego ciała zderzeniowy przekrój czynny rozszerzony jest o czynnik grawitacyjny F g =1+V 2 u /V 2 rel, gdzie V u to prędkość ucieczki, a V rel to względna prędkość cząstek. Ponieważ V rel V u(2), to dla małych cząstek F g 1. Z kolei dla masywnych ciał V u = V u(1) >> V u(2) i F g >> 1. Proces lawinowego wzrostu kończy się, gdy duże ciała zaczynają dominować w dysku, tzn. n 1 M 1 2 > n 2 M 2 2, gdzie n 1 i n 2 to odpowiednio liczba bardziej i mniej masywnych ciał. Zakładając typowe wartości gęstości dysku, dla odległości od gwiazdy równej 1 j.a. otrzymuje się protoplanety o masach z przedziału od masy Księżyca do Marsa w ciągu lat, rozłożone w przestrzeni co kilka setnych j.a. Źródło: Leinhardt et al. 2000, Icarus, 146, 133

16 Astrobiologia 2. Powstanie i ewolucja Układu Słonecznego Formowanie się planet olbrzymów Za linią śniegu (>4 j.a., do ok. 10 j.a.), akreowany materiał bogaty jest w lód wodny i jądra protoplanetarne mogą osiągać masy rzędu kilku mas Ziemi w ciągu kilku mln lat. Symulacje pokazują, że po osiągnięciu masy 5-10 mas Ziemi protoplaneta jest w stanie akreować gaz do osiągnięcia masy mas Ziemi w ciągu kilku mln lat. Źródło: National `Geographic

17 Astrobiologia 2. Powstanie i ewolucja Układu Słonecznego Formowanie się planet olbrzymów Za linią śniegu (>4 j.a., do ok. 10 j.a.), akreowany materiał bogaty jest w lód wodny i jądra protoplanetarne mogą osiągać masy rzędu kilku mas Ziemi w ciągu kilku mln lat. Symulacje pokazują, że po osiągnięciu masy 5-10 mas Ziemi protoplaneta jest w stanie akreować gaz do osiągnięcia masy mas Ziemi w ciągu kilku mln lat. Dalej dochodzi do kolapsu i rozpoczyna się wzrost ekspotencjalny masa rzędu setek mas Ziemi jest osiągana w czasie rzędu 105 lat. Na symulacji poniżej: masa, promień i moc promieniowania proto-jowisza, linia czerwona skały i lód, zielona gaz (H/He), żółta całkowita zaakreowana materia. Źródło: National `Geographic Źródło: Christoph Mordasini, MPIA

18 Wielkie bombardowanie Większość księżycowych mórz, basenów uderzeniowych i kraterów powstała ok. 3,8-4,0 mld lat temu. Źródło: NASA Na Ziemi jak dotąd nie odkryto pozostałości po WB nic dziwnego, bo najstarszy fragment skorupy jest datowany na 3,82 mld lat, czyli na tuż po zakończeniu ery WB. Szacuje się, że na Ziemi powstało ok kraterów większych niż 20 km i większych niż 1000 km.

19 Wielkie bombardowanie a) 100 mln lat po powstaniu Układu Słonecznego (ppus) Jowisz, Saturn, Neptun i Uran znajdują się na prawie kołowych orbitach w odległościach 5,45, 8,18, 11,5 i 14.2 j.a. Pas planetozymali/ planetoid o łącznej masie 25 mas Ziemi rozpościera się od 15,5 do 34 j.a. Stosunek okresów orbitalnych Saturna i Jowisza jest początkowo mniejszy od 2. Trzy planety stopniowo oddalają się od Słońca, z kolei Jowisz się przybliża. W końcu Saturn i Jowisz wpadają w rezonans 2:1, co zwiększa mimośrody planet zewnętrznych. Nowe orbity planet destabilizują pas planetoid. Źródło: Gomez et al. 2005, Nature 435, 466

20 Wielkie bombardowanie b) 879 mln lat ppus rozpoczyna się faza wielkiego bombardowania c) 882 mln lat ppus tuż po rozpoczęciu się wielkiego bombardowania d) ok. 1 mld lat po ppus z dysku pozostaje 3% początkowej masy, a planety olbrzymy osiągają orbity zbliżone do dzisiejszych. Źródło: Gomez et al. 2005, Nature 435, 466

21 Wielkie bombardowanie 10 7 wszystkich planetozymali uderza w powierzchnię Księżyca, 10 6 w Ziemię, 10 3 zostaje uwięzionych w pasie Kuipera. Źródłem migracji planetarnej są oddziaływania grawitacyjne planet z pozostałościami dysku protoplanetarnego. Masa początkowa dysku planetozymali odgrywa kluczową rolę w procesie migracji gdyby była mniejsza, planety Jowisz i Saturn niewiele zmieniłyby swoje orbity, a gdyby była większa, obecna separacja między orbitami planet byłaby większa. Migracja planet destabilizuje także orbity ciał pasa planetoid. Źródło: Gomez et al. 2005, Nature 435, 466

22 Migracje planetarne Zjawisko migracji planety polega na przekazywaniu momentu pędu planety do dysku protoplanetarnego lub z dysku do planety poprzez oddziaływanie grawitacyjne. Już w latach 80. XX wieku zauważono, że masywna planeta (powyżej masy Saturna) może otworzyć przerwę w dysku i pośredniczyć w transferze momentu pędu z jednego obszaru do drugiego (typ II). W tym przypadku spadek na gwiazdę materii z obszaru zewnętrznego zostaje zatrzymany. Moment siły działający na planetę od wewnętrznego lub zewnętrznego dysku jest proporcjonalny do Σ i do kwadratu masy planety. Jeśli różnica w gęstościach powierzchniowych Σ obu obszarów jest znaczna, prowadzi to do migracji planety. Eksperymenty numeryczne wskazują, że przerwa powstaje, gdy 3 4 H R H + 50 Hc sα qa 2 Ω p 1, gdzie H to skala grubości dysku, R H to promień Hilla, c s to lokalna prędkość dźwięku, α to wykładnik we wzorze opisującym rozkład gęstości powierzchniowej dysku, q to stosunek mas planety i gwiazdy, a to półoś wielka, Ω p to częstotliwość ruchu orbitalnego planety. typ I typ II Źródło: Encyclopedia of Astrobiology, Springer-Verlag 2011

23 Migracje typu I Migracja typu I prowadzi zwykle do szybkiej utraty momentu pędu i spadku planety o masie Ziemi na gwiazdę. Tempo zbliżania się da dt M pσ g a 2 H 2, gdzie a to półoś wielka orbity, t czas, M p masa planety, Σ g gęstość powierzchniowa dysku gazowego, H skala jego wysokości. Dla ciała o masie Ziemi w odległości 1 j.a, zanurzonego w MMSN, czas spadku wynosi zaledwie 10 5 lat. Zastosowanie zaawansowanych modeli uwzględniających turbulencje, zmiany temperatury i lepkości dysku wydłużają (urealniają) czas spadku. typ I typ II Źródło: Encyclopedia of Astrobiology, Springer-Verlag 2011

24 Migracje typu I Planeta o masie 10 mas Ziemi. typ I typ II Źródło: Kley & Wilson 2012, Annual Review of Astronomy and Astrophysics, 50, 211

25 Migracje typu I Migracja 10 planet o masach od 2 do 20 mas Ziemi. typ I typ II Źródło: Kley & Wilson 2012, Annual Review of Astronomy and Astrophysics, 50, 211

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków

Bardziej szczegółowo

Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak

Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Plan wystąpienia Troszkę niedalekiej historii. Dlaczego wokół podwójnych? Pobieżna statystyka. Typy planet w układach podwójnych. Stabilność

Bardziej szczegółowo

Powstanie i ewolucja Układu Słonecznego II

Powstanie i ewolucja Układu Słonecznego II Astrobiologia Powstanie i ewolucja Układu Słonecznego II Wykład 3 Migracje typu II Masywne planety generują nieciągłość w rozkładzie masy dysku poprzez zaakreowanie materii lub przesunięcie jej na dalsze

Bardziej szczegółowo

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5. Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd

Bardziej szczegółowo

ASTROBIOLOGIA. Wykład 3

ASTROBIOLOGIA. Wykład 3 ASTROBIOLOGIA Wykład 3 1 JAK POWSTAJĄ GWIAZDY I UKŁADY PLANETARNE? 2 POWSTANIE GWIAZD I PLANET: SCHEMAT Układ planetarny: obłok molekularny mgławica słoneczna dysk protoplanetarny układ planetarny i planety

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Życie w Układzie Słonecznym I

Życie w Układzie Słonecznym I Astrobiologia Życie w Układzie Słonecznym I Wykład 4 Wczesne Słońce Moc promieniowania Słońca rośnie wraz z wiekiem Wczesne Słońce Ilość energii, jaką otrzymuje Ziemia w jednostce czasu P in = π R 2 S(1

Bardziej szczegółowo

Prezentacja. Układ Słoneczny

Prezentacja. Układ Słoneczny Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców

Bardziej szczegółowo

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058 Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 3: Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce,

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Układ słoneczny, jego planety, księżyce i planetoidy

Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny składa się z ośmiu planet, ich księżyców, komet, planetoid i planet karłowatych. Ma on około 4,6 x10 9 lat. W Układzie słonecznym wszystkie

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

Ewolucja Wszechświata Wykład 14

Ewolucja Wszechświata Wykład 14 Ewolucja Wszechświata Wykład 14 Ewolucja układu słonecznego Planety pozasłoneczne Układ słoneczny Słońce jest okrążane przez 8 planet, które poruszają po prawie kołowych orbitach położonych mniej więcej

Bardziej szczegółowo

Ciała drobne w Układzie Słonecznym

Ciała drobne w Układzie Słonecznym Ciała drobne w Układzie Słonecznym Planety karłowate Pojęcie wprowadzone w 2006 r. podczas sympozjum Międzynarodowej Unii Astronomicznej Planetą karłowatą jest obiekt, który: znajduje się na orbicie wokół

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp.

Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp. Dariusz Ślązek Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp.) Metody porównawcze pomiędzy poszczególnymi ciałami w naszym

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Układ Słoneczny Układ Słoneczny

Układ Słoneczny Układ Słoneczny Fizyka i Chemia Ziemi Układ Słoneczny we Wszechświecie Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Wykłady z Geochemii Ogólnej

Wykłady z Geochemii Ogólnej Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

ASTROBIOLOGIA. Wykład 4

ASTROBIOLOGIA. Wykład 4 ASTROBIOLOGIA Wykład 4 1 EWOLUCJA ZIEMI 2 POWSTANIE UKŁADU SŁONECZNEGO 3 4 WIELKIE BOMBARDOWANIE Czas trwania: 3.8 4.1 mld lat temu (~200 mln lat); Wynik: kratery księżycowe (~1700, d > 20 km); Dowody:

Bardziej szczegółowo

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Rok 2019 1. Wstęp teoretyczny Wszyscy ludzie zamieszkują wspólną planetę Ziemię. Nasza planeta, tak jak siedem pozostałych, obiega Słońce dookoła.

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS)

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) 30.11.2017 Masa Jeansa Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M, średniej masie cząsteczkowej µ, promieniu

Bardziej szczegółowo

Księżyc to ciało niebieskie pochodzenia naturalnego.

Księżyc to ciało niebieskie pochodzenia naturalnego. 2b. Nasz Księżyc Księżyc to ciało niebieskie pochodzenia naturalnego. Obiega on największe ciała układów planetarnych, tj. planeta, planeta karłowata czy planetoida. W niektórych przypadkach kiedy jest

Bardziej szczegółowo

I KONKURS METEORYTOWY

I KONKURS METEORYTOWY Imię. Nazwisko. Klasa... Pytania: 1. Układ Słoneczny powstał : a) 450 mln lat temu b) ponad 14 mld lat temu c) 3,2 mld lat temu d) ok. 4,5 mld lat temu I KONKURS METEORYTOWY DLA UCZNIÓW KATOLICKIEGO GIMNAZJUM

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

Plan wykładu. Mechanika Układu Słonecznego

Plan wykładu. Mechanika Układu Słonecznego Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki godzina 13:15 ćwiczenia poniedziałki godzina 15:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2 Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące

Bardziej szczegółowo

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego) Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 12:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

Fizyka układów planetarnych. Merkury. Wykład 5

Fizyka układów planetarnych. Merkury. Wykład 5 Fizyka układów planetarnych Merkury Wykład 5 101 10 6 km -1,4 mag, 14 55,8 10 6 km -2,9 mag, 25 parametr Merkury Ziemia półoś wielka 0,387 j.a. 1,0 j.a. okres orbitalny 0,24 roku 1 rok okres synodyczny

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

Układ Słoneczny. Fizyka i Chemia Ziemi. Odkrycie małych planet. Odległości planet od Słońca. Układ Słoneczny stanowią:

Układ Słoneczny. Fizyka i Chemia Ziemi. Odkrycie małych planet. Odległości planet od Słońca. Układ Słoneczny stanowią: Fizyka i Chemia Ziemi Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta (komety) Pas Kuipera (planety karłowate

Bardziej szczegółowo

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie

Bardziej szczegółowo

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1 Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07

Bardziej szczegółowo

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun

Bardziej szczegółowo

Ewolucja w układach podwójnych

Ewolucja w układach podwójnych Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie

Bardziej szczegółowo

a TB - średnia odległość planety od Słońca Giuseppe Piazzi OCR ( )

a TB - średnia odległość planety od Słońca Giuseppe Piazzi OCR ( ) Fizyka i Chemia Ziemi Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta (komety) Pas Kuipera (planety karłowate

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Grawitacja. Wykład 7. Wrocław University of Technology

Grawitacja. Wykład 7. Wrocław University of Technology Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Małe ciała Układu Słonecznego

Małe ciała Układu Słonecznego Fizyka układów planetarnych II Małe ciała Układu Słonecznego Wykład 2 Fizyka układów planetarnych II 2. Małe ciała Układu Słonecznego Planeta 1. ciało niebieskie okrążające gwiazdę (w różnych etapach ewolucji),

Bardziej szczegółowo

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego) Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 13:15 (w sytuacjach awaryjnych 17:15) ćwiczenia wtorki - godzina 10:15 (jutro 01.03

Bardziej szczegółowo

Nasza Galaktyka

Nasza Galaktyka 13.1.1 Nasza Galaktyka Skupisko ok. 100 miliardów gwiazd oraz materii międzygwiazdowej składa się na naszą Galaktykę (w odróżnieniu od innych pisaną wielką literą). Większość gwiazd (podobnie zresztą jak

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Uogólniony model układu planetarnego

Uogólniony model układu planetarnego Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej 22.05.2009 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na

Bardziej szczegółowo

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk Wszechświat w mojej kieszeni Układ Słoneczny 4 No. 4 Gloria Delgado Inglada Instytut Astronomii UNAM, Meksyk 2 Układ Słoneczny składa się ze Słońca i wszystkich ciał niebieskich podróżujących wokół niego:

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Planowanie obserwacji ciał Układu Słonecznego Plan zajęć: planety wewnętrzne planety zewnętrzne systemy

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Czarne dziury. Grażyna Karmeluk

Czarne dziury. Grażyna Karmeluk Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk

Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk Wszechświat w mojej kieszeni Układ Słoneczny 4 No. 4 Gloria Delgado Inglada Instytut Astronomii UNAM, Meksyk Powstawanie Układu Słonecznego Układ Słoneczny składa się ze Słońca i wszystkich ciał niebieskich

Bardziej szczegółowo

Wpływ pól magnetycznych na rotację materii w galaktykach spiralnych. Joanna Jałocha-Bratek, IFJ PAN

Wpływ pól magnetycznych na rotację materii w galaktykach spiralnych. Joanna Jałocha-Bratek, IFJ PAN Wpływ pól magnetycznych na rotację materii w galaktykach spiralnych. Joanna Jałocha-Bratek, IFJ PAN c Czy pola magnetyczne mogą wpływać na kształt krzywych rotacji? W galaktykach spiralnych występuje wielkoskalowe,

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Załóżmy, że sonda kosmiczna mając prędkość v1 leci w kierunku planety pod kątem do toru tej planety poruszającej się z prędkością

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy IV VI Szkoły Podstawowej Odpowiedzi

Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy IV VI Szkoły Podstawowej Odpowiedzi Instrukcja Zaznacz prawidłową odpowiedź. W każdym pytaniu tylko jedna odpowiedź jest poprawna. Liczba punktów przyznawanych za właściwą odpowiedź na pytanie jest różna i uzależniona od stopnia trudności

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Układ słoneczny. Rozpocznij

Układ słoneczny. Rozpocznij Układ słoneczny Rozpocznij Planety układu słonecznego Mapa Merkury Wenus Ziemia Mars Jowisz Saturn Neptun Uran Sprawdź co wiesz Merkury najmniejsza i najbliższa Słońcu planeta Układu Słonecznego. Jako

Bardziej szczegółowo

Układ Słoneczny Pytania:

Układ Słoneczny Pytania: Układ Słoneczny Pytania: Co to jest Układ Słoneczny? Czy znasz nazwy planet? Co jeszcze znajduje się w Układzie Słonecznym poza planetami? Co to jest Układ Słoneczny Układ Słoneczny to układ ciał niebieskich,

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy. I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz

Bardziej szczegółowo

Ekspansja Wszechświata

Ekspansja Wszechświata Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera

Bardziej szczegółowo

Spełnienie wymagań poziomu oznacza, że uczeń ponadto:

Spełnienie wymagań poziomu oznacza, że uczeń ponadto: Fizyka LO - 1, zakres podstawowy R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie

Bardziej szczegółowo

Układ Słoneczny. Pokaz

Układ Słoneczny. Pokaz Układ Słoneczny Pokaz Rozmiary planet i Słońca Orbity planet Planety typu ziemskiego Merkury Najmniejsza planeta U.S. Brak atmosfery Powierzchnia podobna do powierzchni Księżyca zryta kraterami część oświetlona

Bardziej szczegółowo

Rozciągłe obiekty astronomiczne

Rozciągłe obiekty astronomiczne Galaktyki Przykłady obiektów rozciągłych Mgławice poza Galaktyką? Hubble: Wszechświat,,wyspowy'' Hubble: Wszechświat ekspandujący Hubble: typy galaktyk Właściwości galaktyk (niektóre) Rozciągłe obiekty

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 60 minut. 1. 11 kwietnia 2017 roku była pełnia Księżyca. Pełnia w dniu 11 kwietnia będzie

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej.

Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Zagadnienie podstawowy Uczeń: ponadpodstawowy Uczeń: Numer zagadnienia z Podstawy programowej ASTRONOMIA I GRAWITACJA Z daleka i

Bardziej szczegółowo

Metody badania kosmosu

Metody badania kosmosu Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck

Bardziej szczegółowo

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga

Bardziej szczegółowo

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz

Bardziej szczegółowo