Prawa ruchu: dynamika

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prawa ruchu: dynamika"

Transkrypt

1 Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa

2 Zasada bezwładności Ruch po okręgu Każde ciało trwa w swym stanie spoczynku lub ruchu prostoliniowego i jednostajnego, jeśli siły przyłożone nie zmuszajż ciała do zmiany tego stanu. I.Newton aby ciało pozostawało w ruchu po okręgu konieczne jest działanie siły siła dośrodkowa Ruch po okręgu może być wynikiem działania różnego rodzaju sił: siły zewnętrzne siła Lorenza (pole magnetyczne) siły sprężystości siły reakcji więzów (kulka na nitce) wypadkowej sił reakcji i sił zewnętrznych (regulator Watta, kulka w wirujacym naczyniu...) A.F.Żarnecki Wykład X 1

3 Ruch po okręgu Siła dośrodkowa Regulator Watta Kulka w wirujacym naczyniu ω R R F mg F ω mg Siła dośrodkowa jest wypadkowa siły reakcji i siły ciężkości: A.F.Żarnecki Wykład X 2

4 Ruch po okręgu Siła dośrodkowa Cz astka naładowana w polu magnetycznym Siła Lorenza: Dla : Promień cyklotronowy: A.F.Żarnecki Wykład X 3

5 Ruch po okręgu Przyspieszenie dośrodkowe Z X Y V r s φ ω V dv r dφ = ω dt dφ W zapisie wektorowym: A.F.Żarnecki Wykład X 4

6 Ruch po okręgu Siła dośrodkowa Kulka w wirujacym naczyniu ω Siła dośrodkowa skierowana poziomo ze składania sił: R F α r Z równania ruchu: mg Kulka odchyli się dopiero dla - częstość drgań wahadła matematycznego o długości A.F.Żarnecki Wykład X 5

7 Układy nieinercjalne Opis ruchu Wózek porusza się z przyspieszenien a względem stołu a Z punktu widzenia obserwatora zwiazanego ze stołem kulka pozostaje w spoczynku. Wynika to z zasady bezwładności - siły działajace na kulkę równoważa się Z punktu widzenia obserwatora zwiazanego z wózkiem kulka porusza się z przyspieszeniem prawa Newtona nie sa spełnione!? Oba układy nie moga być inercjalne. Prawa ruchu w układzie nieinercjalnym wymagaja modyfikacji A.F.Żarnecki Wykład X 6

8 Układy nieinercjalne Prawa ruchu Przyjmijmy, że układ O porusza się z przyspieszeniem względem układu inercjalnego O. Osie obu układów pozostaj a cały czas równoległe (brak obrotów) Przyspieszenie punktu materialnego mierzone w układach O i O : Prawa ruchu w układzie inercjalnym O: w układzie nieinercjalnym O : w układzie nieinercjalnym musimy wprowadzić siłę bezwładności A.F.Żarnecki Wykład X 7

9 Układy nieinercjalne Prawa ruchu Wahadło w układzie nieinercjalnym poruszajacym się z przyspieszeniem względem układu inercjalnego Oprócz siły ciężkości i reakcji musimy uwzględnić pozorna siłę bezwładności Opis ruchu można uprościć wprowadzajac efektywne przyspieszenie ziemskie: F b mg R Θ siły bezwładności siły grawitacji odchylenie położenia równowagi: a o Przyspieszenie drgań: A.F.Żarnecki Wykład X 8

10 Układy nieinercjalne Prawa ruchu Jeśli wukładzie poruszajacym się z przyspieszeniem obserwujemy pozorna zmianę kierunku działania siły ciężkości: Ciecz w naczyniu: Balon z helem: A.F.Żarnecki Wykład X 9

11 Układy nieinercjalne Spadek swobodny W układzie odniesienia poruszajacym się z przyspieszeniem wartości przyspieszenie grawitacyjnego: obserwujemy pozorna zmianę W układzie zwiazanym z ciałem spadajacym swobodnie stan nieważkości A.F.Żarnecki Wykład X 10

12 Układ obracajacy się Niech układ O obraca się z prędkościa katow a względem układu inercjalnego O. Dla uproszenia przyjmijmy, że poczatki obu układów pokrywaja się. Rozważmy ruch punktu materialnego spoczywajacego w układzie O : Z punktu widzenia obserwatora O ciało porusza się po okręgu i musi na nie dzialać siła dośrodkowa: W układzie O, aby opisać równowagę sił ( ciało pozostaje w spoczynku) musimy wprowadzić siłę bezwładności: siła odśrodkowa Siły bezwładności sa siłami pozornymi, wynikajacymi z nieinercjalnego charakteru układu odniesienia A.F.Żarnecki Wykład X 11

13 Układ obracajacy się Siła odśrodkowa Regulator Watta Kulka w wirujacym naczyniu ω=0 F B R F B R mg ω=0 mg Równowaga sił w układzie obracajacym się: A.F.Żarnecki Wykład X 12

14 Układ obracajacy się Siła odśrodkowa Ciecz w wirujacym naczyniu α R ω=0 y F B mg r Równowaga drobiny na powierzchni cieczy: (rzut na powierzchnie cieczy) Powierzchnia cieczy przyjmuje kształt paraboliczny A.F.Żarnecki Wykład X 13

15 Układ obracajacy się Układ O obraca się z prędkościa katow a względem układu inercjalnego O. Rozważmy teraz ruch punktu materialnego spoczywajacego w układzie O : Z punktu widzenia obserwatora O ciało porusza się po okręgu i musi na nie dzialać siła dośrodkowa: W układzie O działa tymczasem pozorna siła odśrodkowa musimy wprowadzić kolejna siłę?! Aby uratować równania ruchu potrzebujemy czy to w ogóle ma sens?... A.F.Żarnecki Wykład X 14

16 Układ obracajacy się Układ O obraca się z prędkościa katow a Z względem układu inercjalnego O. Dodawanie prędkości: Z ω r V rot V V Przyspieszenie: Y Y i x Pochodna dla wektora z układu O : ( i ) X X pochodna w O + obrót osi O przysp. w O przysp. O przysp. dośrodkowe przysp. Coriolisa A.F.Żarnecki Wykład X 15

17 Układ obracaj acy się Równanie ruchu W układzie inercjalnym O: w układzie nieinercjalnym O : W układzie obracaj acym się wprowadzamy dwie pozorne siły bezwładności: siłę odśrodkow a siłę Coriolisa A.F.Żarnecki Wykład X 16

18 Układ obracajacy się Ruch obrotowy Ziemi Ciała nieruchome względem powierzchni Ziemi. Zmiana efektywnego przyspieszenia ziemskiego zwiazana z ruchem obrotowym Ziemi: # # #! " Wyniki pomiarów: biegun N g = $ Warszawa g = %$ równik g = $ Efekt większy ze względu na spłaszczenie Ziemi A.F.Żarnecki Wykład X 17

19 Układ obracajacy się Ruch obrotowy Ziemi Spadek swobodny z dużej wysokości Spadek swobodny z wysokości 5.5 km, z prędkościa m/s: Spadek z 5.5 km zajmie Końcowe odchylenie toru od pionu:. Siła Coriolisa odchyla tor ciała w kierunku wschodnim (półkula północna) w Warszawie około 25 m A.F.Żarnecki Wykład X 18

20 Układ obracajacy się Siła Coriolisa Półkula północna Półkula południowa ω V W Fc ω F c V W Wiatry zakręcaja w prawo ; wyż kręci się zgodnie z ruchem wskazówek zegara Wiatry zakręcaja w lewo ; wyż kręci się przeciwnie do ruchu wskazówek zegara A.F.Żarnecki Wykład X 19

21 Układ obracajacy się Wahadło Foucault a 1851 r. Dla obserwatora na Ziemi płaszczyzna ruchu wahadła obraca się z prędkościa katow a w Warszawie ( ): dla startu z położenia równowagi: start z wychylenia maksymalnego A.F.Żarnecki Wykład X 20

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania

Bardziej szczegółowo

Mechanika ruchu obrotowego

Mechanika ruchu obrotowego Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

Ziemia wirujący układ

Ziemia wirujący układ Siła Coriolisa 1 Ziemia wirujący układ Ziemia jest układem nieinercjalnym, poruszającym się w dość skomplikowany sposób. Aby stosować w takim układzie prawa dynamiki Newtona, do opisu zjawisk naleŝy wprowadzić

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład IV: Siły sprężyste i opory ruchu Zasady dynamiki (przypomnienie) Równania ruchu Więzy Prawa ruchu w układzie nieinercjalnym siły bezwładności Siła sprężysta

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Co ważniejsze siły. Wykład Inercjalne układy odniesienia. Transformacja Galileusza 5.2. Nieinercjalne układy odniesienia. Siły bezwładności.

Co ważniejsze siły. Wykład Inercjalne układy odniesienia. Transformacja Galileusza 5.2. Nieinercjalne układy odniesienia. Siły bezwładności. Co ważniejsze siły Piękne rzeczy wypracować można dzięki długiej i uciążliwej nauce, złe natomiast owocują same bez trudu. Demokryt z Abdery Wykład 5. 5.1. Inercjalne układy odniesienia. Transformacja

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Dynamika. Fizyka I (Mechanika) Wykład VI:

Dynamika. Fizyka I (Mechanika) Wykład VI: Dynamika Fizyka I (Mechanika) Wykład VI: Siły sprężyste i opory ruchu Prawa ruchu w układzie nieinercjalnym siły bezwładności Zasada zachowania pędu Zasada zachowania momentu pędu Ruch ciał o zmiennej

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład III: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Bezwładność Bezwładność (inercja) PWN 1998: właściwość układu

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Dynamika. Fizyka I (Mechanika) Wykład IV: Rozwiazywanie równań ruchu ruch w jednorodnym polu elektrycznym i magnetycznym Dynamika ruchu po okręgu

Dynamika. Fizyka I (Mechanika) Wykład IV: Rozwiazywanie równań ruchu ruch w jednorodnym polu elektrycznym i magnetycznym Dynamika ruchu po okręgu Dynamika Fizyka I (Mechanika) Wykład IV: Rozwiazywanie równań ruchu ruch w jednorodnym polu elektrycznym i magnetycznym Dynamika ruchu po okręgu Siły sprężyste Opory ruchu Równania ruchu Podstawowym zagadnieniem

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F Praca i energia Praca

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny. Podsumowanie wykładu Egzamin

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny. Podsumowanie wykładu Egzamin Bryła sztywna Wykład XXIII: Fizyka I (BC) Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny Podsumowanie wykładu Egzamin Tensor momentu bezwładności Tensor momentu bezwładności pozwala

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład V: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Równania ruchu Więzy Bezwładność Bezwładność (inercja) PWN 1998:

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

2.3. Pierwsza zasada dynamiki Newtona

2.3. Pierwsza zasada dynamiki Newtona Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Szymon Malinowski Metody opisu ruchu płynu, skale ruchu. Siły działające na cząstkę (elementarną objętość) powietrza. Równanie ruchu, analiza skali,

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Oddziaływanie grawitacyjne

Oddziaływanie grawitacyjne Oddziaływanie grawitacyjne Przykład Obliczmy stosunek przyspieszenia dośrodkowego Księżyca w kierunku Ziemi do przyspieszenia grawitacyjnego przy powierzchni Ziemi. Przyspieszenie dośrodkowe w ruchu jednostajnym

Bardziej szczegółowo

ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków,

ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków, Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 5 Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego Kraków, 03.015 Spis treści:

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Zasady zachowania. Fizyka I (Mechanika) Wykład VI: Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 1: Badanie siły odśrodkowej. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna - studia

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Dynamika: równania ruchu

Dynamika: równania ruchu Dynamika: równania ruchu Równania ruchu Podstawowym zagadnieniem dynamiki jest rozwiązywanie równań ruchu, czyli określanie ruchu ciała ze znajomości działających na nie sił. Siła działająca na ciało może

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu https://www.slideserve.com/lala/ch5-uniform-circular-motion Ruch jednostajny po okręgu Przyspieszenie dośrodkowe Δx Z podobieństwa trójkątów: r = ΔV V ΔV a d = lim Δt 0 Δt Δθ Δx Δθ a d = V r lim Δt 0 Δx

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo